Tilman Plehn

Mass and Spin

Parameters

4th Generation

Fun with New Physics

Tilman Plehn

MPI für Physik & University of Edinburgh

HCP Elba, May 2007

Outline

Tilman Plehn

Mass and Spin

Parameters

4th Generation

New physics measurements

Supersymmetric parameter studies

Chiral 4th Generation

Mass and Spin

4th Generation

New physics mass measurements

Spectra from cascade decays

- strongly interacting new physics not far away [more than 3×10^{7} events]
- $\ {\rm decay} \ {\tilde g} \to {\tilde b} {\bar b} \to {\tilde \chi}^0_2 b {\bar b} \to \mu^+ \mu^- b {\bar b} {\tilde \chi}^0_1 \quad {\rm [better \ not \ via \ {\it Z} \ or \ to \ {\it \tau}]}$
- thresholds & edges $[m_{\tilde{\ell}\ell}^2 < (m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2)(m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\ell}}^2]$
- detector resolution, calibration, systematic errors, shape analysis, cross sections as input?
- \Rightarrow spectrum information from decay kinematics

[Hinchliffe,...;Allanach,...; not only SUSY: Meade & Reece]

Mass and Spin

New physics mass measurements

Spectra from cascade decays

- strongly interacting new physics not far away [more than 3×10^{7} events]
 - decay $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$ [better not via Z or to τ]
- thresholds & edges $[m_{\ell\ell}^2 < (m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2)(m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\ell}}^2]$
- detector resolution, calibration, systematic errors, shape analysis, cross sections as input?
- ⇒ spectrum information from decay kinematics [mass differences with smaller errors]

Gluino mass from kinematic endpoints

- all decay jets b-tagged [Gjelsten, Miller, Osland]
- most of time: cascade assumption correct
- \Rightarrow gluino mass to \sim 1%

[theoretically defined?]

Mass and Spin Parameters 4th Generation

New physics spin measurements

New physics is hypothesis testing [nothing 'model independent at LHC']

- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where squark is a fermion: universal extra dimensions [Appelquist, Cheng, Dobrescu; Cheng, Matchev, Schmaltz; spectra degenerate — ignore; cross section larger — ignore]

Squark-slepton cascade [Barr; Smillie, Webber, Athanasiou, Lester]

- decay chain ${ ilde q} o { ilde \chi}^0_2 o { ilde \ell} o { ilde \chi}^0_1$
- trick 1: compare with KK q, Z, ℓ, γ
- trick 2: 'invariant angles' $\Rightarrow \hat{m} = m_{j\ell}/m_{j\ell}^{max}$ most promising
- typically largest $pp
 ightarrow ilde{q} ilde{g}$
- trick 3: production asymmetry $\tilde{q} : \tilde{q}^* \sim 2 : 1$ $\Rightarrow \mathcal{A} = [\sigma(j\ell^+) - \sigma(j\ell^-)]/[\sigma(j\ell^+) + \sigma(j\ell^-)]$

Masses or spin or both? [Arkani-Hamed,...]

- masses from kinematic endpoints [use $m_{\ell j}, m_{\ell \ell}, m_{j \ell \ell} \dots$]
- spins from distributions between endpoints [endpoints identical in SUSY and UED]

New physics spin measurements

Mass and Spin

4th Generation

Back to sign of SUSY-QCD

- like-sign dileptons indicate Majorana fermion?
- always like-sign dileptons from bosonic gluon
- \Rightarrow show gluino fermionic
- ⇒ compare with usual straw man [UED-Madgraph: Alves]

Mass and Spin Parameters 4th Generation

New physics spin measurements

Back to sign of SUSY-QCD

- like-sign dileptons indicate Majorana fermion?
- always like-sign dileptons from bosonic gluon
- \Rightarrow show gluino fermionic
- ⇒ compare with usual straw man [UED-Madgraph: Alves]

Gluino-bottom cascade [Alves, Eboli, TP]

- decay chain like for gluino mass
- compare with first KK g, q, Z, ℓ, γ
- replace initial-state asymmetry by b vs. \bar{b}
- independent of production channels
- asymmetry to write down: $\mathcal{A} = [\sigma(b\ell^+) - \sigma(b\ell^-)]/[\sigma(b\ell^+) + \sigma(b\ell^-)]$

[still visible after cuts and smearing]

- my question: can we tell b from \bar{b} ?

