Tilman Plehn

Collider basics

QCD basics

Collinear jets

QCD scales

Some processes

Jet radiation

Phenomenology: QCD

Tilman Plehn

University of Edinburgh

Graduiertenkolleg Freiburg, 11/2007

Phenomenology: QCD Outline

Collider basics

QCD basics

Collinear jets

QCD scales

Some processes

Jet radiation

Hadron Colliders - Stars on the Physics Sky

QCD for New Physics Searchers

Collinear jets

QCD scales

Important Standard–Model Processes

Jet Radiation

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Organization

5 1/2 hours on LHC phenomenology

- collider basics
- scales in QCD
- hard vs collinear jets
- merging jet descriptions
- why new physics?
- why supersymmetry?
- searches for new physics
- new-physics properties
- new-physics parameters
- why extra dimensions?

One way of teaching phenomenology

- let's try to get to current topics
- past colliders are physics history and PDG entries
- we'll all spend 10+ years in the shadow of LHC
- you ask I'll try to answer

-

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Signals for new particles

Real-particle production [gluon, top quark]

- produce searched-for particle
- observe decay [before hadronization]
- reconstruct decay products [(transverse) mass peak with side bins]
- $\Rightarrow\,$ measure mass, spin, branching ratios beyond Standard Model
- ⇒ highest–energy colliders

Virtual-particle effects [gauge bosons $W, Z, b \rightarrow s\gamma$]

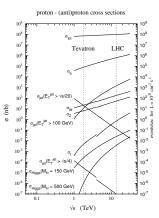
- produce and measure something else (like W, Z)
- compare to Standard-Model predictions
- \Rightarrow find deviations from Standard–Model relations
- \Rightarrow highest–precision colliders

Rare effect or rare decays [B physics, EDMs, LHC signatures?]

- produce something else (like B_s,...)
- find effect forbidden in Standard Model
- \Rightarrow observe effect beyond Standard Model
- \Rightarrow best-chosen experiment

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation


Collider basics

Most powerful colliders: hadron colliders

- inside 27 km LEP tunnel [used to be e^+e^- with 200 GeV, now pp with 14 TeV]
- proton-proton collisions [Tevatron: proton-antiproton at 2 TeV]
- hadronic c.m. energy divided into partons [first approximation p = (uud)]
- luminosity: $N = \sigma \mathcal{L}$ with $\mathcal{L} \propto f n_1 n_2 / a$ [measured in cm⁻²s⁻¹ = 10⁻³⁹fb⁻¹s⁻¹]

Everything you always wanted to know ...

- signal: everything new, exciting and rare background: yesterday's signal
- Standard Model: theory of background QCD: evil background theory trying to kill us
- $N_{\text{events}} = \sigma \cdot \mathcal{L} \cdot \epsilon$
- trigger: no leptons/photons not on tape
- jet: everything except for leptons/photons crucial: what is inside a jet [q, g, b, τ tagged?]
- discovery $N_S/\sqrt{N_B} > 5$

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Collider basics

Computing what goes on at hadron colliders

(

- incoming protons resolved at TeV-scale energy
- to first approximation described by valence quarks (uud)

$$\sigma_{AB} = \sum_{a,b} \int_0^1 dx_a dx_b f_{a/A}(x_a) f_{b/B}(x_b) \hat{\sigma}_{ab}$$

(1) parton density $f_{a/A}(x_a)$:

probability to find parton a of momentum fraction x_a in proton A kinematics of partons collinear with proton

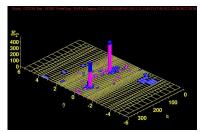
- parton densities measured in many experiments [mostly HERA]
- (2) partonic cross section $\hat{\sigma}_{ab}$: just like e^+e^- , but with incoming quarks and gluons [hard process] defined perturbatively counting interaction vertices
 - partonic cross section calculated (numerically) for any imaginable final state

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Collider basics

Kinematics at a hadron collider


- incoming momenta in lab frame: $p_{a,b} = x_{a,b} (E_{A,B}, 0, 0, p_{A,B})$ [partons massless]
- center-of-mass frame moving in z direction
- cylindrical coordinates $d^3 \vec{p} = p_T d\phi \, dp_T \, dp_Z$ [transverse momentum $p_T = \sqrt{p_X^2 + p_Y^2}$]
- (1) usual event sample: ϕ symmetry

