FINDING SUPERSYMMETRY AT THE LHC

Tilman Plehn

MPI München & University of Edinburgh

- TeV–scale supersymmetry
- Signals at Tevatron and LHC
- Measurements at LHC
- Parameters at LHC (and ILC)

Theory argument, starting from data...

- ...which seem to indicate a light Higgs
- $\begin{array}{ll} \mbox{ problem of light Higgs: } & \mbox{mass driven to cutoff of theory} \\ & \delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \ \Lambda^2 \end{array}$
- \Rightarrow easy solution: cancel loops with counter term \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless, composite Higgs, TopColor, YourFavoriteNewPhysics...
- \Rightarrow typically: cancellation with new particles or high scale discussed away
- ⇒ all beautiful concepts, problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry:

cancellation of divergences through statistics factor (-1) [SM fermions to scalars; SM gauge bosons to fermions; SM scalars to fermions]

Η

Η

SUSY idea: solve hierarchy problem by doubling spectrum

- stop scalars to cancel top loop [couplings protected]
- gauginos, higgsinos (neutral or charged) to cancel W, Z and Higgs loops
- gluino for 2-loop, plus sleptons and squarks
- ⇒ rich collider and non-collider phenomenology [broken SUSY effective theory of everything]
- \Rightarrow gauge coupling unification, dark matter, string inspiration,... [1-800-FIND-SUSY]
- ⇒ argument turned around: big desert at LHC unexpected [historical extrapolation]

SUSY-Higgs sector

- hermitian Higgs field not allowed
 → how to give mass to t and b?
 → two Higgs doublets
- \Rightarrow SUSY–Higgs alone interesting at LHC
- \Rightarrow would be another talk...

		spin	d.o.f.	
fermion	^f L ^{, f} R	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	${ t G}_{\mu}$	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	$\gamma,$ Z	1	2+3	
Higgs bosons	h ^o , H ^o , A ^o	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	Majorana
gauge bosons	W±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}^{\pm}_{i}$	1/2	2 · 4	Dirac

Hadron colliders: signal vs. background

- LHC not built to study QCD jets
- what is a jet and what is inside? [b, τ tag]
- LHC trigger: 'no lepton/photon no data'
- statistics: $S/\sqrt{B} > 5$ the LHC goal

SUPERSYMMETRY AT HADRON COLLIDERS

Hadron colliders: signal vs. background

- LHC not built to study QCD jets
- what is a jet and what is inside? [b, τ tag]
- LHC trigger: 'no lepton/photon no data'
- statistics: $S/\sqrt{B} > 5$ the LHC goal

Tevatron: inclusive squarks and gluinos

- squarks, gluinos strongly interacting: gq̃q, qg̃q, gg̃g fixed by QCD
- $\begin{array}{ll} & QCD \ cross \ sections: \\ & p\bar{p} \rightarrow \tilde{q}\tilde{q}^{*}, \tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g} & \ [\text{best if } m(\tilde{q}) \sim m(\tilde{g})] \end{array}$
- decays to jets and LSP [plus possible jets and leptons]
- gaugino mass unification only for efficiency
- \Rightarrow know how to do jets plus LSP

Supersymmetry at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking

SUSY signals include [NLO: Prospino2]

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$
 - $[\tilde{\chi}_2^0 \to \tilde{\ell}\bar{\ell} \to \tilde{\chi}_1^0 \ell\bar{\ell}; \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell\bar{\nu}]$
- like-sign dileptons: pp $\rightarrow \tilde{g}\tilde{g}$
 - $[\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_{1}^{+} d\bar{u} \text{ or } \tilde{g} \rightarrow \tilde{u}^{*}u \rightarrow \tilde{\chi}_{1}^{-} \bar{d}u]$

Tilman Plehn: SUSY at the LHC - p.6

Supersymmetry at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking

SUSY signals include [NLO: Prospino2]

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$
 - $[\tilde{\chi}^0_2 \to \tilde{\ell}\bar{\ell} \to \tilde{\chi}^0_1 \ell\bar{\ell}; \tilde{\chi}^-_1 \to \tilde{\chi}^0_1 \ell\bar{\nu}]$
- like-sign dileptons: pp $\rightarrow \tilde{g}\tilde{g}$
 - $[\tilde{g} \to \tilde{u}\bar{u} \to \tilde{\chi}_1^+ d\bar{u} \text{ or } \tilde{g} \to \tilde{u}^* u \to \tilde{\chi}_1^- \bar{d}u]$

Supersymmetry at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking

SUSY signals include [NLO: Prospino2]

- funny tops: $pp \to \tilde{t}_1 \tilde{t}_1^*$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$

 $[\tilde{\chi}^0_2 \rightarrow \tilde{\ell} \bar{\ell} \rightarrow \tilde{\chi}^0_1 \ell \bar{\ell}; \tilde{\chi}^-_1 \rightarrow \tilde{\chi}^0_1 \ell \bar{\nu}]$

 $- \quad like-sign \ dileptons: \ pp \rightarrow \tilde{g}\tilde{g} \quad \ \ [\text{Barnett, Gunion, Haber}]$

 $[\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_{1}^{+} d\bar{u} \text{ or } \tilde{g} \rightarrow \tilde{u}^{*}u \rightarrow \tilde{\chi}_{1}^{-} \bar{d}u]$

