Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

New Methods for New Physics

Tilman Plehn

MPI für Physik & University of Edinburgh

Southampton, 12/2006

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

Outline

TeV-scale supersymmetry

Supersymmetric signatures at LHC

New physics mass measurements

New physics spin measurements

Supersymmetric parameter studies

Under construction

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

TeV-scale supersymmetry: 1

Starting from data...

- ...which seem to indicate a light Higgs
- problem of light Higgs: mass driven to cutoff of effective Standard Model: $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \ \Lambda^2$
- \Rightarrow easy solution: counter term to cancel loops \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless, composite Higgs, TopColor, YourFavoriteNewPhysics...
- $\Rightarrow\,$ typically cancellation by new particles or discussing away high scale
- \Rightarrow beautiful concepts and symmetries
- \Rightarrow problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry:

cancellation of divergences through statistics factor (-1)

[SM fermions to scalar; SM gauge bosons to fermions; SM scalars to fermions]

Tilman Plehn

Supersymmetry

- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

TeV-scale supersymmetry: 2

SUSY breaking: (yet) unobserved partners heavy

- mechanism for SUSY masses unknown [soft SUSY breaking mediated somehow?]
- link to flavor physics and baryogenesis/leptogenesis unknown
- link to dark matter promising [Falk,...]
- maximally blind mediation: mSUGRA/cMSSM [not a LHC paradigm!] scalars: m_0 , fermions: $m_{1/2}$, tri-scalar term: A_0 plus sign(μ) and tan β in Higgs sector [Higgs masses free: NUHM]
- alternatives: gauge, anomaly, gaugino mediation · · · ?
- ⇒ measure spectrum at LHC instead

LHC phenomenology: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to *t* and *b*?
 - \rightarrow two Higgs doublets
- SUSY Higgs alone interesting
- \Rightarrow would be another talk...
- ⇒ SUSY partners at LHC

		spin	d.o.f.	
fermion	f_L, f_R	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{0}$	1/2	4 · 2	Majorana
gauge bosons	W±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	\tilde{x}_i^{\pm}	1/2	2 · 4	Dirac
graviton	G	2	2	
→ gravitino	Ĝ	3/2	2	tough

Tilman Plehn

Supersymmetry

LHC Signals

- Masses
- Spins
- Parameters
- Some ideas

Supersymmetry at LHC: 1

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\tilde{q}) \sim m(\tilde{g})$]
- cross sections large at hadron colliders
- decays to jets and LSP $\tilde{g} \rightarrow \tilde{q}\bar{q}, \, \tilde{q}_L \rightarrow q \tilde{\chi}_2^0, \, \tilde{q}_R \rightarrow q \tilde{\chi}_1^0$

[additional jets and leptons possible]

- gaugino mass unification assumed for details
- ⇒ experienced in inclusive jets plus LSP

Tilman Plehn

Supersymmetry

LHC Signals

- Masses
- Spins
- Parameters
- Some ideas

Supersymmetry at LHC: 1

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\bar{q}) \sim m(\tilde{g})$]
- cross sections large at hadron colliders
- $\begin{array}{l} \ \mbox{decays to jets and LSP} \\ \tilde{g} \rightarrow \tilde{q}\bar{q}, \, \tilde{q}_L \rightarrow q \tilde{\chi}_2^0, \, \tilde{q}_R \rightarrow q \tilde{\chi}_1^0 \end{array}$

[additional jets and leptons possible]

- gaugino mass unification assumed for details
- ⇒ experienced in inclusive jets plus LSP

When will I believe we see SUSY-QCD?

- gluinos Majorana fermions
- jet in gluino decay q or \bar{q}
- final-state leptons with both charges
- \Rightarrow like—sign dileptons from $ilde{g} ilde{g}$ [Barger,...; Barnett,...; Baer,...]

Tilman Plehn

Supersymmetry

LHC Signals

- Masses
- Spins
- Parameters
- Some ideas

Supersymmetry at LHC: 2

New physics at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements
- (3) parameter studies

Tilman Plehn

Supersymmetry

LHC Signals

- Masses
- Spins
- Parameters
- Some ideas

Supersymmetry at LHC: 2

New physics at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
 - (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking
- $\Rightarrow\,$ approach independent of new physics model

Some SUSY signals [NLO: Prospino2]