(2) transverse momentum and mass: $E_T = \sqrt{p_T^2 + m^2}$ (3) rapidity

$$y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$
 $y_{\text{boosted}} = y + y_{z-\text{shift}}$ $|y_{\text{observed}}| \lesssim 5$

- lego plot (p_T, y, ϕ) or (E_T, η, ϕ) [$\eta = \log \cot \theta / 2$]

- distance between two tracks $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Collider basics

Kinematics at a hadron collider

- incoming momenta in lab frame: $p_{a,b} = x_{a,b} (E_{A,B}, 0, 0, p_{A,B})$ [partons massless]
- center-of-mass frame moving in z direction
- cylindrical coordinates $d^3 \vec{p} = p_T d\phi \, dp_T \, dp_Z$ [transverse momentum $p_T = \sqrt{p_X^2 + p_Y^2}$]
- (1) usual event sample: ϕ symmetry
 - (2) transverse momentum and mass: $E_T = \sqrt{p_T^2 + m^2}$ (3) rapidity

$$y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$
 $y_{\text{boosted}} = y + y_{z-\text{shift}}$ $|y_{\text{observed}}| \lesssim 5$

- lego plot (p_T, y, ϕ) or (E_T, η, ϕ) $[\eta = \log \cot \theta/2]$
- distance between two tracks $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$

Useful observables

- invariant mass $(p_{\ell,1}+p_{\ell,2})^2=m_{\ell\ell}^2\sim m_Z^2$
- transverse mass [massless invisible neutrino]

$$\begin{split} m_{e\nu}^2 &= (E_e + E_\nu)^2 - (\vec{p}_{T,e} + \vec{p}_{T,\nu})^2 - (\vec{p}_{z,e} + \vec{p}_{z,\nu})^2 \\ &> (E_{T,e} + E_{T,\nu})^2 - (\vec{p}_{T,e} + \vec{p}_{T,\nu})^2 \\ &= (E_{T,e} + |\vec{p}_T|)^2 - (\vec{p}_{T,e} + \vec{p}_T)^2 = m_{T,e\nu}^2 \end{split}$$

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Collider basics

Trigger

- flood of data from each bunch crossing not manageable [event rate 1 GHz with 1 MB]
- use some prejudice to write 'interesting' events on tape [realistic 100 Hz]
- LHC is not built to test QCD! [interesting events 1/10⁶]
- soft jets, multiple interactions,... into trash
- leptons, photons, hard jets, missing momentum,... of high priority open problems: invisible Higgs decays, stable particles, super-fast top jets,...
- \Rightarrow trigger menue T(t,k,\$) [a function of time, knowledge and money]

Level-1 trigger menue from Atlas [down to 10⁵ Hz, always outdated]

		Atlas
Objects	$ \eta ^{\max}$	p_T^{\min} (GeV)
μ inclusive	2.4	6 (20)
e/photon inclusive	2.5	17 (26)
two e's or two photons	2.5	12 (15)
1-jet inclusive	3.2	180 (290)
3 jets	3.2	75 (130)
4 jets	3.2	55 (90)
au/hadrons	2.5	43 (65)
ØΤ	4.9	100
jets+ <i>¢</i> _T	3.2, 4.9	50,50 (100,100)

Tilman Plehn

Collider basics

QCD basics

- Collinear jets
- QCD scales
- Some processes
- Jet radiation

QCD basics

Simple hadron collider process: $pp \rightarrow Z(+jets)$

- Drell-Yan process: single gauge boson production [could be W, Z with $Z \rightarrow \ell \ell$]
- what is the final state in hadronic σ_{AB} ?
- more specific: what about additional jets $\sigma(pp \rightarrow Z + \text{jets})$?
- to get an idea: compute $q \bar{q}
 ightarrow Z$ and $q \bar{q}
 ightarrow Zg$
- phase space integration over gluon IR divergent: soft $E_g \rightarrow 0$ collinear — $\theta_{aX} \rightarrow 0$