New physics spin measurements

Tilman Plehn

Mass and Spin Parameters 4th Generation

Back to sign of SUSY-QCD

- like-sign dileptons indicate Majorana fermion?
- always like-sign dileptons from bosonic gluon
- \Rightarrow show gluino fermionic
- ⇒ compare with usual straw man [UED-Madgraph: Alves]

Beyond gluino-bottom

- exchange $\tilde{\ell}_{LR}$ in cascade
- test of lepton-ino couplings
- stau mixing [Choi, Hagiwara, Kim, Mawatari, Zerwas]
- purely hadronic ϕ_{bb} [TP, Plümacher, Reinartz]
- independent of weak decays
- sensitive to gluino/KK-gluon boost
- compare two SUSY hypotheses
- neutralino-sneutrino LSP [TP, Pradler, Steffen]

Tilman Plehn

Mass and Spin

Parameters

4th Generation

Supersymmetric parameters

Theory output from LHC: SUSY parameters

- complex models, including dark matter, flavor physics, low-energy physics,...
 - parameters: weak-scale Lagrangean [Sfitter: Lafaye, TP, Rauch, D Zerwas; Fittino; Harvard]
 - measurements: masses or edges branching fractions cross sections
 - errors: general correlation, statistics & systematics & theory
 - problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum?

First go at problem

- ask a friend how SUSY is broken \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu), y_t, \dots$
- no problem, include indirect constraints
- ⇒ probability map as of today [Allanach, Lester, Weber]
- \Rightarrow best fit to LHC/ILC
- ⇒ ILC factor 10 more precise, but late...

	SPS1a	ΔLHC	ΔLHC	ΔILC	∆LHC+ILC
		masses	edges		
m ₀	100	3.9	1.2	0.09	0.08
$m_{1/2}$	250	1.7	1.0	0.13	0.11
$\tan \beta$	10	1.1	0.9	0.12	0.12
A ₀	-100	33	20	4.8	4.3

Tilman Plehn

Mass and Spin

Parameters

4th Generation

Supersymmetric parameters

Theory output from LHC: SUSY parameters

- complex models, including dark matter, flavor physics, low-energy physics,...
 - parameters: weak-scale Lagrangean [Sfitter: Lafaye, TP, Rauch, D Zerwas; Fittino; Harvard]
 - measurements: masses or edges branching fractions cross sections
 - errors: general correlation, statistics & systematics & theory
 - problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum?

MSSM instead of mSUGRA [TP, Lafaye, D Zerwas]

- technically painful:
 - (1) grid for closed subset
 - (2) fit of other parameters
 - (3) complete fit
- LHC+ILC perfect [Weiglein etal]
- ⇒ too few measurements? secondary minima? ...

	LHC	ILC	LHC+ILC	SPS1a
$tan\beta$	10.22±9.1	10.26±0.3	10.06 ± 0.2	10
M1	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M3	578.67 ± 15	fix 500	588.05 ± 11	589.4
$M_{\tilde{\tau}_I}$	fix 500	197.68±1.2	199.25±1.1	197.8
Mr	129.03 ± 6.9	135.66 ± 0.3	$133.35 {\pm} 0.6$	135.5
$M_{\tilde{\mu}_L}$	198.7±5.1	198.7 ± 0.5	198.7 ± 0.5	198.7
M _{ã31}	498.3±110	497.6±4.4	521.9 ± 39	501.3
M	fix 500	420±2.1	411.73±12	420.2
M _B	522.26±113	fix 500	$504.35 {\pm} 61$	525.6
A_{τ}	fix 0	-202.4±89.5	352.1±171	-253.5
At	-507.8±91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7 ± 35603	fix 0	-977±12467	-799.4

Tilman Plehn

Mass and Spin

Parameters

4th Generation

Supersymmetric parameters

New physics: as large as incomplete set of measurements

- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- likelihood: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m) [Allanach, Roszkowski]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local maxima

Weighted Markov chains [scanning algorithm for many dimensions: Rauch & TP]

- classical: produce representative set of states compute e.g. energy density of sample
- ⇒ map (chain) based on probability of states expensive energy function on sample
 - BSM physics: produce map p(m|d) of parameter points evaluate same probability from (binned) density [Allanach,...; Baltz,...; Roszkowski,...]
- ⇒ weighted Markov chain [like MC with phase-space weights]
 - MCMC resolution not sufficient
- \Rightarrow additional hill climber to rank maxima

