HIGGS PHYSICS AT THE LHC

Tilman Plehn

MPI & Edinburgh

- Higgs potential and corrections
- how we will find the Higgs at LHC
- will work: Higgs decay to tau pairs
- will not work: Higgs decay to bottom quarks
- might work: Higgs self coupling
- would be great: Higgs couplings analysis

Theory of W, Z bosons

- start with SU(2) gauge theory [like QED with massless W, Z]
- include measured masses $\mathcal{L} \sim -m_{W,Z} A_{\mu} A^{\mu}$
- \Rightarrow not gauge invariant, not renormalizable, so what?

Unitarity

- test theory in WW \rightarrow WW scattering
 - $\rightarrow {\cal A} \propto G_F E^2$ just like Fermi's theory, not unitary above 1.2 TeV $_{\rm [barely LHC\ energy]}$
 - \rightarrow postulate additional scalar Higgs boson to conserve unitarity
 - \rightarrow fixed coupling $g_{WWH} \propto m_W$
- add fermions and test WW $\rightarrow f \overline{f} \rightarrow f \overline{t}$ scale $\rightarrow f \overline{t}$ add fermions and test WW $\rightarrow f \overline{f}$
- $\begin{array}{l} \ \ test \ new \ theory \ in \ WW \rightarrow WWH \\ \rightarrow \ fixed \ coupling \ g_{HHH} \propto m_{H}^{2}/m_{W} \end{array}$
- final test: WW \rightarrow HHH \rightarrow fixed coupling $g_{HHHH} \propto m_{H}^{2}/m_{W}^{2}$
- ⇒ all Higgs couplings non-negotiable

Higgs potential

- remember Lagrangian invariant under $SU(2) \times U(1)$
- break symmetry through vacuum: SU(2) doublet with vev
- minimize Higgs potential $\Phi = (0, (v + H)/2)$ [v = 246 GeV known from W, Z masses]
- ⇒ first attempt: renormalizable Higgs potential [does all we want]

$$\begin{aligned} \mathcal{L}_{\text{Higgs}} &= |\mathsf{D}_{\mu}\Phi|^2 - \mathsf{V} \\ \mathsf{V} &= \lambda \left(|\Phi|^2 - \frac{\mathsf{v}^2}{2} \right)^2 = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \text{const} \end{aligned}$$

 \Rightarrow not the whole story with new scale Λ [first-order EW phase transition: hep-ph/0407019]

$$V = \sum_{n=0} \frac{\lambda_n}{\Lambda^{2n}} \left(|\Phi|^2 - \frac{v^2}{2} \right)^{2+n}$$

 \Rightarrow gauge–invariant D6 Higgs operators $\mathcal{L}'_{Higgs} = \sum f_i / \Lambda^2 \mathcal{O}_i$ [hep-ph/0301097]

$$\mathcal{O}_{kin} = \frac{1}{2} \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{pot} = -\frac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

LHC SEARCHES

Conversion of beam energy into particle mass

- search for new particles easier if particle produced \rightarrow highest possible energies required
- clean e⁺e⁻ colliders:
 LEP: Z pole
 LEP2: 206 GeV for e.g. ZH
 ILC/CLIC: 1...4 TeV in future
- powerful hadron colliders: Tevatron: pp̄ with 2 TeV [valence quarks] LHC: pp with 14 TeV [gluons]
- LHC mass reach \sim 3 TeV [win by luminosity]

New physics at hadron colliders

- what is a jet and what is inside? [b, τ tag]
- trigger: 'no leptons no data'
- backgrounds $pp \rightarrow jj \text{ or } pp \rightarrow WZ+jets$
- Gaussian statistics: $S/\sqrt{B} > 5$ discovery

Tilman Plehn: Higgs Physics at the LHC – p.4

HIGGS PRODUCTION AND DECAY: 1

Design Higgs searches for the LHC

- (a) unitarity limit: $m_H < 1$ TeV (b) electroweak precision tests: $m_H \lesssim 250$ GeV
- production and decay of light Higgs

 $\begin{array}{ccc} gg \rightarrow H & & signal \times \\ qq \rightarrow qqH & & backgrown \\ gg \rightarrow t\bar{t}H & \leftrightarrow & systema \\ q\bar{q}' \rightarrow WH & & mass response \\ \end{array}$

Production rates

[luminosity 30-300 fb $^{-1}$]

