Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Phenomenology: Beyond the Standard Model

Tilman Plehn

University of Edinburgh

Graduiertenkolleg Freiburg, 11/2007

Tilman Plehn

Why?

Supersymmetry

LHC Signal

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Outline

Standard-Model effective theory

TeV-scale supersymmetry

Supersymmetric signatures

Masses and cascade decays

Spins and cascade decays

New physics and jets

Spins and jets

Underlying parameters

Large extra dimensions

Warped extra dimensions

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Standard–Model effecive theory

What is the Standard Model?

- gauge theory with the group structure $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons
- massive electroweak gauge bosons [Higgs mechanism with v = 246 GeV, $m_H \lesssim 250$ GeV]
- Dirac fermions in doublets and with masses equal to Yukawas
- generation mixing in quark and neutrino sector
- \Rightarrow defined by particle content and (gauge) interactions

Data vs renormalizable Lagrangian [all operators to D4]

- dark matter? [only solid evidence for new physics, weak-scale?]
- $-(g-2)_{\mu}$? [loop effects around weak scale?]
- flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses? [see-saw at 10¹¹ GeV?]
- gauge-coupling unification? [something happening above 10¹⁶ GeV?]
- gravity? [mostly negligible below 10¹⁹ GeV, non-renormalizable in usual sense]
- \Rightarrow general effective-theory Lagrangian with those interactions and particles
- \Rightarrow cut-off obvious, scale negotiable, renormalizability desirable
- ⇒ who the hell cares....???

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Standard–Model effective theory

...theorists care!

- compute loop corrections to scalar Higgs mass
- top loop in Higgs self energy Σ

$$\Sigma \sim -\left(\frac{g m_t}{v}\right)^2 \int \frac{d^4 q}{(2\pi)^4} \frac{(\dot{q}+m_t)(\dot{q}+\dot{p}+m_t)}{[q^2-m_t^2][(q+p)^2-m_t^2]} \sim -\frac{1}{(4\pi)^2} \left(\frac{g m_t}{v}\right)^2 \Lambda^2 + \cdots$$

- sum to Higgs-mass correction

$$\frac{1}{p^2 - m_H^2} \to \frac{1}{p^2 - m_H^2} + \frac{1}{p^2 - m_H^2} \Sigma \frac{1}{p^2 - m_H^2} + \frac{1}{p^2 - m_H^2} \Sigma \frac{1}{p^2 - m_H^2} \Sigma \frac{1}{p^2 - m_H^2} \Sigma \frac{1}{p^2 - m_H^2} + \dots$$
$$= \frac{1}{p^2 - m_H^2} \sum_{j=0}^{\infty} \left(\frac{\Sigma}{p^2 - m_H^2}\right)^j = \frac{1}{p^2 - m_H^2} \frac{1}{1 - \frac{\Sigma}{m_H^2 - m_H^2}} = \frac{1}{p^2 - m_H^2 - \Sigma}$$

- and watch desaster after collecting all loop functions

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{3g^{2}}{32\pi^{2}} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

- $\Rightarrow\,$ Higgs mass including loops wants to be cut-off scale Λ
- $\Rightarrow \text{ Standard-Model effective theory destabilized between } v \text{ and } \Lambda$ [Higgs wants to be at Λ , but would not function as Higgs there]
- \Rightarrow hierarchy problem: why not a Σ model if fundamental Higgs unworkable

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Standard–Model effective theory

Problem with light Higgs (data-driven)

- mass to cut-off of effective SM: $\delta m_H^2/m_H^2 \propto g^2(2m_W^2+m_Z^2+m_H^2-4m_t^2) \Lambda^2$
- \Rightarrow easy solution: tune counter term \Rightarrow evil, not in 't Hooft's spirit
- \Rightarrow or new physics at TeV scale: supersymmetry
 - extra dimensions little Higgs (Goldstone Higgs) Higgsless, composite Higgs, TopColor,...
- $\Rightarrow\,$ typically cancellation by new particles or discussing away high scale
- \Rightarrow beautiful concepts, but problematic at TeV scale [data seriously in the way]

Supersymmetry: prototype of new physics

- cancellation of divergences through statistics factor (-1)

[SM fermions to scalar; SM gauge bosons to fermions; SM scalars to fermions]

- Higgs-mass protection beyond one-loop [otherwise only stop, weak gaugino, higgsino]
- dark matter through R symmetry [removing D5 proton-decay operators]
- no clue about flavor physics
- decoupling theory [SUSY killed via Feyerabend, not Popper]
- \Rightarrow all new physics models in baroque state

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Standard–Model effective theory

Problem with light Higgs (data-driven)

