SUPERSYMMETRY AT THE LHC

Tilman Plehn

MPI München and University of Edinburgh

- A few MSSM conventions
- SUSY-Higgs at the LHC
- SUSY at the Tevatron
- SUSY searches at the LHC
- SUSY measurements at the LHC (and ILC)

[sorry for skipping references altogether, many reviews around]

Starting from data...

- ...which seem to indicate a light Higgs
- problem of light Higgs:
- mass driven to cutoff of theory [remember pain to get that up] $\delta m_{H}^{2} \propto g^{2}(2m_{W}^{2} + m_{Z}^{2} + m_{H}^{2} - 4m_{t}^{2}) \Lambda^{2}$ Veltman's condition (···) = 0 would be fun problem preferably solved to arbitrary loop order
- \Rightarrow solution: counter term for exact cancellation \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless/composite Higgs YourFavoriteNewPhysics...
- \Rightarrow typically either cancellation with new particles or discussing away high scale
- \Rightarrow all really beautiful concepts and symmetries
- ⇒ in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry: cancellation of divergences through statistics factor (-1) [scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]

Tilman Plehn: Supersymmetry – p.2

SUSY idea: solve hierarchy problem by just doubling particle number?!

- stops (scalar) cancel top loop [couplings protected]
- gauginos (neutral or charged) cancel W, Z loop
- higgsinos cancel Higgs loop [mix with neutralinos]
- since we are at it, let's postulate gluino for 2-loop, plus sleptons and squarks
- \Rightarrow (1) hierarchy problem solved
- \Rightarrow (2) rich collider and non-collider phenomenology guaranteed
- \Rightarrow (3) Lorentz algebra properly extended

Serious change in Higgs sector

- adjoint Higgs field not allowed in \mathcal{L} \rightarrow how to give mass to t and b?
 - \rightarrow two Higgs doublets
- \Rightarrow SUSY Higgs sector interesting in itself
- \Rightarrow no MSSM know-how needed

		spin	d.o.f.	
fermion	^f L , ^f R	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	${ t G}_{\mu}$	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	$\gamma,$ Z	1	2+3	
Higgs bosons	h^{O},H^{O},A^{O}	0	3	
\rightarrow neutralinos	$\tilde{\chi}^{o}_{i}$	1/2	4 · 2	Majorana
gauge bosons	W±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$ ilde{\chi}^{\pm}_{i}$	1/2	2 · 4	Dirac
graviton	G	2	2	
\rightarrow gravitino	Ĝ	3/2	2	hard to catch

Required by supersymmetry: two Higgs doublet model

- one (complex) Higgs doublet: 4 degrees of freedom \rightarrow three for longitudinal W, Z, one for scalar Higgs
- two Higgs doublets: 8 degrees of freedom \rightarrow three for longitudinal W, Z, five for Higgs particles \rightarrow scalars h⁰, H⁰, pseudoscalar A⁰, charged H[±]
- free parameters
 - (1) still only one free mass scale: m_A
 - (2) two vacuum expectation values: $\tan \beta = v_t/v_b$

All you need to know: plateau structure [FeynHiggs]

- 'plateau Higgses' coupling to W, Z
- heavy H^0 , A^0 with tan β -enhanced coupling to b, τ
- -~ light h^0 mass limited from above $m_h \lesssim 135 \mbox{ GeV}$

SUPERSYMMETRIC HIGGS SECTOR: 2

Challenge: find one Higgs at the LHC

- $\label{eq:holest} \begin{array}{l} \ \mbox{decoupling regime } m_A \gtrsim 160 \ \mbox{GeV} \\ \rightarrow h^0 \ \mbox{looks like SM Higgs} \quad \mbox{[of corresponding mass]} \end{array}$
 - \rightarrow qq \rightarrow qqh⁰ \rightarrow qq $\tau \tau$
- $\begin{array}{l} \ \ \text{other end} \ m_A \lesssim 120 \ \text{GeV} \\ \rightarrow qq \rightarrow qq H^0 \rightarrow qq \tau \tau \end{array}$
- in between: maybe even two bumbs
- \Rightarrow No-lose theorem: qq \rightarrow qq{h⁰, H⁰} \rightarrow qq $\tau\tau$

SUPERSYMMETRIC HIGGS SECTOR: 2

Challenge: find one Higgs at the LHC

- - \rightarrow qq \rightarrow qqh⁰ \rightarrow qq $\tau \tau$
- $\begin{array}{l} \ \ \text{other end} \ m_A \lesssim 120 \ \text{GeV} \\ \rightarrow qq \rightarrow qq H^0 \rightarrow qq \tau \tau \end{array}$
- in between: maybe even two bumbs
- \Rightarrow No-lose theorem: qq \rightarrow qq{h⁰, H⁰} \rightarrow qq $\tau \tau$