HIGGS PRODUCTION AND DECAY: 1

 \leftrightarrow

Design Higgs searches for the LHC

- (a) unitarity limit: $m_H < 1$ TeV (b) electroweak precision tests: $m_H \lesssim 250$ GeV
- production and decay of light Higgs

$$\begin{array}{l} \mathsf{H} \to \mathsf{b}\bar{\mathsf{b}} \\ \mathsf{H} \to \mathsf{W}\mathsf{W} \\ \mathsf{H} \to \tau_{\ell\mathsf{h}}^+ \tau_{\ell}^- \\ \mathsf{H} \to \gamma\gamma \\ \mathsf{H} \to \mu\mu... \end{array}$$

Branching fractions

[up to 10⁶ events]

Some numbers behind it

- gluon-fusion production and H \rightarrow ZZ \rightarrow 4 μ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- $H \rightarrow WW$ only slightly harder, but no mass peak [above 150 GeV, off-shell still not clear, gg \rightarrow WW background only recently]
- $\begin{array}{l} \mbox{6 million light Higgses in gluon fusion: gg \rightarrow H \rightarrow \gamma\gamma} \\ \mbox{[mass resolution $\Delta m_{H}/m_{H} \sim \Gamma/\sqrt{S} < 0.5\%]} \end{array}$

- backgrounds smaller in WW fusion: $qq \rightarrow qqH \rightarrow qqWW$ [works off-shell down to $m_H < 120 \text{ GeV}$]
- light Higgs: $qq \rightarrow qqH \rightarrow qq\tau\tau$ [will discuss later]
- $\begin{array}{ll} & \text{more challenging strategies:} \\ & gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b} \quad \text{[also later]} \\ & gg \rightarrow t\bar{t}H \rightarrow t\bar{t}WW \quad \text{[likely to work]} \\ & gg \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \quad \text{[yet unclear]} \\ & q\bar{q}' \rightarrow WH \rightarrow Wb\bar{b} \quad \text{[killer QCD backgrounds]} \\ & qq \rightarrow qqH \rightarrow qqb\bar{b} \quad \text{[no ATLAS trigger]} \\ & qq \rightarrow qqH \rightarrow qq\mu\mu \quad \text{[remember Kyle Cranmer's coll.]} \end{array}$
- \Rightarrow Very cool, just H \rightarrow bb a sad story...

Tilman Plehn: Higgs Physics at the LHC – p.7

Some numbers behind it

- gluon-fusion production and H \rightarrow ZZ \rightarrow 4 μ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- $H \rightarrow WW$ only slightly harder, but no mass peak [above 150 GeV, off-shell still not clear, gg \rightarrow WW background only recently]
- 6 million light Higgses in gluon fusion: gg \rightarrow H $\rightarrow \gamma\gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{S} < 0.5\%$]
- backgrounds smaller: $qq \rightarrow qqH \rightarrow qqWW$ [works off-shell down to $m_H < 120 \text{ GeV}$]
- light Higgs: $qq \rightarrow qqH \rightarrow qq\tau\tau$ [will discuss later]
- $\begin{array}{ll} & \text{more challenging strategies:} \\ & gg \rightarrow t \overline{t} H \rightarrow t \overline{t} b \overline{b} \quad \text{[also later]} \\ & gg \rightarrow t \overline{t} H \rightarrow t \overline{t} W W \quad \text{[likely to work]} \\ & gg \rightarrow t \overline{t} H \rightarrow t \overline{t} \tau \tau \quad \text{[yet unclear]} \\ & q \overline{q}' \rightarrow W H \rightarrow W b \overline{b} \quad \text{[killer QCD backgrounds]} \\ & qq \rightarrow q q H \rightarrow q q b \overline{b} \quad \text{[no ATLAS trigger]} \\ & qq \rightarrow q q H \rightarrow q q \mu \mu \quad \text{[remember Kyle Cranmer's coll.]} \end{array}$
- \Rightarrow Very cool, just H \rightarrow bb a sad story...