- mass to cut-off of effective SM: $\delta m_H^2/m_H^2 \propto g^2(2m_W^2+m_Z^2+m_H^2-4m_t^2) \Lambda^2$
- \Rightarrow easy solution: tune counter term \Rightarrow evil, not in 't Hooft's spirit
- \Rightarrow or new physics at TeV scale: su
 - supersymmetry extra dimensions little Higgs (Goldstone Higgs) Higgsless, composite Higgs, TopColor,...
- $\Rightarrow\,$ typically cancellation by new particles or discussing away high scale
- $\Rightarrow \ \text{beautiful concepts, but problematic at TeV scale} \quad \ \ \left[\text{data seriously in the way} \right] \\$

Alternative motivations for TeV-scale new physics

- gauge coupling unification almost perfect [ask Graham]
- Uli Baur's rule: new energy scales bring new physics
- field looking like solid-state physics otherwise...

Tilman Plehn

Why?

Supersymmetry

- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

TeV-scale supersymmetry

SUSY broken: (yet) unobserved partners heavy

- soft breaking: partner masses without quadratic divergencies
- mechanism for SUSY masses unknown [soft SUSY breaking mediated somehow?] maximally blind mediation: mSUGRA [soon not a LHC paradigm!] scalars: m_0 , fermions: $m_{1/2}$, tri-scalar term: A_0 plus sign(μ) and tan β in Higgs sector
- alternatives: gauge, anomaly, gaugino mediation ...?
- link to flavor physics, dark matter, ...?
- ⇒ LHC: measure spectrum
- ⇒ LHC: if a spectrum, identify BSM model

Tilman Plehn

Why?

Supersymmetry

- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

TeV-scale supersymmetry

SUSY broken: (yet) unobserved partners heavy

- soft breaking: partner masses without quadratic divergencies
- mechanism for SUSY masses unknown [soft SUSY breaking mediated somehow?] maximally blind mediation: mSUGRA [soot not a LHC paradigm!] scalars: m_0 , fermions: $m_{1/2}$, tri-scalar term: A_0 plus sign(μ) and tan β in Higgs sector
- alternatives: gauge, anomaly, gaugino mediation ...?
- link to flavor physics, dark matter, ...?
- ⇒ LHC: measure spectrum
- ⇒ LHC: if a spectrum, identify BSM model

LHC phenomenology: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to *t* and *b*?
 - \rightarrow avoid higgsino anomalies
 - \rightarrow two Higgs doublets
- BSM-Higgs \neq SM-Higgs
- \Rightarrow would be another lecture...

		spin	d.o.f.	
fermion	f_L, f_R	1/2	1+1	
\rightarrow sfermion	\tilde{t}_L, \tilde{t}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	LSP?
gauge bosons	W±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

Tilman Plehn

Why?

Supersymmetry

LHC Signals

- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Supersymmetric signatures

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\bar{q}) \sim m(\bar{g})$]
- dark-matter weakly interacting [not only SUSY]
- signatures with jets and LSP $\tilde{g} \rightarrow \tilde{q}\bar{q}, \tilde{q}_L \rightarrow q\tilde{\chi}_2^0, \tilde{q}_R \rightarrow q\tilde{\chi}_1^0$

[additional jets and leptons possible]

- gaugino mass unification only for details
- \Rightarrow we know inclusive jets plus LSP

Tilman Plehn

Why?

Supersymmetry

LHC Signals

- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Supersymmetric signatures

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\tilde{q}) \sim m(\tilde{g})$]
- dark-matter weakly interacting [not only SUSY]
- signatures with jets and LSP $\tilde{g} \rightarrow \tilde{q}\bar{q}, \, \tilde{q}_L \rightarrow q \tilde{\chi}_2^0, \, \tilde{q}_R \rightarrow q \tilde{\chi}_1^0$

[additional jets and leptons possible]

- gaugino mass unification only for details
- ⇒ we know inclusive jets plus LSP

When do we see SUSY-QCD?

- gluinos: strongly interacting Majorana fermions
- first jet in gluino decay: q or \bar{q}
- final-state leptons with both charges
- similar for *t*–channel gluino in $qq
 ightarrow { ilde q} { ilde q}$
- \Rightarrow like-sign dileptons from gluinos

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Supersymmetric signatures

New physics at the LHC

- (1) possible discovery signals for new physics
- (2) measurements masses, cross sections, decays
- (3) parameter studies weak-scale Lagrangian

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins '

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Supersymmetric signatures

New physics at the LHC

- (1) possible discovery signals for new physics
- (2) measurements masses, cross sections, decays
- (3) parameter studies weak-scale Lagrangian
- \Rightarrow approach independent of new physics model