Similarly for initial-state radiation

- gluon off incoming quark with p_{Tj} [soft and collinear, needs virtual-gluon diagrams]
- same for incoming gluon splitting into quarks with p_{Tj} [gg \rightarrow Zq only collinear]
- \Rightarrow partonic cross section $\hat{\sigma}_{Z+jet}$ IR divergent

$$\frac{d\sigma_{Zg}}{d\rho_{Tj}} \propto \frac{\alpha_s \, \rho_{Tj}}{\rho_{Tj}^2 + m_j^2} = \frac{\alpha_s}{\rho_{Tj}}$$

$$\Rightarrow \sigma_{Zg} \propto \alpha_s \, \log \frac{\rho_{Tj}^{max}}{\rho_{Tj}^{min}}$$

Tilman Plehn

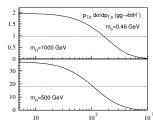
Collider basics

QCD basics

- Collinear jets
- QCD scales
- Some processes
- Jet radiation

QCD basics

Simple hadron collider process: $pp \rightarrow Z(+jets)$


- Drell-Yan process: single gauge boson production [could be W, Z with $Z \rightarrow \ell \ell$]
- what is the final state in hadronic σ_{AB} ?
- more specific: what about additional jets $\sigma(pp \rightarrow Z + \text{jets})$?
- to get an idea: compute q ar q o Z and q ar q o Zg
- phase space integration over gluon IR divergent: soft $E_g \rightarrow 0$

collinear
$$- \theta_{gX} \rightarrow 0$$

Similarly for initial-state radiation

- gluon off incoming quark with p_{Tj} [soft and collinear, needs virtual-gluon diagrams]
- same for incoming gluon splitting into quarks with $p_{Tj} \quad [qg \rightarrow Zq \text{ only collinear}]$
- \Rightarrow partonic cross section $\hat{\sigma}_{Z+\mathrm{iet}}$ IR divergent

$$\frac{d\sigma_{Zg}}{d p_{Tj}} \propto \frac{\alpha_s p_{Tj}}{p_{Tj}^2 + m_j^2} = \frac{\alpha_s}{p_{Tj}}$$
$$\Rightarrow \sigma_{Zg} \propto \alpha_s \log \frac{p_{Tj}^{\max}}{p_{Tj}^{\min}}$$

Tilman Plehn

Collider basics

QCD basics

- Collinear jets
- QCD scales
- Some processes
- Jet radiation

QCD basics

Divergences, regularization and renormalization scale

- remember q ar q o b ar b via s-channel gluon to NLO
- including chain of (reducible) gluon self energies
- regularize gluon self-energy bubbles $[n = 4 2\epsilon < 4]$

$$\int \frac{d^4k}{(2\pi)^4} \rightarrow r_{\epsilon}(\mu_R) \int \frac{d^{4-2\epsilon}k}{(2\pi)^{4-2\epsilon}} \sim \mu_R^{2\epsilon} \int \frac{d^{4-2\epsilon}k}{(2\pi)^{4-2\epsilon}}$$

 $\text{rewrite } \mu_R^\epsilon = \exp(\log \mu_R^\epsilon) = \exp(\epsilon \log \mu_R) = 1 + \epsilon \log \mu_R + \dots$

- naked divergent gluon self energy

$$\frac{\Sigma^{\mu\nu}(p^2)}{p^2} = \frac{\alpha_s}{4\pi} \frac{r_\epsilon(\mu_R)}{\epsilon} \left(\frac{4T_RN_F}{3} - \frac{5C_A}{3}\right) \left(-g^{\mu\nu} + \frac{p^\mu p^\nu}{p^2}\right)$$

- add chains of one, two, three,.... one-loop bubbles [will show in detail later] call the resulting scale-dependent coupling $\alpha_s(p^2)$ [$\overline{\rm MS}$ scheme]

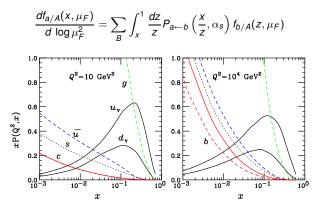
$$\frac{1}{\alpha_s(p^2)} = \frac{1}{\alpha_s(\mu_R^2)} + \frac{1}{4\pi} \left(\frac{11C_A}{3} - \frac{4T_RN_F}{3}\right) \log \frac{p^2}{\mu_R^2}$$
$$\Leftrightarrow \frac{\partial \alpha_s(\mu^2)}{\partial \log \mu^2} = -\frac{\alpha_s^2}{4\pi} \left(\frac{11C_A}{3} - \frac{4T_RN_F}{3}\right) + \dots$$