Nightmare: confirm SUSY Higgs sector

- decoupling regime $m_A\gtrsim 160~GeV$
 - \rightarrow Yukawa coupling for H^0, A^0, H^{\pm} : $m_b \tan \beta$
 - \rightarrow enhanced production e.g. $b\bar{b} \rightarrow H^0$ or $gb \rightarrow tH^-$
 - \rightarrow decays ${\rm H^0} \rightarrow \tau \tau, \mu \mu \text{ or } {\rm H^-} \rightarrow \tau \bar{\nu}$
- intermediate $m_A \sim 120 \text{ GeV}$:
 - \rightarrow many (light-ish) Higgses h⁰, H⁰, A⁰ observable
 - \rightarrow top quark decays t \rightarrow bH⁺? [Tevatron?]

TEV SCALE SUPERSYMMETRY: 3

Back to the MSSM: SUSY partner masses

- mechanism of mass generation unknown [soft breaking leaves quadratic divergences alone]
- link to flavor physics and baryogenesis/leptogenesis unknown
- SUSY breaking unknown [hidden sector, assume mediation to visible sector]
- maximally blind mediation at high scale: mSUGRA [really not the general LHC paradigm!!!] scalars: m_0 , fermions: $m_{1/2}$, tri-scalar term: A_0 plus sign(μ) and tan β in Higgs sector [Higgs masses let free: NUHM]

Structures in the SUSY spectrum

– gauginos–higgsinos mixing: $m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1}$ or $m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1}$ in MSSM

 $\begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{B}}} & 0 & -\mathsf{m}_{\mathsf{Z}}\mathsf{s}_{\mathsf{W}}\mathsf{c}_{\beta} & \mathsf{m}_{\mathsf{Z}}\mathsf{s}_{\mathsf{W}}\mathsf{s}_{\beta} \\ 0 & \mathsf{m}_{\widetilde{\mathsf{W}}} & \mathsf{m}_{\mathsf{Z}}\mathsf{c}_{\mathsf{W}}\mathsf{c}_{\beta} & -\mathsf{m}_{\mathsf{Z}}\mathsf{c}_{\mathsf{W}}\mathsf{s}_{\beta} \\ -\mathsf{m}_{\mathsf{Z}}\mathsf{s}_{\mathsf{W}}\mathsf{c}_{\beta} & \mathsf{m}_{\mathsf{Z}}\mathsf{c}_{\mathsf{W}}\mathsf{c}_{\beta} & 0 & -\mu \\ \mathsf{m}_{\mathsf{Z}}\mathsf{s}_{\mathsf{W}}\mathsf{s}_{\beta} & -\mathsf{m}_{\mathsf{Z}}\mathsf{c}_{\mathsf{W}}\mathsf{s}_{\beta} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{W}}} & \sqrt{2}\mathsf{m}_{\mathsf{W}}\mathsf{s}_{\beta} \\ \sqrt{2}\mathsf{m}_{\mathsf{W}}\mathsf{c}_{\beta} & -\mu \end{pmatrix}$

stop and sbottom mixing in MSSM

$$\begin{pmatrix} \mathsf{m}_{\mathsf{Q}}^2 + \mathsf{m}_{\mathsf{t}}^2 + \left(\frac{1}{2} - \frac{2}{3}\mathsf{s}_{\mathsf{w}}^2\right)\mathsf{m}_{\mathsf{Z}}^2\mathsf{c}_{2\beta} & -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) \\ -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) & \mathsf{m}_{\mathsf{U}}^2 + \mathsf{m}_{\mathsf{t}}^2 + \frac{2}{3}\mathsf{s}_{\mathsf{w}}^2\mathsf{m}_{\mathsf{Z}}^2\mathsf{c}_{2\beta} \end{pmatrix}$$

– heavy gluinos, squarks through unification:
$$\begin{split} m_{\widetilde{B},\widetilde{W},\widetilde{g}}/m_{1/2}\sim 0.4, 0.8, 2.6 \\ m_{\widetilde{\ell},\widetilde{q}}/m_{1/2}\sim 0.7, 2.5 \ \ [m_0 \ll m_{1/2}] \end{split}$$

[mass and coupling unification independent]

- lightest SUSY partner $\tilde{\chi}_1^0, \tilde{\nu} \Rightarrow \text{ after dark matter data } \tilde{\chi}_1^0 \sim \tilde{B}, \tilde{W} \text{ [gravitinos?]}$

TEVATRON & LHC

Conversion of beam energy into particle mass

- search for new particles easier if particle produced
 → highest possible energies required
- clean e⁺e⁻ colliders: LEP: Z pole LEP2: 206 GeV for e.g. ZH ILC/CLIC: 1...4 TeV in future
- powerful hadron colliders: Tevatron: pp̄ with 2 TeV [valence quarks] LHC: pp with 14 TeV [gluons]
- LHC mass reach $\sim 3 \text{ TeV}$ [win by luminosity]