Some SUSY signals at LHC

- like–sign dileptons: $pp
 ightarrow { ilde g}{ ilde g}$
- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- tri-leptons: $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$

$$[\tilde{\chi}^0_2 \rightarrow \tilde{\ell} \bar{\ell} \rightarrow \tilde{\chi}^0_1 \ell \bar{\ell}; \tilde{\chi}^-_1 \rightarrow \tilde{\chi}^0_1 \ell \bar{\nu}]$$

- ⇒ inclusive: similar to Tevatron
- \Rightarrow exclusive: enough events for studies

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals

Masses

- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Masses and cascade decays

Spectra from cascade decays

- tough: $(\sigma BR)_1/(\sigma BR)_2$ [SFitter: focus point]
- $\ {\rm decay} \ {\tilde g} \to {\tilde b} {\bar b} \to {\tilde \chi}^0_2 b {\bar b} \to \mu^+ \mu^- b {\bar b} {\tilde \chi}^0_1 \quad {\rm [better \ not \ via \ Z \ or \ to \ \tau]}$
- thresholds & edges $m_{\ell\ell}^2 < \frac{m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2}{m_{\pi}} \, \frac{m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2}{m_{\pi}}$
- ⇒ new-physics spectrum from cascade decays [mass differences with smaller errors]

Tilman Plehn

Why?

Masses

Masses and cascade decays

Spectra from cascade decays

- tough: $(\sigma BR)_1/(\sigma BR)_2$ [SFitter: focus point]
- decay $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$ [better not via Z or to τ]
- large cross sections [more than 100 pb means 3 × 10⁷ events]
- $m_{\ell\ell}^2 < rac{m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2}{m_{\tilde{z}}} \; rac{m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$ - thresholds & edges
- ⇒ new-physics spectrum from cascade decays [mass differences with smaller errors]

	measurement	nominal	stat.	LES	JES	theo.
m_h m_t $m_t = m_t$		108.99 171.40 102.45	0.01 0.01	0.25	1.0	2.0
$m_{\tilde{l}_L} = m_{\chi_1^0}$ $m_{\tilde{g}} = m_{\chi_1^0}$		511.57	2.3	0.1	6.0	18.3
$m_{\tilde{q}_R} - m_{\chi_1^0}$		446.62	10.0		4.3	16.3
$m_{\tilde{g}} - m_{\tilde{b}_1}$		88.94	1.5		1.0	24.0
$m_{\tilde{g}} - m_{\tilde{b}_2}$		62.96	2.5		0.7	24.5
$m_{\parallel}^{\text{max}}$:	three-particle edge($\chi_2^0, \tilde{l}_R, \chi_1^0$)	80.94	0.042	0.08		2.4
m ^{max} :	three-particle edge $(\tilde{q}_L, \chi_2^0, \chi_1^0)$	449.32	1.4		4.3	15.2
mlow:	three-particle edge($\tilde{q}_L, \chi^0_2, \tilde{l}_R$)	326.72	1.3		3.0	13.2
$m_{\parallel}^{\max}(\chi_{4}^{0})$:	three-particle edge $(\chi_4^0, \tilde{l}_R, \chi_1^0)$	254.29	3.3	0.3		4.1
$m_{\tau \tau}^{\max}$:	three-particle edge $(\chi_2^0, \tilde{\tau}_1, \chi_1^0)$	83.27	5.0		0.8	2.1
m ^{high} :	four-particle edge($\tilde{q}_L, \chi_2^0, \tilde{l}_R, \chi_1^0$)	390.28	1.4		3.8	13.9
m ^{thres} :	threshold($\tilde{q}_L, \chi^0_2, \tilde{l}_R, \dot{h}i^0_1$)	216.22	2.3		2.0	8.7
m ^{thres} :	threshold($\tilde{b}_1, \chi^0_2, \tilde{l}_B, \dot{h}l_1^0$)	198.63	5.1		1.8	8.0

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Masses and cascade decays

Spectra from cascade decays

- tough: $(\sigma BR)_1/(\sigma BR)_2$ [SFitter: focus point]
- $\ {\rm decay} \ {\tilde g} \to {\tilde b} {\bar b} \to {\tilde \chi}^0_2 b {\bar b} \to \mu^+ \mu^- b {\bar b} {\tilde \chi}^0_1 \quad {\rm [better \ not \ via \ Z \ or \ to \ \tau]}$
- thresholds & edges $m_{\ell\ell\ell}^2 < \frac{m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2}{m_{\tilde{\tau}}} \frac{m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics spectrum from cascade decays [mass differences with smaller errors]

Gluino mass from kinematic endpoints

- all decay jets b-tagged [otherwise dead by QCD]
- most of time: cascade assignments correct
- gluino mass to $\sim 1\%$
- \Rightarrow what else from cascades?

Tilman Plehn

Why?