Signal: pp \rightarrow qqH, H $\rightarrow \tau \tau \rightarrow e^{\pm} \mu^{\mp} 4 \nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable
- τ from Higgs decay strongly boosted [lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV < $m_{\tau\tau}^{coll}$ <160 GeV

- $\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_{T,miss}$
- \Rightarrow obtain $m_{ au au}^{coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim 15 \, GeV/\sqrt{S} \sim 5 \, GeV$

After acceptance cuts

WBF HIGGS PRODUCTION: 1

Signal: pp \rightarrow qqH, H $\rightarrow \tau \tau \rightarrow e^{\pm} \mu^{\mp} 4 \nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable
- τ from Higgs decay strongly boosted [lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV < $m_{\tau\tau}^{coll}$ <160 GeV

$$\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_{T,miss}$$

$$\Rightarrow$$
 obtain m^{coll} _{$au au$} $\sim 2(k_1 \cdot k_2)/(x_1x_2)$

 \Rightarrow mass measurement $\Delta m_H/m_H \sim 15 \, GeV/\sqrt{S} \sim 5 \, GeV$

WBF HIGGS PRODUCTION: 1

Signal: pp \rightarrow qqH, H $\rightarrow \tau \tau \rightarrow e^{\pm} \mu^{\mp} 4 \nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable
- τ from Higgs decay strongly boosted [lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV < $m_{\tau\tau}^{coll}$ <160 GeV

- $\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x1 + \vec{k}_{T,2}/x2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_{T,miss}$
- $\Rightarrow \ \ \text{obtain} \ m_{\tau\tau}^{\text{coll}} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim 15 \, GeV/\sqrt{S} \sim 5 \, GeV$

Background suppression cuts

- $\ \ veto \ central \ p_{T_b} > 20 \ GeV \quad \ \ [t\overline{t} + jets \ down \ to \ 72 \ fb]$
- $\ p_T^{miss} > 30 \ GeV \quad \ [\text{soft } b\overline{b} j j \text{ gone}]$
- $\,$ $\,$ $m_{jj} > 800~GeV\,$ [anti-QCD: gluons with low $\,$ m_{jj}]
- non- τ rejection [anti-W]
- \Rightarrow S/B=1/6, or S/B=1/1 for m_H = 120 \pm 10 GeV

More anti-QCD: central mini-jet veto

- additional jet emission cross section large (e.g. tt, ttj, ttjj)

 $\sigma_2 \lesssim \sigma_{2+j} \equiv \int_{p_{T,min}}^{\infty} d\sigma_{2+j} \quad \text{ for } p_{T,min} \sim 10 \, \text{GeV (WBF)} \quad p_{T,min} \sim 40 \, \text{GeV (QCD)}$

- \Rightarrow veto $p_{T_j} > 20 \text{ GeV}$ and $\eta_{j,min} < \eta_j < \eta_{j,max}$ to suppress QCD
 - theoretical treatment difficult, efficiencies likely to be measured
- $\Rightarrow~$ S/B=2.8/1 for $m_{H}=120\pm10~GeV$

Both $\tau\tau$ channels with safe margins [Standard Model with 60fb⁻¹]

M _H [GeV]	100	110	120	130	140	150
$\epsilon \cdot \sigma_{sig}$ (fb)	0.62	0.58	0.50	0.37	0.23	0.11
S	37.4	35.0	30.0	22.3	13.7	6.5
В	67.5	27.0	10.8	6.7	5.7	5.3
S/B	0.6	1.3	2.8	3.3	2.4	1.2
σ_{Gauss} (dual leptonic)	4.2	5.7	6.9	6.2	4.4	2.3
σ_{Gauss} (lepton-hadron)		5.7	7.4	6.3	4.7	2.6

More anti-QCD: central mini-jet veto

- additional jet emission cross section large (e.g. tt, ttj, ttjj)

 $\sigma_2 \lesssim \sigma_{2+j} \equiv \int_{p_{T,min}}^{\infty} d\sigma_{2+j}$ for $p_{T,min} \sim 10 \,\text{GeV} \,(\text{WBF})$ $p_{T,min} \sim 40 \,\text{GeV} \,(\text{QCD})$

- \Rightarrow veto $p_{T_j} > 20 \text{ GeV}$ and $\eta_{j,min} < \eta_j < \eta_{j,max}$ to suppress QCD
 - theoretical treatment difficult, efficiencies likely to be measured
- $\Rightarrow~$ S/B=2.8/1 for $m_{H}=120\pm10~GeV$

