Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

LHC — More than just Discoveries

Tilman Plehn

MPI für Physik & University of Edinburgh

Budapest, 6/2007

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

Outline

Weak Boson Fusion and Supersymmetry

Supersymmetric parameter space

Markov chains

SUSY parameter maps

Tilman Plehn

WBF and SUSY

SUSY parameters Markov chains

SUSY maps

Weak Boson Fusion and Supersymmetry

Supersymmetry — or else...

- Majorana gluino identifiable once seen
- Majorana neutralinos? Majorana LSP?
- signature: like-sign charginos [Alwall, TP, Rainwater]
- stable for simplicity chargino kinematics not necessary [SM backgrounds]
- ⇒ (1) visible over backgrounds? [SUSY-QCD backgrounds only] (2) distinct WBF signal? [LHC precision physics attempt]
- $\Rightarrow\,$ long shot, but interesting and not swamped by SUSY-QCD

Tilman Plehn

WBF and SUSY

SUSY parameters

SUSY maps

Alternative Hypotheses

Like-sign scalars without Majorana neutralinos

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- WBF signal: two key distributions $\Delta \phi_{jj}$, $p_{T,j}$
- scalars with flat $\Delta \phi_{jj}$, similar to fermions
- Goldstone modes in W coupling to final-state fermions:

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{p_T^2}{(p_T^2 + (1 - x) m_W^2)^2} \longrightarrow \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

$$P_L(x, p_T) \sim \frac{(1 - x)^2}{x} \frac{m_W^2}{(p_T^2 + (1 - x) m_W^2)^2} \longrightarrow \frac{(1 - x)^2}{x} \frac{m_W^2}{p_T^4}$$

 \Rightarrow scalars identified by softer $p_{T,i}$

Tilman Plehn

WBF and SUSY

SUSY parameters Markov chains

SUSY maps

Alternative Hypotheses

Like-sign vectors without Majorana neutralinos

- problem: define consistent hypothesis to kill
- start with copy of SM, heavy W', Z', H', f'
- good news: H' necessary for unitarity, but irrelevant at LHC
- transverse-type $p_{T,j}$ distribution like charginos
- \Rightarrow vectors identified by Dirac structure's $\Delta \phi_{jj}$

Tilman Plehn

WBF and SUSY

SUSY parameters Markov chains

SUSY maps

Alternative Hypotheses

Like-sign vectors without Majorana neutralinos

- problem: define consistent hypothesis to kill
- start with copy of SM, heavy W', Z', H', f'
- good news: H' necessary for unitarity, but irrelevant at LHC
- transverse-type $p_{T,i}$ distribution like charginos
- \Rightarrow vectors identified by Dirac structure's $\Delta \phi_{ij}$

Role of heavy fermions

- not part of the naive set of WBF diagrams
- gauge connected for Standard Model WW production
- huge effect on transverse momentum and other scaling distributions

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

Supersymmetric parameter space

Skipping masses and edges for today...

- parameters: weak-scale Lagrangean
- measurements: masses or edges,
 - branching fractions, rates,... [SM and BSM backgrounds, QCD environment]
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, no local minimum? problem in fit: domain walls, no global minimum? problem in interpretation: marginalization, secondary minima?

Ben's and Chris' weather forecasts [Allanach, Lester, Weber] 2

- assume it's SUGRA
- extract $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu), y_t, \dots$
- include all indirect constraints
- Bayesian probability map as of today

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

Supersymmetric parameter space

Skipping masses and edges for today...

- parameters: weak-scale Lagrangean
- measurements: masses or edges,
 - branching fractions, rates,... [SM and BSM backgrounds, QCD environment]
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, no local minimum? problem in fit: domain walls, no global minimum? problem in interpretation: marginalization, secondary minima?

Sfitter: TeV-scale MSSM

- originally purely best-fit search
- technically painful
 - (1) grid for closed subset
 - (2) fit of other parameters
 - (3) complete fit
- ⇒ measurements conclusive!
- \Rightarrow secondary minima?

	LHC	ILC	LHC+ILC	SPS1a
tanβ	10.22±9.1	10.26±0.3	10.06±0.2	10
M ₁	102.45±5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M3	578.67±15	fix 500	588.05±11	589.4
M _Ť ,	fix 500	197.68 ± 1.2	199.25±1.1	197.8
M _Ť	129.03 ± 6.9	135.66 ± 0.3	133.35 ± 0.6	135.5
$M_{\tilde{\mu}_{I}}$	198.7±5.1	$198.7 {\pm} 0.5$	198.7 ± 0.5	198.7
M _{ã3} ,	498.3±110	497.6±4.4	521.9 ± 39	501.3
MT	fix 500	420±2.1	411.73 ± 12	420.2
M _{ĎB}	522.26±113	fix 500	$504.35 {\pm} 61$	525.6
A_{τ}	fix 0	-202.4±89.5	352.1±171	-253.5
At	-507.8±91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7±35603	fix 0	-977±12467	-799.4