Supersymmetry

LHC Signal

Masses

Spins 1

Jets

Spins 2

Parameter

Large dimensions

Warped dimensions

Spins and cascade decays

Spin from angular distributions

- model-independent spin determination unlikely [new physics is hypothesis testing]
- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- $\Rightarrow\,$ straw-man model where 'squark' is a fermion: universal extra dimensions

[spectra degenerate — ignore; cross section larger — ignore; higher K states — ignore; Higgs sector — ignore]

Tilman Plehn

Why?

Supersymmetry

LHC Signa

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Spins and cascade decays

Spin from angular distributions

- model-independent spin determination unlikely [new physics is hypothesis testing]
- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where 'squark' is a fermion: universal extra dimensions [spectra degenerate – ignore; cross section larger – ignore; higher K states – ignore; Higgs sector – ignore]

Squark cascade $\tilde{q}_L \rightarrow q \tilde{\chi}_2^0 \rightarrow q \ell \tilde{\ell} \rightarrow q \ell \bar{\ell} \tilde{\chi}_1^0$

- compare with first KK q, Z and ℓ [near/far lepton?]
- polarization: 1: $(q_L, \ell_L^-, \ell_L^+)$ 2: $(q_L, \ell_L^+, \ell_L^-) = (q_L, \ell_R^-, \ell_R^+) = (\bar{q}_L, \ell_L^-, \ell_L^+)$
- distribution of angle θ between q and ℓ : $dP_{1,2}^{SUSY}/d\cos\theta$
- mass variable: $\hat{m} = m_{ql}/m_{ql}^{max}$
- UED and SUSY distributions [SPS1a spectrum]

$$\frac{dP_1^{\text{SUSY}}}{d\hat{m}} = 4\hat{m}^3$$
$$\frac{dP_1^{\text{DED}}}{d\hat{m}} = 1.213\,\hat{m} + 3.108\,\hat{m}^3 - 2.310\,\hat{m}^5$$

$$\frac{dP_2^{\text{SUSY}}}{d\hat{m}} = 4\hat{m} \left(1 - \hat{m}^2\right)$$
$$\frac{dP_2^{\text{UED}}}{d\hat{m}} = 2.020 \,\hat{m} + 1.493 \,\hat{m}^3 - 2.310 \,\hat{m}^5$$

Tilman Plehn

Why?

- Supersymmetry
- LHC Signa
- Masses

Spins 1

- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Spins and cascade decays

Spin from angular distributions

- model-independent spin determination unlikely [new physics is hypothesis testing]
- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where 'squark' is a fermion: universal extra dimensions [spectra degenerate – ignore; cross section larger – ignore; higher K states – ignore; Higgs sector – ignore]

Squark cascade
$$ilde q_L o q ilde \chi_2^0 o q \ell ilde \ell o q \ell ar \ell ilde \chi_1^0$$

- compare with first KK q, Z and ℓ [near/far lepton?]
- mass variable: $\hat{m} = m_{ql}/m_{ql}^{max}$
- typically largest rate $pp
 ightarrow { ilde q} { ilde q} { ilde q}$
- production asymmetry $\tilde{q} : \tilde{q}^* \sim 2 : 1$ $\Rightarrow \mathcal{A} = [\sigma(j\ell^+) - \sigma(j\ell^-)]/[\sigma(j\ell^+) + \sigma(j\ell^-)]$

Masses or spin or both?

- masses from kinematic endpoints [use m_{ℓj}, m_{ℓℓ}, m_{jℓℓ}...]
- spins from distributions in between [endpoints identical in SUSY and UED]

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Spins and cascade decays

Back to gluinos as proof of SUSY-QCD

- loop hole: like-sign dileptons from heavy gluon
- show gluino a fermion
- \Rightarrow compare with usual UED straw-man hypothesis

Tilman Plehn

Why?

- Supersymmetry
- LHC Signa
- Spins 1
- opin
- . . .
- Paramoto
- Large dimensions
- Warped dimensions

Spins and cascade decays

Back to gluinos as proof of SUSY-QCD

- loop hole: like-sign dileptons from heavy gluon
- show gluino a fermion
- \Rightarrow compare with usual UED straw-man hypothesis

Gluino-bottom cascade

- decay chain like for gluino mass
- compare with first KK g, b, Z, ℓ, γ
- replace initial-state asymmetry by b vs. \bar{b}
- independent of production channels
- asymmetry to write down: $\mathcal{A} = [\sigma(b\ell^+) - \sigma(b\ell^-)] / [\sigma(b\ell^+) + \sigma(b\ell^-)]$

[still visible after cuts and smearing]

- detector/machine upgrade? [we are so ignorant!]