 \Rightarrow renormalization group sums chains of divergent diagrams

Tilman Plehn

Collider basics

QCD basics


Collinear jets

- QCD scales
- Some processes
- Jet radiation

Collinear jets

Initial-state gluon radiation

- back to multiple gluon radiation off incoming quark
- each splitting $\alpha_s \log p_{T_i}^{\max} / p_{T_i}^{\min}$ [also possible as 1/ ϵ]
- IR-divergent in collinear limit
- geometric series just like multiple gluon self energies [IR problem instead of UV problem]
- \Rightarrow sum diagrams and absorb in running of parton density [DGLAP]

Tilman Plehn

Collider basics

QCD basics

Collinear jets

QCD scales

Some processes

Jet radiation

Collinear jets

Initial-state gluon radiation

- back to multiple gluon radiation off incoming quark
- each splitting $\alpha_s \log p_{T_i}^{\max} / p_{T_i}^{\min}$ [also possible as 1/ ϵ]
- IR-divergent in collinear limit
- geometric series just like multiple gluon self energies [IR problem instead of UV problem]
- \Rightarrow sum diagrams and absorb in running of parton density [DGLAP]

$$\frac{df_{a/A}(x,\mu_F)}{d\log\mu_F^2} = \sum_B \int_x^1 \frac{dz}{z} P_{a\leftarrow b}\left(\frac{x}{z},\alpha_s\right) f_{b/A}(z,\mu_F)$$

- with universal collinear splitting kernels [means factorization]

$$P_{q \leftarrow q}(x) = C_F \frac{1+x^2}{1-x} \qquad P_{q \leftarrow g}(x) = T_R \left(x^2 + (1-x)^2 \right)$$
$$P_{g \leftarrow q}(x) = C_F \frac{1+(1-x)^2}{x} \qquad P_{g \leftarrow g}(x) = C_A \left(\frac{x}{1-x} + \frac{1-x}{x} + x(1-x) \right)$$

- jet radiation absorbed into collinear pdf [jet distributions for $\rho_{Tj} < \mu_F$ from parton shower]
- divergence $\rho_{T_{I}}^{min} \rightarrow 0$ removed, $\rho_{T_{I}}^{max} \equiv \mu_{F}$ artifical parameter [smart choice?]
- \Rightarrow jet radiation below factorization scale ($p_{Tj} < \mu_F$) included in pdf

Tilman Plehn

Collider basics

QCD basics

Collinear jets

QCD scales

Some processe:

Jet radiation

QCD scales

Scales in QCD processes

gluon propagator in <i>s</i> channel	initial-state jet radiation	
UV divergence $1/(n-4)$	IR divergence log p_T^{\min}	
absorbed into counter term	absorbed into parton densities	
(renormalization) universality: renormalizability	(mass factorization) universality: factorization	
running coupling $\alpha_s(\mu_R)$	running parton density $f_{a/A}(x, \mu_F)$	
renormalization scale μ_R	factorization scale μ_F	
evolution by beta function of α_s	evolution by DGLAP equation	
'physics choice' $\mu_{R} \sim p_{T,j}$	'physics choice' $\mu_{F} \sim p_{T,j}^{\max}$	
all scales artificial parameters		
not unique for multy-scale problems		
scale dependence vanishing including all orders		

Tilman Plehn

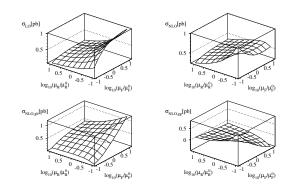
Collider basics

QCD basics

Collinear jets

QCD scales

Some processes


Jet radiation

QCD scales

Error estimates in QCD

- QCD at colliders always perturbative in $\alpha_{\rm S}$ $~_{\rm [plus possibly logs]}$
- let's hope, large logarithms identified and summed
- all observables function of scales $O = O(\mu_F, \mu_R)$
- \Rightarrow scales artifact of perturbation theory, so vanish at all orders
- \Rightarrow scale dependence (only?) measure of theoretical uncertainty

Example: $pp \rightarrow tH^-$

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

QCD scales

Error estimates in QCD

- QCD at colliders always perturbative in $\alpha_{\rm S}$ $~_{\rm [plus possibly logs]}$
- let's hope, large logarithms identified and summed
- all observables function of scales $O = O(\mu_F, \mu_R)$
- $\Rightarrow\,$ scales artifact of perturbation theory, so vanish at all orders
- \Rightarrow scale dependence (only?) measure of theoretical uncertainty