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- like-sign dileptons: $pp \rightarrow \tilde{g}\tilde{g}$ $[\tilde{g} \rightarrow \tilde{u}\tilde{u} \rightarrow \tilde{\chi}_{1}^{+} d\tilde{u} \text{ or } \tilde{g} \rightarrow \tilde{u}^{*}u \rightarrow \tilde{\chi}_{1}^{-} \bar{d}u]$
- $\begin{array}{l} \text{ tri-leptons: } pp \to \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{-} \\ {}_{[\tilde{\chi}_{2}^{0} \to \tilde{\ell}\tilde{\ell} \to \tilde{\chi}_{1}^{0}\ell\tilde{\ell}; \tilde{\chi}_{1}^{-} \to \tilde{\chi}_{1}^{0}\ell\tilde{\nu}]} \end{array}$
- \Rightarrow inclusive: similar to Tevatron
- \Rightarrow exclusive: enough events for studies at LHC

Tilman Plehn

Supersymmetry

LHC Signals

- Masses
- Spins
- Parameters
- Some ideas

Supersymmetry at LHC: 2

New physics at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
 - (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking
- $\Rightarrow\,$ approach independent of new physics model

Some SUSY signals [NLO: Prospino2]

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- like-sign dileptons: $pp \rightarrow \tilde{g}\tilde{g}$ $[\tilde{g} \rightarrow \tilde{u}\tilde{u} \rightarrow \tilde{\chi}_{1}^{+} d\tilde{u} \text{ or } \tilde{g} \rightarrow \tilde{u}^{*}u \rightarrow \tilde{\chi}_{1}^{-} \bar{d}u]$
- $\begin{array}{l} \text{ tri-leptons: } pp \to \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{-} \\ {}_{[\tilde{\chi}_{2}^{0} \to \tilde{\ell}\tilde{\ell} \to \tilde{\chi}_{1}^{0}\ell\tilde{\ell}; \tilde{\chi}_{1}^{-} \to \tilde{\chi}_{1}^{0}\ell\tilde{\nu}]} \end{array}$
- \Rightarrow inclusive: similar to Tevatron
- \Rightarrow exclusive: enough events for studies at LHC

Tilman Plehn

Supersymmetry

LHC Signals

Masses

- Spins
- Parameters

Some ideas

New physics mass measurements: 1

Spectra from cascade decays

- decay $\tilde{g} \rightarrow \tilde{b}\bar{b} \rightarrow \tilde{\chi}_2^0 b\bar{b} \rightarrow \mu^+ \mu^- b\bar{b}\tilde{\chi}_1^0$ [better not via Z or to τ]
- thresholds & edges $[m_{\ell\ell}^2 < (m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2)(m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\ell}}^2]$
- detector resolution, calibration, systematic errors, shape analysis, cross sections as input?
- \Rightarrow spectrum information from decay kinematics

[Hinchliffe,...;Allanach,...; not only SUSY: Reece & Meade]

Tilman Plehn

Supersymmetry

LHC Signals

Masses

- Spins
- Parameters

Some ideas

New physics mass measurements: 1

Spectra from cascade decays

- decay $\tilde{g} \rightarrow \tilde{b}\bar{b} \rightarrow \tilde{\chi}_2^0 b\bar{b} \rightarrow \mu^+ \mu^- b\bar{b}\tilde{\chi}_1^0$ [better not via Z or to τ]
- $\mbox{ thresholds \& edges } [m_{\tilde{\ell}\,\ell}^2 < (m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2)(m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\ell}}^2]$
- detector resolution, calibration, systematic errors, shape analysis, cross sections as input?
- ⇒ spectrum information from decay kinematics [mass differences with smaller errors]

Gluino mass from kinematic endpoints

- \tilde{b}_L in chain, all jets b-tagged [Gjelsten, Miller, Osland]
- most of time: cascade assumption correct
- \Rightarrow gluino mass to $\sim 1\%$

[theoretically defined?]

Tilman Plehn

Supersymmetry

LHC Signals

Masses

- Spins
- Parameters
- Some ideas

New physics mass measurements: 2

SUSY plus jets: complex final states [Smadgraph: Cho, Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph
- set of Feynman rules [400+ processes: Madgraph Whizard (Reuter) Sherpa (Schumann)]
- available in Madevent [Alwall, Maltoni, Louvain group]

Squarks and gluinos always with many jets [TP, Rainwater, Skands]

- cascade studies sensitive to jet simulation?
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- Pythia shower tuned at Tevatron
- ⇒ QCD no killer for decay analyses [the heavier the better]

σ [pb]	tt ₆₀₀	ĝĝ	ũĮĝ
σ_{0i}	1.30	4.83	5.65
σli	0.73	2.89	2.74
σ _{2j}	0.26	1.09	0.85