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses

Spins 1

- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Spins and cascade decays

Back to gluinos as proof of SUSY-QCD

- loop hole: like-sign dileptons from heavy gluon
- show gluino a fermion
- \Rightarrow compare with usual UED straw-man hypothesis

Gluino-bottom cascade

- interchange $\tilde{\ell}_{LR}$ in cascade
- test of lepton-ino couplings
- purely hadronic ϕ_{bb} [if asymmetry not possible]
- independent of weak decays
- sensitive to gluino/KK-gluon boost
- \Rightarrow gluino from cascade and like-sign dileptons

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1

Jets

- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

New physics and jets

Squarks and gluinos always with many jets

- cascade studies sensitive to jet simulation?
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- compared with Pythia shower [recent tune!]
- hard scale μ_F huge for SUSY

⇒ QCD not a problem for new–physics seaches

σ [pb]	tt ₆₀₀	ĝĝ	ũLĝ
σ_{0i}	1.30	4.83	5.65
σli	0.73	2.89	2.74
σ _{2j}	0.26	1.09	0.85

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Spins and jets

More hypothesis testing: spin of LSP [no talk without WBF in Karlsruhe]

- Majorana LSP with like-sign charginos?
- hypotheses: like–sign charginos (SUSY) like–sign scalars (scalar dark matter model) like–sign vector boson (like litte Higgs)
- stable for simplicity chargino kinematics not used [SM backgrounds]
- WBF signal: two key distributions $\Delta \phi_{jj}$, $p_{T,j}$ [like $H \rightarrow ZZ \rightarrow 4\mu$ or WBF-Higgs]

⇒ long shot, but not swamped by SUSY-QCD

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameter

Large dimensions

Warped dimensions

Spins and jets

Like-sign scalars instead

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2}$$

 \Rightarrow scalars identified by softer $p_{T,j}$

Tilman Plehn

Why?

Supersymmetry

- LHC Signals
- Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Spins and jets

Like-sign scalars instead

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2} \qquad P_L(x, p_T) \sim rac{(1-x)^2}{x} \; rac{m_W^2}{p_T^4}$$

 \Rightarrow scalars identified by softer $p_{T,j}$

Like-sign vectors instead

- alternative hypothesis like little Higgs
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors identified by peaked $\Delta \phi_{jj}$

Tilman Plehn

Why?

Supersymmetry

- LHC Signals
- Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Spins and jets

Like-sign scalars instead

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2} \qquad P_L(x,p_T) \sim rac{(1-x)^2}{x} \; rac{m_W^2}{p_T^4}$$

 \Rightarrow scalars identified by softer $p_{T,j}$

Like-sign vectors instead

- alternative hypothesis like little Higgs
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors identified by peaked $\Delta \phi_{ii}$

Heavy fermions in little-Higgs models

- not part of the naive set of WBF diagrams
- huge effect on $p_{T,j}$ [careful with alternative hypotheses]
- \Rightarrow spin-effects visible in WBF signatures

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Underlying parameters

From kinematics to weak-scale parameters

- parameters: weak-scale Lagrangian
- measurements: LHC edges, $(\sigma \cdot BR),...$

flavor, dark matter, electroweak constraints,...

- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum?
 problem in fit: domain walls, no global maximum?
 problem in interpretation: bad observables, secondary maxima?

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2

Parameters

- Large dimensions
- Warped dimensions

Underlying parameters

From kinematics to weak-scale parameters

- parameters: weak-scale Lagrangian
- measurements: LHC edges, $(\sigma \cdot BR),...$

flavor, dark matter, electroweak constraints,...

- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum?
 problem in fit: domain walls, no global maximum?
 problem in interpretation: bad observables, secondary maxima?

First and historic go at problem

- ask a friend how SUSY is broken \Rightarrow mSUGRA or CMSSM
- fit $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu), y_t, \dots$
- no problem, include indirect constraints
- \Rightarrow probability map as of today
- \Rightarrow best fit from LHC/ILC measurements

	SPS1a	ΔLHC	ΔLHC	ΔILC	∆LHC+ILC
		masses	edges		
mo	100	3.9	1.2	0.09	0.08
$m_{1/2}$	250	1.7	1.0	0.13	0.11
$\tan \beta$	10	1.1	0.9	0.12	0.12
A ₀	-100	33	20	4.8	4.3

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2

Parameters

- Large dimensions
- Warped dimensions

Underlying parameters

From kinematics to weak-scale parameters

- parameters: weak-scale Lagrangian
- measurements: LHC edges, $(\sigma \cdot BR),...$

flavor, dark matter, electroweak constraints,...

- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

The real thing: probability maps of new physics

- fully exclusive likelihood map p(d|m) over m [hard part]
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [Cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor]
- LHC problem: poorly constrained directions [e.g. endpoints or dark matter vs rates]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local maxima in p(d|m)
 - (3) Bayesian-frequentist dance to reduce dimensions

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Underlying parameters

From kinematics to weak-scale parameters

- parameters: weak-scale Lagrangian
- measurements: LHC edges, $(\sigma \cdot BR),...$

flavor, dark matter, electroweak constraints,...

- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

MSUGRA as of today [Bayesian or frequentist?]

- 'Which is the most likely parameter point?'
- 'How does dark matter annihilate/couple?'

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2

Parameters

Large dimensions Warped dimensions

MSUGRA map from simulated LHC data [endpoints with free yt]

- weighted Markov chains: several times faster

Underlying parameters

$$P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^{N}1/p}$$

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- clear maximum, but strong correlation e.g. of A_0 and y_t [including all errors]

200						1	00000	χ^2	<i>m</i> 0	$m_{1/2}$	$\tan \beta$	A ₀	μ	mt
190 É 180							0000 000 00 0	0.3e-04 27.42 54.12 70.99	100.0 99.7 107.2 108.5	250.0 251.6 243.4 246.9	10.0 11.7 13.3 13.9	-99.9 848.9 -97.4 26.4	+ + -	171.4 181.6 171.1 173.6
170 160					ġ.			88.53	107.7	245.9	12.9	802.7	-	182.7
-1	000 -500	0	500 A ₀	1000	1500	2000								

 \Rightarrow correlations and secondary maxima significant

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2

Parameters

Large dimensions

Warped dimensions

Underlying parameters

MSUGRA map from simulated LHC data [endpoints with free yt]

- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- clear maximum, but strong correlation e.g. of A₀ and y_t [including all errors]
- ⇒ correlations and secondary maxima significant

MSSM map from LHC data

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- e.g. three neutralinos, six solutions [profile likelihoods]

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Underlying parameters

MSUGRA map from simulated LHC data [endpoints with free yt]

- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- clear maximum, but strong correlation e.g. of A_0 and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC data

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- e.g. three neutralinos, six solutions [left: Bayesian right: likelihood]

 \Rightarrow no best approach to BSM statistics

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2

Parameters

Large dimensions

Warped dimensions

Underlying parameters

MSUGRA map from simulated LHC data [endpoints with free yt]

- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- clear maximum, but strong correlation e.g. of A_0 and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC data

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- e.g. three neutralinos, six solutions
- \Rightarrow no best approach to BSM statistics

Theorists' goal

- unification and supersymmetry
- test mass unification with errors
- properly: RGE running bottom-up
- ⇒ infer models from weak scale instead of believing

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2

Parameters

Large dimensions Warped dimensions

New physics in the LHC era

Supersymmetry one well-studied example for BSM physics

- inclusive signatures from Tevatron
- exclusive analysis only at LHC
- mass and spin measurements from cascade decays?
- spin measurements from WBF signatures?
- parameter extraction through probability maps!

BSM theory in the LHC era

- identify interesting TeV-scale models
- provide well-defined hypotheses to test
- develop search/test strategies
- implement in Monte-Carlo codes
- understand backgrounds

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Large extra dimensions

Remember the hierarchy problem

- fundamental scalars cannot deal with a high scale in theory
- weakness of gravitational interaction means large Planck scale $G_N=1/(16\pi M_{\rm Planck})^2$
- \Rightarrow solution: there is another reason why we see a huge M_{Planck}

Large extra dimensions (ADD)

- Einstein-Hilbert action for fundamental Planck scale $S = -\frac{1}{2} \int d^4x \sqrt{|g|} M_*^2 R \rightarrow -\frac{1}{2} \int d^{4+n}x \sqrt{|g|} M_*^{2+n} R$
- compactify additional dimensions on torus

$$S = -\frac{1}{2} \int d^{4+n} x \sqrt{|g|} M_*^{2+n} R = -\frac{1}{2} (2\pi r)^n \int d^4 x \sqrt{|g|} M_*^{2+n} R$$

- match the two theories on our brane [also: match to measurements]

$$-\frac{1}{2}(2\pi r)^n \int d^4x \sqrt{|g|} \, M_*^{2+n} \, R \equiv -\frac{1}{2} \int d^4x \sqrt{|g|} \, M_{\text{Planck}}^2 \, R$$

 \Rightarrow express the 4D Planck scale in terms of fundamental Planck scale

$$M_{\rm Planck} = M_* (2\pi r M_*)^{n/2}$$

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Large extra dimensions

Remember the hierarchy problem

- fundamental scalars cannot deal with a high scale in theory
- weakness of gravitational interaction means large Planck scale $G_N=1/(16\pi M_{\rm Planck})^2$
- \Rightarrow solution: there is another reason why we see a huge M_{Planck}

Numbers to make it work

- wanted $rM_* \gg 1$
- constraints from gravity tests above $\mathcal{O}(mm)$
- $-M_* = 1 \text{ TeV} \ll M_{\text{Planck}}$ fine for $n \gtrsim 2$

n	r
1	10 ¹² m
2	10 ⁻³ m
3	10 ⁻⁸ m
6	10 ⁻¹¹ m

 \Rightarrow signatures of strong gravitation in extra dimension?