General features of WBF production

- cross section $10\cdots 3~\text{pb}$ for $m_H < 200~\text{GeV}$
- forward jet tagging, central Higgs decay products, central mini-jet veto

$$\Rightarrow (H \rightarrow \gamma \gamma) @50 \text{ fb}^{-1} \text{ for } m_{H} = 110 \cdots 145 \text{ GeV} \quad [\gamma \gamma \text{ mass resolution}]$$

 $(H \rightarrow \tau \tau)$ @60 fb⁻¹ for m_H = 100 · · · 140 GeV [lepton-hadron and dual lepton]

$$(H \rightarrow WW)$$
@5 fb⁻¹ for m_H = 140 · · · 200 GeV

ASSOCIATED HIGGS PRODUCTION

What about $H \to b \bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by background
- WBF fusion: no trigger
- WH production: killed by low rate and NLO background
- $\sigma(t\bar{t}H) \sim 100 \text{ fb}$

$t\overline{t}H, H \rightarrow b\overline{b} \text{ for a light Higgs} \quad \text{[ATL-PHYS-2003-24]}$

- trigger: one t \rightarrow bW⁺ \rightarrow b $\ell^+ \nu$
- reconstruction and rate: one t \rightarrow bW⁺ \rightarrow bjj
- continuum background ttbb, ttjj [weighted by b-tag]
- $\Rightarrow \ \ \text{reconstruct} \ \textbf{m}_{H} \ \text{in} \ \textbf{pp} \rightarrow \textbf{t\overline{t}} \textbf{H} \rightarrow \textbf{4b}_{\text{tag}} \ \textbf{2j} \ \ell \nu$
- \Rightarrow higher lumi means poorer b-tag, no-win
- \Rightarrow likely to be 'challenging'

ASSOCIATED HIGGS PRODUCTION

What about $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by background
- WBF fusion: no trigger
- WH production: killed by low rate and NLO background
- $\sigma(t\bar{t}H) \sim 100 \text{ fb}$

$t\overline{t}H, H \rightarrow b\overline{b} \text{ for a light Higgs} \quad \text{[ATL-PHYS-2003-24]}$

- trigger: one t \rightarrow bW⁺ \rightarrow b $\ell^+ \nu$
- reconstruction and rate: one t \rightarrow bW⁺ \rightarrow bjj
- continuum background ttbb, ttjj [weighted by b-tag]
- $\Rightarrow \ \ \text{reconstruct} \ \textbf{m}_{H} \ \text{in} \ \textbf{pp} \rightarrow \textbf{t\overline{t}} \textbf{H} \rightarrow \textbf{4b}_{\text{tag}} \ \textbf{2j} \ \ell \nu$
- \Rightarrow higher lumi means poorer b-tag, no-win
- \Rightarrow likely to be 'challenging'

ASSOCIATED HIGGS PRODUCTION

What about $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by background
- WBF fusion: no trigger
- WH production: killed by low rate and NLO background
- $\sigma(t\bar{t}H) \sim 100 \text{ fb}$

$t\overline{t}H, H \rightarrow b\overline{b}$ for a light Higgs [ATL-PHYS-2003-24]

- trigger: one t \rightarrow bW⁺ \rightarrow b $\ell^+ \nu$
- reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background ttbb, ttjj [weighted by b-tag]
- $\Rightarrow \ \ \text{reconstruct} \ \textbf{m}_{H} \ \text{in} \ \textbf{pp} \rightarrow \textbf{t\overline{t}} \textbf{H} \rightarrow \textbf{4b}_{\text{tag}} \ \textbf{2j} \ \ell \nu$
- \Rightarrow higher lumi means poorer b-tag, no-win
- \Rightarrow likely to be 'challenging'

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measure: gg : H \rightarrow ZZ, WW, $\gamma\gamma$ VV : H \rightarrow ZZ, WW, $\gamma\gamma$, $\tau\tau$ tīH : H \rightarrow WW, bb...
 - \rightarrow light Higgs: 8 good $\sigma \cdot BR$ plus $H \rightarrow b\overline{b}$
- extract: couplings to W, Z, t, b, τ , g, γ , invisible \rightarrow most complete: 8 parameters
- ⇒ trick: cancel uncertainties (WBF : $H \rightarrow WW$)/(WBF : $H \rightarrow \tau\tau$) (WBF : $H \rightarrow WW$)/(gg : $H \rightarrow WW$)...
- goals: Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- ⇒ unwanted: $g_{WWH} \leftrightarrow g_{ZZH}$ via SU(2) unwanted: $g_{bbH} \leftrightarrow g_{\tau\tau H}$ via down-type Yukawa

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measure: gg : H \rightarrow ZZ, WW, $\gamma\gamma$ VV : H \rightarrow ZZ, WW, $\gamma\gamma$, $\tau\tau$ tīH : H \rightarrow WW, bb...