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

Markov chains

New physics parameter spaces [Sfitter: Lafaye, TP, Rauch, Zerwas]

- always start at exclusive likelihood map p(d|m) over m
- problem: blind directions in *m* [flavor physics is different]
- (1) Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [measure theorist's prejudice p(m)]
- (2) profile likelihood: best-fit point in blind direction [no integration, no pdf]
- \Rightarrow Sfitter: (1) compute map p(m|d) of parameter space
 - (2) rank local maxima
 - (3) do your favorite Bayesian/frequentist dance...

Weighted Markov chains

- map (chain) based on probability of a state expensive energy function on sample
- BSM physics: map p(m|d) of parameter points evaluate same probability from (binned) density
- \Rightarrow weighted Markov chains [inspired by weighted Monte Carlo]
 - already for mSUGRA: MCMC resolution not sufficient
- \Rightarrow additional likelihood hill-climber to rank maxima

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

Markov chains

New physics parameter spaces [Sfitter: Lafaye, TP, Rauch, Zerwas]

- always start at exclusive likelihood map p(d|m) over m
- problem: blind directions in *m* [flavor physics is different]
- (1) Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [measure theorist's prejudice p(m)]
- (2) profile likelihood: best-fit point in blind direction [no integration, no pdf]
- \Rightarrow Sfitter: (1) compute map p(m|d) of parameter space
 - (2) rank local maxima
 - (3) do your favorite Bayesian/frequentist dance...

Sfitter toy model

- test function $V(\vec{x})$ in 5 dimensions [general high-dimensional extraction tool]
- Sfitter output #1: fully exclusive likelihood map [hard to plot] Sfitter output #2: ranked list of local maxima

V=74.9	(655	253	347	348	349)
V=59.9	(850	224	650	649	654)
V=58.2	(849	225	587	650	650)
V=25.1	(750	749	450	450	450)
V=16.0	(245	253	552	542	544)
V=12.1	(350	650	650	650	650)

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

SUSY parameter maps

mSUGRA-SPS1a map with LHC edges

- kinematic edges with free y_b, y_t , flat theory errors included
- Sfitter output #1: fully inclusive likelihood map Sfitter output #2: ranked list of local maxima

χ^2	<i>m</i> 0	^m 1/2	$\tan \beta$	A ₀	μ	mt
0.3e-04	100.0	250.0	10.0	-99.9	+	171.4
27.42	99.7	251.6	11.7	848.9	+	181.6
54.12	107.2	243.4	13.3	-97.4	-	171.1
70.99	108.5	246.9	13.9	26.4	-	173.6
88.53	107.7	245.9	12.9	802.7	-	182.7

Tilman Plehn

WBF and SUSY

Markov chains

SUSY maps

SUSY parameter maps

mSUGRA-SPS1a map with LHC edges

- kinematic edges with free y_b, y_t , flat theory errors included
- strong correlation e.g. of A_0 and y_t after properly including all (theory) errors
- points around maximum in m_0 - $m_{1/2}$ plane

[left: Bayesian pdf; right: p-likelihood; top: $\mu \ < \ 0;$ bottom: $\mu \ > \ 0]$

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

SUSY parameter maps

mSUGRA-SPS1a map with LHC edges

- kinematic edges with free y_b, y_t , flat theory errors included

- statistics does not make a difference to you, look at $\tan\beta$

[top: tan β; bottom: B; left: Bayesian pdf; right: p-likelihood]

 \Rightarrow we can do mSUGRA properly, more observables via brand-new SLHA2

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

SUSY parameter maps

MSSM: the real thing

- nothing but going from 6D to 15D space practically: killing grids, Minuit, laptop analyses, 'Master Code',...
- Sfitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- p-likelihood or Bayesian probability maps for correlated space

[left: Bayesian pdf; right: p-likelihood]

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

SUSY parameter maps

MSSM: the real thing

- nothing but going from 6D to 15D space practically: killing grids, Minuit, laptop analyses, 'Master Code',...
- Sfitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- bottom-up running of RGE [Sfitter + Kneur]

\Rightarrow testing models instead of believing in them

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps

LHC will do a great job ...

- ...but you have to get things right
- LHC will find signals for TeV-scale new physics
- LHC will study exclusive signals
- LHC will provide us with mass and many other measurements
- we have to get the QCD part right
- we have to get the errors part right
- we have to get the statistics part right
- we have to talk to (the right) experimentalists

Tilman Plehn

WBF and SUSY

SUSY parameters

Markov chains

SUSY maps