Tilman Plehn

Why?

- Supersymmetry
- LHC Signal
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Large extra dimensions

Only gravitons in extra dimensions

- expand the metric in (4 + n) dimensions [graviton field h]

$$ds^{2} = g_{MN}^{(4+n)} dx^{M} dx^{N} = \left(\eta_{MN} + \frac{1}{M_{*}^{n/2+1}} h_{MN}\right) dx^{M} dx^{N}$$

- include matter into Einstein's equation

$$R_{AB} - \frac{1}{2+n}g_{AB}R = -\frac{1}{M_*^{2+n}} \begin{pmatrix} T_{\mu\nu}(x)\,\delta^{(n)}(y) & 0\\ 0 & 0 \end{pmatrix}$$

- Fourier transformation of extra dimensions [KK excitations for periodic boundary conditions]

$$b_{AB}(x;y) = \sum_{m_1=-\infty}^{\infty} \cdots \sum_{m_j=-\infty}^{\infty} \frac{h_{AB}^{(m)}(x)}{\sqrt{(2\pi r)^n}} e^{j \frac{m_j y_j}{r}}$$

- only the interacting (tensor) graviton $[h_{AB} \rightarrow G_{\mu\nu}, QCD \text{ massless}]$

$$(\Box + m_k^2) \ G_{\mu\nu}^{(k)} = \frac{1}{M_{\text{Planck}}} \left[-T_{\mu\nu} + \left(\frac{\partial_{\mu}\partial_{\nu}}{\hat{m}^2} + \eta_{\mu\nu} \right) \frac{T_{\lambda}^{\lambda}}{3} \right] = \frac{-T_{\mu\nu}}{M_{\text{Planck}}}$$

KK mass splitting [M_{*} = 1 TeV]

$$\delta m \sim \frac{1}{r} = 2\pi M_* \left(\frac{M_*}{M_{\text{Planck}}}\right)^{2/n} = \begin{cases} 0.003 \text{ eV} & (n=2)\\ 0.1 \text{ MeV} & (n=4)\\ 0.05 \text{ GeV} & (n=6) \end{cases}$$

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters

Large dimensions

Warped dimensions

Large extra dimensions

Gravitons for LHC phenomenologists

- tower of KK tensor gravitons $G^{(k)}_{\mu\nu}$ with mass m_k
- mass splitting $\delta m \ll {\rm GeV}$ [below mass resolution]
- universal couplings to massless SM particles via $-T_{\mu\nu}/M_{Planck}$

$$f(k_1) - f(k_2) - G_{\mu\nu}$$
: $-\frac{i}{4M_{\text{Planck}}} (W_{\mu\nu} + W_{\nu\mu})$ with $W_{\mu\nu} = (k_1 + k_2)_{\mu} \gamma_{\nu}$

 \Rightarrow KK gravitons light and weakly coupled

Hope for collider searches

- real radiation of continuous KK tower $[dm/d|k| = 1/r; (d\sigma) \propto 1/M_{\text{Planck}}^2]$ $d\sigma^{\text{tower}} = (d\sigma) \int dm \, S_{\delta-1} m^{n-1} r^n = (d\sigma) \int dm \, \frac{S_{\delta-1} \, m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$
- higher-dimensional operator from virtual graviton exchange [s-channel in DY]

$$\mathcal{A}=rac{1}{M_{ ext{Planck}}^2}T_{\mu
u}T^{\mu
u}rac{1}{s-m_{ ext{KK}}^2}
ightarrow rac{S_{\delta-1}}{2}rac{\Lambda^{n-2}}{M_*^{n+2}}$$

UV completion needed to get rid of A dependence

 $\Rightarrow 1/M_*^2$ interactions after integration over KK tower

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameter

Large dimensions

Warped dimensions

UV completion: renormalization flow of gravity [strings also work]

- dimensionless coupling $g(\mu)=G(\mu)\mu^{2+n}=G_0Z_G^{-1}(\mu)\mu^{2+n}$
- UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_{G} \propto g$]

 $\mu \frac{\partial}{\partial \mu} g(\mu) = (2 + n + \eta(g)) g(\mu) = 0$ for $g \neq 0$ $\eta(g) = -2 - n$

- asymptotic safety $G(\mu) \sim Z_G^{-1} \sim \mu^{-(2+n)}
 ightarrow 0$
- ⇒ gravity weak enough for well-defined predictions?