Caveats

- total cross section with jets $\sigma(\mu_F, \mu_R)$
 - (1) asymptotic freedom: $\sigma(\mu_R
 ightarrow 0) = \infty$ and $\sigma(\mu_R
 ightarrow \infty) = 0$
 - (2) p_T size of proton: $\sigma(\mu_F \to 0) = 0$ and $\sigma(\mu_F \to \infty) = \infty$
- $\Rightarrow \ \text{scale dependences can cancel} \quad \text{[more on DY process later]}$
 - there is no 'correct' scale, but there are idiotic scales [introducing large logs]

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

QCD scales

Error estimates in QCD

- QCD at colliders always perturbative in $\alpha_{\rm S}$ $~_{\rm [plus possibly logs]}$
- let's hope, large logarithms identified and summed
- all observables function of scales $O = O(\mu_F, \mu_R)$
- $\Rightarrow\,$ scales artifact of perturbation theory, so vanish at all orders
- \Rightarrow scale dependence (only?) measure of theoretical uncertainty

Physics of wrong scales

- $-\mu_F$ defining p_T -size of parton, perturbative part $f_{a/A} \propto \log \mu_F$
- large μ_F means (too) many collinear jets included LO corrected by correct NLO jet radiation: $\mathcal{K} = \sigma_{\rm NLO}/\sigma_{\rm LO} \ll 1$ small μ_F means (too) few jets included in LO corrected by correct NLO jets: $\mathcal{K} \gg 1$
- μ_R defining scale in coupling constants or masses $\propto \log \mu_1/\mu_2$
- $\alpha_s(\mu_R)$ leading higher–order contributions, but NLO with explicit argument log Q/μ_R explicitely contributing to K
- known trick: mimick soft jet radiation using $\alpha_s(p_{T_i})$

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Definition of jets

Jets

- jet-parton duality \Leftrightarrow partons in detector
- jet-rich environment at (hadron) colliders [mostly but not only soft or collinear]
- $\Rightarrow\,$ need jet algorithm to decide what comes from one parton
 - stable w.r.t inclusion of soft or collinear jet [IR save]
 - crucial for m_{qq} searching for Z'
 ightarrow q ar q, etc
 - even more crucial if likelihood $|\mathcal{M}|^2$ of interest

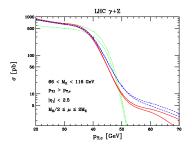
Should be standard: k_T algorithm [experts: exclusive with R = 1]

- define a distance jet-jet d_{kl} and jet-beam d_{kB} only requirement: $d_{kl} \sim k_{T,kl}^2$ for $\theta_{kl} \rightarrow 0$ [e.g. $d_{kB} = E_k^2 \theta_{kl}^2$]
- (0) define resolution d_{cut} [or number of jets] (1) find minimum $d_{\min} = \min_{kl}(d_{kl}, d_{kB})$ (2a) if $d_{\min} > d_{\text{cut}}$ all objects are jets (2b) if $d_{\min} = d_{kl} < d_{\text{cut}}$ combine k and l, go to (1) (2c) if $d_{\min} = d_{kB} < d_{\text{cut}}$ remove k from list, go to (1)
- \Rightarrow d_{cut} separating hard from soft–collinear physics
 - if pheno analysis requires jet algorithms, you'll likely get it wrong

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales

Some processes


Jet radiation

Example processes everyone will need

Processes

- total cross section (coupling) measurements need luminosity
- effectively: normalization to standard candle
- simple (leptonic) final state well-controlled QCD corrections high-precision Monte-Carlo [NNLO if possible]
- \Rightarrow Drell–Yan production $pp \rightarrow \mu^+ \mu^-$

Example: Drell-Yan at LO, NLO, NNLO [error from scales?]