Tilman Plehn

Mass and Spin

Parameters

4th Generatio

Supersymmetric parameters

New physics: as large as incomplete set of measurements

- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- likelihood: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m) [Allanach, Roszkowski]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local maxima

Toy model [Rauch & TP]

- test function $V(\vec{x})$ in 5 dimensions [general high-dimensional extraction tool]
- Sfitter output #1: probability map Sfitter output #2: list of local maxima [best fit]

V=74.9	(655	253	347	348	349)
V=59.9	(850	224	650	649	654)
V=58.2	(849	225	587	650	650)
V=25.1	(750	749	450	450	450)
V=16.0	(245	253	552	542	544)
V=12.1	(350	650	650	650	650)

Tilman Plehn

Mass and Spin

Parameters

4th Generatio

Supersymmetric parameters

New physics: as large as incomplete set of measurements

- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- likelihood: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m) [Allanach, Roszkowski]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local maxima

mSUGRA with today's measurements [Allanach, Lester, Weber]

– electroweak precision data, dark matter, $(g-2)_{\mu},...$ [Sfitter + Kreiss]

Tilman Plehn

Mass and Spin

Parameters

4th Generation

New physics: as large as incomplete set of measurements

Supersymmetric parameters

- Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [p(d) through normalization]
- likelihood: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m) [Allanach, Roszkowski]
- ⇒ given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local maxima

mSUGRA with LHC measurements [Lafaye, TP, Rauch, D.Zerwas]

- SPS1a kinematic edges with free mb, mt
- Sfitter output #1: probability map Sfitter output #2: list of local maxima [best fit]

Tilman Plehn

Mass and Spin

Parameters

Supersymmetric parameters

New physics: as large as incomplete set of measurements

- Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [p(d) through normalization]
- likelihood: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m) [Allanach, Roszkowski]
- \Rightarrow given measurements: (1) compute probability map p(m|d) of parameter space (2) rank local maxima

MSSM with LHC measurements

- complete weak-scale MSSM
- Sfitter output #1: probability map Sfitter output #2: list of local maxima soon
- \Rightarrow last week: up and running in D = 20! [interpretation determined by quality of data]

Tilman Plehn

Mass and Spin

4th Generation

Chiral 4th Generation

Different kind of question [Kribs, TP, Spannowsky, Tait]

- SUSY etc: solutions hierarchy problem [not equally good...]
- more phenomenological: why three generations? [review: Framton, Hung, Sher]
- anomaly cancellation? light neutrinos in LEP? Majorana neutrinos in neutrinoless double beta decay? electroweak precision data?
- \Rightarrow none of the constraints convincing [Feyerabend]
 - benefits: electroweak baryogenesis? dark matter? 'top' condensation? [Holdom]
- $\Rightarrow\,$ as all new physics: deserving solid Tevatron/LHC analyses

Our model [old story]

- complete additional generation $[Q_4, U_4, D_4, L_4, e_4, \nu_4]$
- masses from Yukawas
- representations as Standard Model: no FCNC
- charge currents: (4 \times 4) fermion-mixing matrices [single-top (D0) $v_{bt} \gtrsim$ 0.68]
- neutrino mass: $\mathcal{L} \sim y_4 \ \tilde{H} \bar{L}_4 \nu_{4R} + M \ \bar{\nu}^c_{4R} \nu_{4R}/2$

Tilman Plehn

Mass and Spin Parameters

4th Generation

4th Generation Constraints

Vacuum stabiliy and triviality [review: Sher]

- Higgs mass and potential:

$$m_{H}^{2} = \lambda v^{2} \qquad 16\pi^{2} \frac{d\lambda}{d\log\mu} \sim 12\lambda^{2} + 4\sum_{f} N_{c}^{2} \left(\lambda y_{f}^{2} - y_{f}^{4}\right) + \cdots$$

- (meta–) stable vaccuum requiring essentially $\lambda(\mu) > 0$ [Altarelli, Isidori]

- triviality bound: $\lambda(\mu) \lesssim \mathcal{O}(1)$
- \Rightarrow 4th generation valid to as high scales as Little Higgs

Tilman Plehn

Mass and Spin

4th Generation

4th Generation Constraints

Vacuum stabiliy and triviality [review: Sher]