Graviton propagator

Large extra dimensions

- iterative approach: start with anomalous dimension [similar to QCD analyses]
- UV: dressed scalar propagator $[1/(Z_G(|p|) p^2) \sim 1/p^{4+n}]$

Tilman Plehn

Why?

- Supersymmetry
- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions
- Warped dimensions

Warped extra dimensions

Alternative Solution

- try one extra dimension, but not flat [TeV brane at y = b]

$$ds^{2} = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^{2} \quad \Leftrightarrow \quad g_{AB} = \begin{pmatrix} e^{-2k|y|}\eta_{\mu\nu} & 0\\ 0 & \eta_{jk} \end{pmatrix}$$

- integration measure in our usual Lagrangian $d^4 \tilde{x} e^{-4kb}, \tilde{g}_{\mu\nu} = \eta_{\mu\nu}$ $S = \int dy \delta(y) d^4 \tilde{x} e^{-4kb} \mathcal{L} = \int d^4 \tilde{x} e^{-4kb} \left[|D_{\mu}H|^2 - \lambda (|H|^2 - v^2)^2 + ... \right]$
- write effecive 4D theory on TeV brane scaling all fields
 - $$\begin{split} \tilde{H} &= e^{-kb}H & \text{scalars} \\ \tilde{A}_{\mu} &= e^{-kb}A_{\mu} & \text{or } \tilde{D}_{\mu} &= e^{-kb}D_{\mu} \\ \tilde{\Psi} &= e^{-3kb/2}\Psi & \text{fermions} \\ \tilde{m} &= e^{-kb}m \\ \tilde{\nu} &= e^{-kb}\nu \end{split}$$
- assume kb \sim 35 and large M* \sim k \sim M_{\rm Planck} \sim v \sim ...
- \Rightarrow mass scale on TeV brane shifted

$$\tilde{v} \sim e^{-kb} M_{\mathrm{Planck}} \lesssim 1 \ \mathrm{TeV}$$

Tilman Plehn

Why?

Supersymmetry

LHC Signal

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions

Warped extra dimensions

Gravitons in one warped extra dimension

re-write the metric including 4D graviton

$$ds^{2} = \frac{1}{(1+kz)^{2}} \left(\eta_{\mu\nu} + h_{\mu\nu}(x,z) \, dx^{\mu} dx^{\nu} - dz^{2} \right)$$

- solve Einstein's equations separating variables $\tilde{h}_{\mu\nu}(x,z) = \hat{h}_{\mu\nu}(x)\Phi(z)$ $\partial_{\mu}\partial^{\mu}\hat{h}_{\mu\nu} = m^{2}\hat{h}_{\mu\nu}$ $-\partial_{z}^{2}\Phi + \frac{15}{4}\frac{k^{2}}{(kz+1)^{2}}\Phi = m^{2}\Phi$

⇒ masses given by roots of Bessel functions $J_1(x_j) = 0$

$$m_j = x_j \ k \ e^{-kb} \sim \text{TeV}$$
 $x_j = 3.8, 7.0, 10.2, 16.5, ...$

- couplings via wave-function overlap in Z [approximately, neglect Bessel functions]

$$\frac{\Phi(z)\big|_{\text{TeV}}}{\Phi(z)\big|_{\text{Planck}}} \sim \frac{\sqrt{kz+1}\big|_{\text{Planck}}}{\sqrt{kz+1}\big|_{\text{TeV}}} \sim \frac{1}{\sqrt{e^{ky}}\big|_{\text{TeV}}} \sim \frac{1}{e^{kb/2}}$$

 \Rightarrow universal couplings except for zero mode graviton

$$\mathcal{L} \sim rac{1}{M_{ ext{Planck}}} T^{\mu
u} h^{(0)}_{\mu
u} + rac{1}{M_{ ext{Planck}}} T^{\mu
u} \sum h^{(m)}_{\mu
u}$$

 \Rightarrow TeV-scale resonances to e.g. leptons, revisited...

Tilman Plehn

Why?

Supersymmetry

- LHC Signals
- Masses
- Spins 1
- Jets
- Spins 2
- Parameters
- Large dimensions

Warped dimensions

Extra Dimensions

Extra dimensions alternative scenario for LHC

- interesting new model
- signal: missing energy and narrow graviton towers (ADD) TeV-spaced resonances (RS)
- no challenge for LHC trigger
- identification of model parameters?

Tilman Plehn

Why?

Supersymmetry

LHC Signals

Masses

Spins 1

Jets

Spins 2

Parameters

Large dimensions

Warped dimensions