Tilman Plehn

Supersymmetry

LHC Signals

Masses

- Spins
- Parameters
- Some ideas

New physics mass measurements: 2

SUSY plus jets: complex final states [Smadgraph: Cho, Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph
- set of Feynman rules [400+ processes: Madgraph Whizard (Reuter) Sherpa (Schumann)]
- available in Madevent [Alwall, Maltoni, Louvain group]

Squarks and gluinos always with many jets [TP, Rainwater, Skands]

- cascade studies sensitive to jet simulation?
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- Pythia shower tuned at Tevatron
- ⇒ QCD no killer for decay analyses [the heavier the better]

σ [pb]	tī ₆₀₀	ĝĝ	ũĮĝ
σ_{0i}	1.30	4.83	5.65
σli	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

Tilman Plehn

- Supersymmetry
- LHC Signals
- Masses

Spins

- Parameters
- Some ideas

New physics spin measurements: 1

All new physics is hypothesis testing

- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where squark is a fermion: universal extra dimensions [Appelquist, Cheng, Dobrescu; Cheng, Matchev, Schmaltz; spectra degenerate —ignore; cross section larger —ignore]

Squark-slepton cascade [Smillie, Webber, Athanasiou, Lester]

- decay chain $\tilde{\chi}^0_2 \to \ell \tilde{\ell}^* \to \ell \bar{\ell} \tilde{\chi}^0_1$
- trick 1: compare with KK q, Z, ℓ, γ
- trick 2: mass variables, 'normalized angles' $\Rightarrow \widehat{m} = m_{j\ell} / m_{i\ell}^{\text{max}}$ most promising [Barr]
- typically largest $pp
 ightarrow ilde{q} ilde{g}$
- trick 3: production asymmetry $\tilde{q} : \tilde{q}^* \sim 2 : 1$ $\Rightarrow \mathcal{A} = [\sigma(j\ell^+) - \sigma(j\ell^-)]/[\sigma(j\ell^+) + \sigma(j\ell^-)]$

Masses or spin or both? [Arkani-Hamed,...]

- masses from kinematic endpoints [use $m_{\ell j}, m_{\ell \ell}, m_{j \ell \ell} \dots$]
- spins from distributions between endpoints [endpoints identical in SUSY and UED]

Tilman Plehn

Supersymmetr

LHC Signals

Masses

Spins

Parameters

Some ideas

New physics spin measurements: 2

Back to my SUSY-QCD

- given like-sign dileptons, gluino Majorana fermion?
- always like-sign dileptons from bosonic gluon
- $\Rightarrow \text{ show gluino fermionic}$
- \Rightarrow compare with usual straw man [UED-Madgraph: Alves]

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

New physics spin measurements: 2

Back to my SUSY-QCD

- given like-sign dileptons, gluino Majorana fermion?
- always like-sign dileptons from bosonic gluon
- $\Rightarrow \text{ show gluino fermionic}$
- $\Rightarrow \ \text{compare with usual straw man} \quad \text{[UED-Madgraph: Alves]}$

Gluino-bottom cascade [Alves, Eboli, TP]

- decay chain like for gluino mass
- compare with first KK g, q, Z, and ℓ
- (1) replace initial-state asymmetry by b vs. \bar{b}
 - asymmetry to write down: $\mathcal{A} = [\sigma(b\ell^+) - \sigma(b\ell^-)] / [\sigma(b\ell^+) + \sigma(b\ell^-)]$

[still visible after cuts and smearing]

- independent on production channels
- (2) purely hadronic m_{bb} [sensitive to gluino boost]
- \Rightarrow masses and spins accessible at LHC

Tilman Plehn

Supersymmetry

LHC Signals

- Masses
- Spins

Parameters

Some ideas

Supersymmetric parameters: 1

Theory output from LHC: SUSY parameters

- parameters: weak-scale Lagrangean [Sfitter: Lafaye, TP, Rauch, Zerwas; Fittino; Arkani-Hamed,...]
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum?