 \rightarrow light Higgs: 8 good $\sigma \cdot BR$ plus $H \rightarrow b\bar{b}$

- extract: couplings to W, Z, t, b, τ , g, γ , invisible \rightarrow most complete: 8 parameters
- ⇒ trick: cancel uncertainties (WBF : H → WW)/(WBF : H → $\tau\tau$) (WBF : H → WW)/(gg : H → WW)...

Include total width

- degeneracy: $\sigma BR \propto (g_p^2/\sqrt{\Gamma_H}) (g_d^2/\sqrt{\Gamma_H})$ [from (WBF : WW/ $\tau\tau$) measure $g_{WWH}/g_{\tau\tau H}$]
- additional constraint: $\sum \Gamma_i(g^2) < \Gamma_H \Rightarrow \Gamma_H|_{min}$
- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \Rightarrow \Gamma_{H}|_{max}$
- \Rightarrow couplings and width extraction great but hard

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measure: gg : H \rightarrow ZZ, WW, $\gamma\gamma$ VV : H \rightarrow ZZ, WW, $\gamma\gamma$, $\tau\tau$ tīH : H \rightarrow WW, bb...

 \rightarrow light Higgs: 8 good $\sigma \cdot$ BR plus H \rightarrow bb

- extract: couplings to W, Z, t, b, τ , g, γ , invisible \rightarrow most complete: 8 parameters
- $\begin{array}{l} \Rightarrow \mbox{ trick: cancel uncertainties} \\ (WBF: \mbox{ H} \rightarrow WW)/(WBF: \mbox{ H} \rightarrow \tau\tau) \\ (WBF: \mbox{ H} \rightarrow WW)/(\mbox{gg}: \mbox{ H} \rightarrow WW)... \end{array}$

In future

- fit to more observables
- error on mass measurement [SM vs. SUSY?]
- cancel more errors [universal logs in σ and Γ ?]
- compute higher-order corrections
- \Rightarrow warning: underestimating errors now will bite us later!

Higgs self coupling

- scalar with Yukawa couplings to fermions, so what?
- renormalizable SM potential: $\mu^2 = -\lambda v^2$ with $\lambda = m_H^2/(2v^2)$ and self couplings $\lambda_{3H}/\lambda_{4H} = v$
- MSSM: $\lambda_{3h}/\lambda_{4h} = v \sin(\beta + \alpha)/\cos 2\alpha$ and m_h à la 2nd floor
- D6 operator: $\mu^2/v^2 = -\lambda_0 + 3\lambda_1 v^2/(4\Lambda^2)$ and $\lambda = \lambda_0 3\lambda_1 v^2/(2\Lambda^2)$.

Higgs pair production

- HH \rightarrow 4W: serious detector simulation needed, not hopeless [use observable m_{vis} to determine λ_{HHH} , need NLO $\sigma(t\bar{t}j)$]
- $HH \rightarrow b\bar{b}\tau\tau$: miracle required
- $HH \rightarrow 4b$: several major miracles mandatory [ILC in better shape]
- $HH \rightarrow b\bar{b}\mu\mu$: small miracle would be helpful [might come out of $\mu\mu$ mass resolution]
- $HH \rightarrow b\bar{b}\gamma\gamma$: some enhancement needed
- \Rightarrow serious challenge to detectors and machine

Tilman Plehn: Higgs Physics at the LHC – p.20

OUTLOOK

Standard-Model Higgs at the LHC

- we will find it in more than one channel for all m_H
- we will measure many properties more or less well:

set of couplings and width self coupling (only λ_{HHH}) CP properties and WWH coupling structure invisible decays Higgs to muons (2nd generation Yukawa) former stealth models...

- hardly anything still correct in Higgs chapter of Atlas TDR
- ⇒ for WBF we need to understand central jet veto [or give up and measure it]
- \Rightarrow for some measurements we need NLO backgrounds
- $\Rightarrow~$ it is a disgrace that we will miss $H \rightarrow b \bar{b}$
- ⇒ if SM then higher-dimensional operators mandatory [absolutely nothing done yet]