New physics at hadron colliders

- what is a jet and what is inside? [b, τ tag]
- trigger: 'no leptons no data'
- backgrounds $pp \rightarrow jj \text{ or } pp \rightarrow WZ+jets$
- statistics: $S/\sqrt{B} > 5$ we call discovery

Tilman Plehn: Supersymmetry – p.9

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting, $\sigma \sim pb$ $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if m(\tilde{q}) \sim m(\tilde{g})]
- decays to jets and LSP and $\tilde{g} \rightarrow \tilde{q}\bar{q}, \tilde{q}_L \rightarrow q \tilde{\chi}_2^0, \tilde{q}_R \rightarrow q \tilde{\chi}_1^0$ additional jets and leptons possible
- \Rightarrow very promising search for jets plus LSP

Necessary model assumptions

- assume 100% branching into inclusive jets+LSP
- for detector efficiencies $m(\tilde{\chi}_2^0), ...$
- gluino decay into squark or vice versa?
- \Rightarrow mSUGRA assumed, but effect moderate

More specialized: trilepton channels

- generally assumed that charginos are light
- largest cross section $p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0$ decays $\tilde{\chi}_1^+ \rightarrow \ell^+ \nu \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$
- gaugino rate determined by t channel squark
- signature plagued by W, Z background
- \Rightarrow about to pass LEP2 chargino limits

More specialized: trilepton channels

- generally assumed that charginos are light
- largest cross section $p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0$ decays $\tilde{\chi}_1^+ \rightarrow \ell^+ \nu \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$
- gaugino rate determined by t channel squark
- signature plagued by W, Z background
- \Rightarrow about to pass LEP2 chargino limits

Even more specialized: long-lived gauginos

- stable on the detector time scale of ns
- like massive muons in tracker—muon chamber
- gauginos motivated by GMSB or AMSB

\Rightarrow SUSY at the LHC does not come out of nowhere!

Tilman Plehn: Supersymmetry – p.12

Supersymmetry at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking

Supersymmetry at the LHC

- possible discovery signals for new physics, exclusion of parameter space (1)
- (2)measurements — masses, cross sections, decays
- parameter studies MSSM Lagrangean, SUSY breaking (3)

NLO LO

m [GeV]

500

450

ą̃ą

Spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 3×10^5 events]
- thresholds & edges $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^2$
- detector resolution, calibration, systematic errors, shape analysis, cross sections as input?
- \Rightarrow \tilde{q}_L cascade reconstruction great

[known even from Atlas TDR]

Spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 3×10^5 events]
- thresholds & edges $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^2$
- detector resolution, calibration, systematic errors, shape analysis, cross sections as input?
- \Rightarrow \tilde{q}_L cascade reconstruction great [know now: mass differences even better]

Example: gluino mass

- now four jets instead of two
- \tilde{b}_{L} instead, all jets b-tagged
- most of time: cascade identifiec
- ⇒ gluino mass to ~ 1% [statistical error dominant]

 $\tilde{\chi}_2^{\rm o}$

μ

Complex final states [e.g. SUSY-Madevent]

- Majoranas and fermion number violation in tools like Madgraph
- complete set of Feynman rules [400+ processes compared with Whizard and Sherpa]

Squarks and gluinos always with many jets

- cascade studies sensitive to jets?
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- Phythia shower tuned at Tevatron
- \Rightarrow SUSY easier than tops

σ [pb]	tt ₆₀₀	ĝĝ	ũ _L ĝ
σ_{0j}	1.30	4.83	5.65
σ_{1i}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

Complex final states [e.g. SUSY-Madevent]

- Majoranas and fermion number violation in tools like Madgraph
- complete set of Feynman rules [400+ processes compared with Whizard and Sherpa]

Squarks and gluinos always with many jets

- cascade studies sensitive to jets?
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- Phythia shower tuned at Tevatron
- \Rightarrow SUSY easier then tops

σ [pb]	$t\overline{t}_{600}$	ĝĝ	ũ _L ĝ
σ_{0j}	1.30	4.83	5.65
σ_{1i}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

Tilman Plehn: Supersymmetry - p.18

0.3

How to make sure it is SUSY

- assume neutralino is found in cascades
- compare with a model where gluino is a boson,...
- \rightarrow straw man: universal extra dimensions

[mass spectra degenerate —ignore this information; cross section factor 10 larger —ignore this as well]