First go at problem

- ask a friend how SUSY is broken \Rightarrow mSUGRA/cMSSM
- fit $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu)$
- no problem, include indirect constraints [Ellis, Heinemeyer, Olive, Weiglein,..]
- ⇒ probability map today [Allanach, Lester, Weber]
- \Rightarrow best fit from LHC/ILC measurements

	SPS1a	ΔLHC	ΔLHC	ΔILC	∆LHC+ILC
		masses	edges		
m ₀	100	3.9	1.2	0.09	0.08
m1/2	250	1.7	1.0	0.13	0.11
tan β	10	1.1	0.9	0.12	0.12
A ₀	-100	33	20	4.8	4.3

Tilman Plehn

- Supersymmetry
- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

Supersymmetric parameters: 1

Theory output from LHC: SUSY parameters

- parameters: weak-scale Lagrangean [Sfitter: Lafaye, TP, Rauch, Zerwas; Fittino; Arkani-Hamed,...]
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum?

MSSM instead of mSUGRA/cMSSM [TP, Lafaye, Zerwas]

- (1) grid for closed subset
 (2) fit of other parameters
 (3) complete fit
- LHC+ILC perfect [Weiglein etal]
- ⇒ too few measurements? secondary minima? ...

	LHC	ILC	LHC+ILC	SPS1a
tanβ	10.22±9.1	10.26 ± 0.3	10.06 ± 0.2	10
M_1	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67±15	fix 500	588.05 ± 11	589.4
M _{ĩ,}	fix 500	197.68±1.2	199.25±1.1	197.8
Mrp	129.03 ± 6.9	$135.66 {\pm} 0.3$	133.35 ± 0.6	135.5
M _μ	198.7±5.1	198.7 ± 0.5	198.7 ± 0.5	198.7
M _{ã31}	498.3±110	497.6±4.4	521.9 ± 39	501.3
M	fix 500	420±2.1	411.73±12	420.2
M _Ď R	522.26±113	fix 500	504.35±61	525.6
A_{τ}	fix 0	-202.4 ± 89.5	352.1 ± 171	-253.5
At	-507.8±91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7±35603	fix 0	-977±12467	-799.4

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

Supersymmetric parameters: 2

Bayes' theorem and new physics [Allanach, Roszkowski]

- Pythia/Herwig/Sherpa: data given the model: p(d|m)
- theorist's prejudice: model p(m)
- new model extraction: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local minima

Weighted Markov chains [scanning algorithm for many dimensions: Rauch & TP]

- classical: produce representative set of spin states compute average energy based on this reduced sample
- ⇒ map (chain) based on probability of a state expensive energy function on sample
- BSM physics: produce map p(m|d) of parameter points evaluate same probability from (binned) density [Allanach...; Baltz...; Roszkowski...]
- \Rightarrow phase-space MC approach: weighted chain [two bins with $p \ 1 : 10 \ with \ 2 \ or \ 11 \ points]$
- already for mSUGRA/cMSSM: MC resolution not suffi cient
- \Rightarrow use additional probability maximization to rank maxima

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

Supersymmetric parameters: 2

Bayes' theorem and new physics [Allanach, Roszkowski]

- Pythia/Herwig/Sherpa: data given the model: p(d|m)
- theorist's prejudice: model p(m)
- new model extraction: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local minima

Toy model [Rauch & TP]

- test function $V(\vec{x})$ in 5 dimensions [general high-dimensional extraction tool]
- Sfitter output #1: probability map Sfitter output #2: list of local maxima

V=74.929 @(655.00,253.72,347.83,348.57,349.59) V=59.972 @(850.04,224.99,650.00,649.99,654.56) V=58.219 @(849.97,225.01,587.08,650.01,650.02) V=25.110 @(750.00,749.99,450.00,450.01,450.01) V=16.042 @(245.45,253.44,552.51,542.58,544.75) V=12.116 @(350.70,650.40,650.36,650.40,650.38)

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas

Supersymmetric parameters: 2

Bayes' theorem and new physics [Allanach, Roszkowski]

- Pythia/Herwig/Sherpa: data given the model: p(d|m)
- theorist's prejudice: model p(m)
- new model extraction: p(m|d) = p(d|m) p(m)/p(d) [p(d) through normalization]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local minima

mSUGRA/cMSSM with LHC measurements

- SPS1a kinematic edges and free m_t
- as of yesterday: Sfi tter probability map [Lafaye, TP, Rauch, Zerwas]

Tilman Plehn

- Supersymmetry
- LHC Signals
- Masses
- Spins

Parameters

Some ideas

Supersymmetric parameters: 2

Bayes' theorem and new physics [Allanach, Roszkowski]

- Pythia/Herwig/Sherpa: data given the model: p(d|m)
- theorist's prejudice: model p(m)
- new model extraction: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local minima

MSSM with LHC measurements

- SPS1a kinematic edges and free m_t
- as of yesterday: Sfi tter probability map [Lafaye, TP, Rauch, Zerwas]