Tilman Plehn

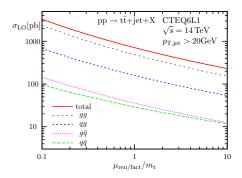
Collider basics

QCD basics

Collinear jets

QCD scales

Some processes


Jet radiation

Processes

Example processes everyone will need

- new physics usually including bottom jets, lepton, missing momentum
- \Rightarrow main background $t\bar{t}$ +jets
 - background rate after cuts problematic [phase space fragmented]
- NLO corrections to $pp \rightarrow t\bar{t}$ available in MC@NLO
- exclusive NLO corrections to $pp \rightarrow t\bar{t}j$ almost done

Example: $pp \rightarrow ttj$ at LO

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation

Hard jets [remember Z + g example]

- strictly perturbative, no large logarithms
 - described by matrix elements [finite at given order in α_s , e.g. $q\bar{q} \rightarrow Z + g + b + \bar{b} + g$]

Soft and collinear jets [no technical details here]

- perturbation theory spoiled by collinear logarithsm [fixed-order divergence]
- total cross sections: defined only jet-inclusively [collinear jets always part of pdf]
- collinear jet distributions by parton shower [SCET with improved theoretical description?]
- \Rightarrow holy grail of QCD at colliders: combine the two

Sudakov factors

- Poisson statistics: event with expected p hits occuring n times

$$f(n; p) = \frac{p^n e^{-p}}{n!}$$
 no event: $f(0; p) = e^{-p}$

- collinear gluon/photon radiation described by energy-dependent probability

$$dP(x) = \frac{\alpha_s}{2\pi} P(x) dx \qquad f(0; x_{\min}, x_{\max}) = \exp\left(-\int_{x_{\min}}^{x_{\max}} dP(x)\right)$$

 \Rightarrow Sudakov giving probability of no radiation/splitting

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation: MC@NLO

MC@NLO approach

- one hard jet correctly described by exclusive NLO corrections
- soft and collinear jet radiation for all jets from parton shower

Bryan Webber's toy model

- observable for photon radiated with energy 0 < x < 1

$$\langle O \rangle = \mu_F^{2\epsilon} \int_0^1 dx \frac{O(x)}{x^{2\epsilon}} \left[\frac{d\sigma}{dx} \bigg|_B + \frac{d\sigma}{dx} \bigg|_V + \frac{d\sigma}{dx} \bigg|_B \right]$$

with Born, virtual, real contributions $[\lim_X R(x) = B, a: coupling]$

$$\frac{d\sigma}{dx}\Big|_{B} = B\,\delta(x) \qquad \frac{d\sigma}{dx}\Big|_{V} = a\left(\frac{B}{2\epsilon} + V\right)\delta(x) \qquad \frac{d\sigma}{dx}\Big|_{R} = a\frac{R(x)}{x}$$

- usual subtraction to cancel IR divergence in photon emission

$$\langle O \rangle_{R} = aBO(0) \int_{0}^{1} dx \frac{1}{x^{1+2\epsilon}} + a \int_{0}^{1} dx \frac{R(x)O(x) - BO(0)}{x^{1+2\epsilon}} \\ = -a \frac{BO(0)}{2\epsilon} + a \int_{0}^{1} dx \frac{R(x)O(x) - BO(0)}{x}$$

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation: MC@NLO

MC@NLO approach

- one hard jet correctly described by exclusive NLO corrections
- soft and collinear jet radiation for all jets from parton shower

Bryan Webber's toy model

- finite NLO Monte-Carlo

$$\langle O \rangle = B O(0) + a V O(0) + a \int_0^1 dx \frac{R(x) O(x) - B O(0)}{x}$$

– generating functional with additional photon–emission probability $d\sigma/dx|_{PS}=B\;aQ(x)/x$

$$\int_{0}^{1} dx \left[F \left(B + aV - \frac{aB}{x} \right) + F \frac{aR(x)}{x} \right]$$
$$\rightarrow \int_{0}^{1} dx \left[F \left(B + aV - \frac{aB}{x} + \frac{aBQ(x)}{x} \right) + F a \frac{R(x) - BQ(x)}{x} \right]$$

- now: two subtraction terms, new one not at x = 0 [harder in practice!]

⇒ MC@NLO subtraction scheme with proper non–collinear subtraction term

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation: MC@NLO

MC@NLO approach

- one hard jet correctly described by exclusive NLO corrections
- soft and collinear jet radiation for all jets from parton shower

Comments

- + first hard jet correct
- + normalization correct strictly to NLO
- + available from Herwig authors
- additional jets only via parton shower
- subtraction terms not easy or universal
- possible negative weights [why a problem?]