Slepton cascade

- decay chain $\tilde{\chi}_2^0 \rightarrow \ell \tilde{\ell}^* \rightarrow \ell \bar{\ell} \tilde{\chi}_1^0$
- compare with first excited Z and ℓ
- initial-state asymmetry $pp \rightarrow \tilde{q}\tilde{g}$ [$\tilde{q}/\tilde{q} \sim 2$]
- $\Rightarrow \widehat{\mathbf{m}} = \mathbf{m}_{j\ell} / \mathbf{m}_{j\ell}^{\text{max}} \text{ most promising}$ $\mathcal{A} = [\sigma(j\ell^+) \sigma(j\ell^-)] / [\sigma(j\ell^+) + \sigma(j\ell^-)]$
 - assume hierarchical SPS1a spectrum
 [dashed SUSY, solid UED]
- \Rightarrow we can tell spin in cascade

How to make sure it is SUSY

- assume neutralino is found in cascades
- compare with a model where gluino is a boson,...
- \rightarrow straw man: universal extra dimensions

[mass spectra degenerate —ignore this information; cross section factor 10 larger —ignore this as well]

Slepton cascade

- decay chain $\tilde{\chi}_2^0 \rightarrow \ell \tilde{\ell}^* \rightarrow \ell \bar{\ell} \tilde{\chi}_1^0$
- compare with first excited Z and ℓ
- initial-state asymmetry $pp \rightarrow \tilde{q}\tilde{g}$ [$\tilde{q}/\tilde{q} \sim 2$]
- $\Rightarrow \widehat{\mathbf{m}} = \mathbf{m}_{j\ell} / \mathbf{m}_{j\ell}^{\text{max}} \text{ most promising}$ $\mathcal{A} = [\sigma(j\ell^+) \sigma(j\ell^-)] / [\sigma(j\ell^+) + \sigma(j\ell^-)]$
 - assume non-hierarchical UED spectrum
 [dashed SUSY, solid UED]
- \Rightarrow we can tell spin in cascade

0.2

0.1

А

SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

First go at problem

- ask a friend who knows how SUSY is broken
- \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(mu)$
- no problem, include indirect constraints
- \Rightarrow who the hell believes in mSUGRA?
 - mSUGRA just testing ground for methods

SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

First go at problem

- ask a friend who knows how SUSY is broken
- \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(mu)$
- no problem, include indirect constraints
- \Rightarrow who the hell believes in mSUGRA?
- mSUGRA just testing ground for methods

SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum

Combination of methods [Sfi tter, Fittino]

- (1) grid for closed subset
 (2) fit of remaining parameters
 (3) complete fit
- more modern alternaives: simulated annealing Markov Chains
- \Rightarrow LHC+ILC with no assumptions

	LHC	ILC	LHC+ILC	SPS1a
taneta	10.22±9.1	$10.26 {\pm} 0.3$	10.06 ± 0.2	10
M ₁	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67 ± 15	fi x 500	588.05 ± 11	589.4
$M_{\tilde{\tau}_1}$	fi x 500	197.68±1.2	199.25 \pm 1.1	197.8
$M_{\tilde{\tau}_{R}}$	129.03±6.9	135.66±0.3	133.35±0.6	135.5
$M_{\tilde{\mu}_{L}}$	198.7±5.1	198.7±0.5	198.7±0.5	198.7
M _{~q31}	498.3±110	497.6±4.4	521.9±39	501.3
M _{to}	fi x 500	420±2.1	411.73±12	420.2
M _b R	522.26±113	fi x 500	504.35±61	525.6
$A_{ au}$	fi x 0	-202.4 ± 89.5	352.1 ± 171	-253.5
At	-507.8±91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7 ± 35603	fi x 0	-977±12467	-799.4

Tilman Plehn: Supersymmetry – p.23

OUTLOOK

LHC phenomenology beyond the Standard Model

- world-wide pheno-experimental effort rolling
- many new tools/ideas on the market, waiting to be tested
- lots of more work to be done
- by now fast-growing and exciting field

We will be able to do amazing things at the LHC!

B Physics and **S**UPERSYMMETRY

Search channel: $B_s \rightarrow \mu \mu$

- more Higgs bosons in 2HDM tan β enhancement of s channel Higgses [BR_{2HDM} \propto tan⁶ β /m⁴_A] additional Higgs loop
- charginos in MSSM tan β enhancement for Higgsinos gluino loop for non-minimal flavor physics...

Bottom Yukawa in the MSSM

- gluino-sbottom loops universal: $y_b \rightarrow y_b/(1 + \Delta_b)$
- large, leading in tan β & resummable $\Delta_{b} \sim \alpha_{s}$ tan $\beta m_{\tilde{g}} \mu/max^{2}(m_{\tilde{b},\tilde{g}})$
 - \Rightarrow decoupling in MSSM, but not in MSSM+ μ

[similar terms for chargino/neutralino exchange]

- easy to implement in MC, numerically great for $\tan \beta > 10$
- \Rightarrow enhancement good for SUSY signals, but pain in analyses