Tilman Plehn

- Supersymmetry
- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

Under construction: 1

Problems in the spin/mass extraction

- strong correlations between masses from edges
- strong correlations between mxyz in cascades
- split of mass and spin extraction artifi cial
- model-independent spin analysis unlikely
- ⇒ Proper hypothesis treatment

Statistics: Neyman–Pearson lemma

- assume correct hypothsis m₁: SUSY cascade assume wrong hypothsis m₂: UED cascade
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator

[lowest probability to mistake right for fluctuation of wrong (type-II error)]

- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical signifi cance

'Matrix element method' [CDF, D0; McElrath]

- compute likelihood of top events estimating $|\mathcal{M}|^2$
- maximize probability $p(d|SM, m_t)$ as function of m_t ...

Tilman Plehn

- Supersymmetry
- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

Under construction: 1

Problems in the spin/mass extraction

- strong correlations between masses from edges
- strong correlations between mxyz in cascades
- split of mass and spin extraction artifi cial
- model-independent spin analysis unlikely
- ⇒ Proper hypothesis treatment

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator

[lowest probability to mistake right for fluctuation of wrong (type-II error)]

- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical signifi cance

Tilman Plehn

Supersymmetry

- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

Under construction: 2

Search for WBF $H \rightarrow \mu \mu$ [Cranmer & TP]

- assume correct hypothsis m_{s+b}: Higgs signal assume wrong hypothsis m_b: SM background
- likelihood ratio $p(d|m_{s+b})/p(d|m_b)$ most powerful estimator
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical signifi cance

Maximum signifi cance for LHC signals

- example: combined *n*-event Poisson statistics $[p(n|s+b) = e^{-(s+b)} (s+b)^n/n!]$

$$q = \log \frac{p(n|s+b)}{p(n|b)} = -s + n \log \left(1 + \frac{s}{b}\right) \longrightarrow -\sum_{j} s_{j} + \sum_{j} n_{j} \log \left(1 + \frac{s_{j}}{b_{j}}\right)$$

– phase space integration of $s,b o
ho(s,b) \sim |\mathcal{M}_{s,b}|^2$ [LEP-Higgs inspired]

$$q(\vec{r}) = -\sigma_{s}\mathcal{L} + \log\left(1 + \frac{|\mathcal{M}_{s}(\vec{r})|^{2}}{|\mathcal{M}_{b}(\vec{r})|^{2}}\right)$$

- probability distribution function via Fourier transform: $\rho_{s,b}(q)$
- ightarrow compute $\mathit{CL}_b(q) = \int_q^\infty dq'
 ho_b(q')$ [5 σ is CL_b = 2.85 10⁻⁷]

Tilman Plehn

Supersymmetry

- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

Under construction: 2

Search for WBF $H \rightarrow \mu \mu$ [Cranmer & TP]

- assume correct hypothsis m_{s+b}: Higgs signal assume wrong hypothsis m_b: SM background
- likelihood ratio $p(d|m_{s+b})/p(d|m_b)$ most powerful estimator
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical signifi cance

Semi-realistic results

$$\sigma_{tot} = \int dPS \ M_{PS} \ d\sigma_{PS} = \int d\vec{r} \ M(\vec{r}) \ d\sigma(\vec{r})$$

- smearing $\Delta m_{\mu\mu}^{\text{width}} \ll \Delta m_{\mu\mu}^{\text{meas}}$ [unobserved dimensions] $\sigma_{tot} = \int d\vec{r}_{\perp} dr_m^* \int_{-\infty}^{\infty} dr_m M(\vec{r}) \ d\sigma(\vec{r}) \ W(r_m, r_m^*)$

- acceptance cuts to reduce phase space... [bad measurements]
- \Rightarrow WBF $H \rightarrow \mu\mu$: 3.5 σ in 300 fb⁻¹
- ⇒ Tool works, new physics one obvious application [Whizard: Cranmer, TP, Reuter]

Tilman Plehn

- Supersymmetry
- LHC Signals
- Masses
- Spins
- Parameters
- Some ideas

New physics at the LHC

A lot has been done

- higher-order calculations
- improved background estimates
- web-based signal event generators
- mass and spin measurements
- parameter extraction/probability maps
-

A lot is still left to do

- more higher-order calculations
- better background estimates
- QCD effects on new physics measurements
- scanning of high-dimensional parameter spaces
- automized statistics tools for phenomenologists
-
- ⇒ Exciting times require serious work

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Some ideas