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation: CKKW

CKKW approach

- combine leading-order X + j, X + jj, X + jjj, X + jjjj matrix elements
- avoid double counting between hard matrix elements
- avoid double counting with parton shower for collinear radiation

Combining jet-inclusive matrix elements

- for example 2-jet and 3-jet final state $\ g
 ightarrow q ar q(g)$
- complete splitting probabilities in terms of virtuality

$$\begin{split} & \Gamma_q(Q_{\text{out}}, Q_{\text{in}}) \equiv \Gamma_{q \leftarrow q}(Q_{\text{out}}, Q_{\text{in}}) = \frac{2C_F}{\pi} \frac{\alpha_s(Q_{\text{out}})}{Q_{\text{out}}} \left(\log \frac{Q_{\text{in}}}{Q_{\text{out}}} - \frac{3}{4}\right) \\ & \Gamma_g(Q_{\text{out}}, Q_{\text{in}}) \equiv \Gamma_{g \leftarrow q}(Q_{\text{out}}, Q_{\text{in}}) = \frac{2C_A}{\pi} \frac{\alpha_s(Q_{\text{out}})}{Q_{\text{out}}} \left(\log \frac{Q_{\text{in}}}{Q_{\text{out}}} - \frac{11}{12}\right) \\ & \Delta_{q,g}(Q_{\text{out}}, Q_{\text{in}}) = \exp\left[-\int_{Q_{\text{out}}}^{Q_{\text{in}}} dq \, \Gamma_{q,g}(Q_{\text{out}}, Q_{\text{in}})\right] \end{split}$$

- 2 jets only: $[\Delta_q(Q_1,Q_2)]^2$ [gluon splitting at Q_2 ; parton shower below Q_1]
- 3 jets only: $\Gamma_q(Q_2, Q_q) [\Delta_q(Q_1, Q_2)]^2 \Delta_g(Q_1, Q_g)$ [gluon/quark after splitting: $o_{g,q}$]
- 4 jets only
- $\Rightarrow\,$ additional Sudakov factors with simple algebra

Collider basics

- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation: CKKW

CKKW approach

- combine leading-order X + j, X + jj, X + jjj, X + jjjj matrix elements
- avoid double counting between hard matrix elements
- avoid double counting with parton shower for collinear radiation

Preparing event sample

- (1) compute hard *n*-jet samples and cross sections [set of momenta with resolution *d*_{cut}]
- (2) choose jet multiplicty n according to

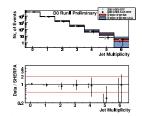
$$p_n = rac{\sigma_n}{\sum_{k=0} \sigma_k}$$
 with $\sigma_k = \sigma_k (d_{ ext{cut}})$

- (3) compute $|\mathcal{M}|^2$ and virtualities at splitting points [k_T algorithm]
- (4) apply Sudakov correction factors to weight, re-weight α_s MLM scheme: veto events instead of Sudakovs Madevent scheme: test splitting with matrix elements
- (5) use parton shower for soft/collinear end [indepenent of matching point!]
- (6) normalize total rate to highest known order
- \Rightarrow CKKW: combine exclusive *n*-jet rates with parton shower

niman Pienr

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

Jet radiation: CKKW


CKKW approach

- combine leading-order X + j, X + jj, X + jjj, X + jjjj matrix elements
- avoid double counting between hard matrix elements
- avoid double counting with parton shower for collinear radiation

Comments

- + all additional jets correct
- + available from Sherpa, Madevent, Alpgen authors
- normalization of different processes with leading-order error
- over-all normalization unknown

Sherpa–CKKW and Tevatron data

Tilman Plehn

- Collider basics
- QCD basics
- Collinear jets
- QCD scales
- Some processes
- Jet radiation

QCD Outlook

LHC physicists need to know QCD [model builders too]

- not all collider events can be analysed: trigger
- perturbative QCD is not perfect, but the best we have
- some processes need to be known precisely: luminosity, backgrounds
- renormalization/factorization scales from higher orders
- collinear jets described by parton shower
- hard jets described by fixed-order matrix elements
- jets properly described: ME-PS matching
- \Rightarrow next: what LHC can do with that

Apologies...

- ...to the people I did not cite, because it is a lecture
- ...to you for not explaining things like parton shower
- ...to those for whom I went to fast
- ...to those I bored to death

Tilman Plehn

Collider basics

QCD basics

Collinear jets

QCD scales

Some processes

Jet radiation