 \Rightarrow gluinos indeed QCD Majorana fermions

 $\tilde{g} \qquad \tilde{u} \qquad \tilde{\chi}^-$

Spectra from cascade decays

- decay $\tilde{g} \rightarrow \tilde{q}\bar{q} \rightarrow \tilde{\chi}_2^0 q\bar{q} \rightarrow \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z]
- cross sections some 100 pb [more than 3×10^7 events]
- thresholds & edges $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^2$
- poor man's version of ILC threshold scans
- detector resolution, calibration, systematic errors, cross sections, off-shell effects... [Kauer, TP, Rainwater,...]
- \Rightarrow spectrum information sits in decay kinematics

Gluino mass [Gjelsten, Miller, Osland]

- \tilde{b}_{L} cascade, all jets b-tagged
- most of time: cascade correct
- \Rightarrow gluino mass to few percent

[mass difference even better]

Tilman Plehn: SUSY at the LHC - p.9

QCD: squarks and gluinos with (many) jets [TP, Rainwater, Skands]

- cascade studies sensitive to jet simulation?
- matrix element vs. Pythia: ğğ+2j and ũ_Lğ+2j
- \Rightarrow SUSY cascades easier than tops [QCD: the heavier the better]

Complex new physics final states [Cho, Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph/Madevent
- complete set of MSSM Feynman rules [400+ processes compared: Madgraph Whizard Sherpa]

σ [pb]	$t\overline{t}_{600}$	ĝĝ	ũ _L ĝ
$\sigma_{0 \mathrm{j}}$	1.30	4.83	5.65
σ_{1j}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

Show it is SUSY-QCD [Barr; Smillie & Webber]

- straw-man 'bosonic SUSY': universal extra dimensions
- compare entire cascade [instead of angles: e.g. m_{lb}]
- only use normalized distributions
- ⇒ if fermionic gluino, then Majorana [like-sign dileptons]

Gluino-bottom cascade [Alves, Eboli, TP]

- decay chain as for gluino mass
- compare with first KK g, q, Z, and ℓ
- asymmetry like for q
 [']

 $\mathcal{A} = [\sigma(\mathsf{b}\ell^+) - \sigma(\mathsf{b}\ell^-)] / [\sigma(\mathsf{b}\ell^+) + \sigma(\mathsf{b}\ell^-)]$

- difference surviving cuts and smearing
- other distributions possible: ϕ_{bb} ,...
- \Rightarrow gluino spin also sits in decay kinematics

SUPERSYMMETRIC PARAMETERS

Sfitter: SUSY parameters from observables [Lafaye, TP, Zerwas; Fittino; Arkani-Hamed,...]

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

First go at problem [TP, Lafaye, Zerwas]

- ask a friend who knows how SUSY is broken
- \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu)$
- LHC edges or masses?

	SPS1a	Δ LHC	Δ LHC	Δ ILC	Δ LHC+ILC
		masses	edges		
m ₀	100	3.9	1.2	0.09	0.08
m _{1/2}	250	1.7	1.0	0.13	0.11
ta'n β	10	1.1	0.9	0.12	0.12
A ₀	-100	33	20	4.8	4.3

SUPERSYMMETRIC PARAMETERS

Sfitter: SUSY parameters from observables [Lafaye, TP, Zerwas; Fittino; Arkani-Hamed,...]

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum

Combination of methods [TP, Lafaye, Zerwas]

- (1) grid for closed subset
 (2) fit of remaining parameters
 (3) complete fit
- more modern alternaives: simulated annealing Markov Chains
- \Rightarrow LHC+ILC with no assumptions

	LHC	ILC	LHC+ILC	SPS1a
$tan\beta$	10.22±9.1	10.26±0.3	10.06±0.2	10
M ₁	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67 \pm 15	fi x 500	588.05 ± 11	589.4
$M_{\tilde{\tau}_1}$	fi x 500	197.68±1.2	199.25±1.1	197.8
$M_{\tilde{\tau}_{R}}$	129.03±6.9	135.66 ± 0.3	$133.35 {\pm} 0.6$	135.5
$M_{\tilde{\mu}_{L}}$	198.7±5.1	198.7±0.5	198.7±0.5	198.7
M _{q31}	498.3±110	497.6±4.4	521.9±39	501.3
M _{ťR}	fi x 500	420±2.1	411.73±12	420.2
M _Ď R	522.26±113	fi x 500	504.35±61	525.6
$A_{ au}$	fi x 0	-202.4 ± 89.5	352.1 ± 171	-253.5
At	-507.8±91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7±35603	fi x 0	-977±12467	-799.4

Tilman Plehn: SUSY at the LHC – p.13

OUTLOOK

LHC phenomenology beyond the Standard Model

- serious new physics at LHC is about
 (a) QCD in signals and backgrounds [trying to kill us]
 (b) decay kinematics [hiding all good information]
 (c) error bars & statistics [forgot to talk about my last paper...]
- many new ideas: beyond inclusive excess
- many new tools: Prospino2, Smadgraph, Sfitter,...
- \Rightarrow experiment and theory need to work together
- \Rightarrow LHC will be the coolest experiment ever!