- Higgs mass and potential:

$$m_{H}^{2} = \lambda v^{2}$$
 $16\pi^{2} \frac{d\lambda}{d\log \mu} \sim 12\lambda^{2} + 4\sum_{f} N_{c}^{2} \left(\lambda y_{f}^{2} - y_{f}^{4}\right) + \cdots$

- (meta–) stable vaccuum requiring essentially $\lambda(\mu) > 0$ [Altarelli, Isidori]
- triviality bound: $\lambda(\mu) \lesssim \mathcal{O}(1)$
- \Rightarrow 4th generation valid to as high scales as Little Higgs

Electroweak precision data [LEPEWWG]

- for our purpose: only S and T $[\Delta U \sim 0 \text{ as in SM}]$
- neutrino with Dirac mass $[\Delta S < 0 \text{ for Majorana neutrinos: Kniehl, Kohrs}]$
- mixing fermions: $\Delta S = N_f/(6\pi)(1-2Y\log m_u^2/m_d^2)$ [Y_ℓ = -1/2; Y_q = 1/6]
- small m_H : $\Delta S \sim 0.2$ implies $\Delta T \sim \Delta S$ allowed large m_H : $\Delta S \sim 0.1$ implies $\Delta T \sim \Delta S + 0.2$ allowed

m_{u_4}	m_{d_4}	m _h	$\Delta S_{\rm tot}$	$\Delta T_{\rm tot}$
310	260	115	0.15	0.19
310	260	200	0.19	0.20
330	260	300	0.21	0.22
400	350	115	0.15	0.19
400	340	200	0.19	0.20
400	325	300	0.21	0.25

Tilman Plehn

Mass and Spin

4th Generation

4th Generation at Colliders

Direct searches

- heavy leptons constrained by LEP
- hard to avoid via CKM: $u_4 \rightarrow bW, qW$ [CDF $m_U > 260$ GeV]
- decays to gauge bosons: $d_4 \rightarrow tW$ or loop-induced $d_4 \rightarrow bZ$ [CDF $m_u \gtrsim$ 270 GeV]
- \Rightarrow bread-and-butter searches for Tevatron

Funky Higgs physics at Tevatron and LHC

- enhancement by factor 9 for $gg \rightarrow H$ [Tevatron limit for $m_H \sim$ 160 GeV]
- all light–Higgs decays suppressed by $H \rightarrow$ jets
- decay to photons gone?
- ⇒ what a great straw man!

Tilman Plehn

Mass and Spin

4th Generation

4th Generation at Colliders

Direct searches

- heavy leptons constrained by LEP
- hard to avoid via CKM: $u_4 \rightarrow bW, qW$ [CDF $m_U > 260$ GeV]
 - decays to gauge bosons: $d_4 \rightarrow tW$ or loop-induced $d_4 \rightarrow bZ$ [CDF $m_u \gtrsim$ 270 GeV]
- ⇒ bread–and–butter searches for Tevatron

Funky Higgs physics at Tevatron and LHC

- enhancement by factor 9 for $gg \rightarrow H$ [Tevatron limit for $m_H \sim$ 160 GeV]
- all light–Higgs decays suppressed by $H \rightarrow jets$
- decay to photons gone?
- angular correlations in WBF plus gluon fusion at LHC [TP, Rainwater, Zeppenfeld,...]
- \Rightarrow misleading Higgs coupling structure

Tilman Plehn

Mass and Spin Parameters

4th Generation

New Physics at Hadron Colliders

Hadron collider physics is hard!

- QCD tries to kill us [usually my favorite topic]
- all (interesting) analyses are and will be hypothesis testing
- likelihood methods next on pheno agenda
- \Rightarrow phenomenologists and experimentalists have to work together

Hadron collider physics is fun!

- mass and spin measurements possible
- parameter extraction/probability maps in full swing
- amusing aspect: 4th generation not ruled out and great fun
- \Rightarrow phenomenologists and experimentalists should have a good time together

Tilman Plehn

Mass and Spin

Parameters

4th Generation

Electroweak Precision Data

LEP-EWWG: precision constraints

- slice U = 0
- origin defined by $m_t = 175 \text{ GeV}, m_H = 150 \text{ GeV}$
- small m_H : $\Delta S \sim 0.2$ implies $\Delta T \sim \Delta S$ allowed large m_H : $\Delta S \sim 0.1$ implies $\Delta T \sim \Delta S + 0.2$ allowed

Fun	with	New		
Physics				

Tilman Plehn

Mass and Spin

Parameters

4th Generation