Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

New Physics at the LHC

Tilman Plehn

University of Edinburgh

Oxford, 11/2007

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Outline

TeV-scale new physics

TeV-scale supersymmetry

Masses from cascades

Underlying parameters

Spin from cascades

Spins from jets

Large extra dimensions

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Standard–Model effective theory

Remember the Standard Model?

- gauge theory with local $\textit{SU}(3) \times \textit{SU}(2) \times \textit{U}(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism with v = 246 GeV]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector
- renormalizable Lagrangian [no 1/masses]
- only missing piece: Higgs [fundamental? minimal? mass unknown]
- \Rightarrow defined by particle content, interactions, renormalizability

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Standard–Model effective theory

Remember the Standard Model?

- gauge theory with local $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism with v = 246 GeV]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector
- renormalizable Lagrangian [no 1/masses]
- only missing piece: Higgs [fundamental? minimal? mass unknown]
- \Rightarrow defined by particle content, interactions, renormalizability

How complete experimentally?

- dark matter? [solid evidence! for weak-scale new physics?]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?]
- matter-antimatter asymmetry? [universe mostly matter]
- gravity missing? [mostly negligible but definitely non-renormalizable]
- \Rightarrow all philosophy who the hell cares???

Tilman Plehn

New physics

- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

TeV-scale new physics

Theorists care — when looking at data which...

...indicates a light Higgs [e-w precision data] ...indicates higher-scale physics [at least dark matter]

- problem of light Higgs: mass driven to cutoff of effective Standard Model: $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) \Lambda^2$
- easy solution: counter term to cancel loops $\ \Rightarrow \ artificial,$ unmotivated, ugly
- or new physics at TeV scale: supersymmetry [still my favorite] extra dimensions little Higgs composite Higgs, TopColor YourFavoriteNewPhysics...

 $\Rightarrow \ \text{beautiful concepts, but problematic in reality} \quad \ [\text{data seriously in the way}]$

Tilman Plehn

New physics

- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

TeV-scale new physics

Theorists care — when looking at data which...

- ...indicates a light Higgs [e-w precision data] ...indicates higher-scale physics [at least dark matter]
- problem of light Higgs: mass driven to cutoff of effective Standard Model: $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \Lambda^2$
- easy solution: counter term to cancel loops $\ \Rightarrow \ artificial,$ unmotivated, ugly
- or new physics at TeV scale: supersymmetry [still my favorite] extra dimensions little Higgs composite Higgs, TopColor YourFavoriteNewPhysics...
- ⇒ beautiful concepts, but problematic in reality [data seriously in the way]
- discrete symmetry good for e-w precision constraints, proton decay
- stable lightest new particle: dark matter [correct relic density]
- \Rightarrow TeV-scale models in baroque state

Tilman Plehn

New physics

- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

TeV-scale new physics

Theorists care — when looking at data which...

- ...indicates a light Higgs [e-w precision data] ...indicates higher-scale physics [at least dark matter]
- problem of light Higgs: mass driven to cutoff of effective Standard Model: $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \ \Lambda^2$
- easy solution: counter term to cancel loops $\ \Rightarrow \ artificial,$ unmotivated, ugly
- or new physics at TeV scale: supersymmetry [still my favorite] extra dimensions little Higgs composite Higgs, TopColor YourFavoriteNewPhysics...
- ⇒ beautiful concepts, but problematic in reality [data seriously in the way]
- discrete symmetry good for e-w precision constraints, proton decay
- stable lightest new particle: dark matter [correct relic density]
- \Rightarrow TeV–scale models in baroque state

Alternative motivations for TeV-scale new physics

- gauge coupling unification almost perfect [ask Graham]
- Uli Baur's rule: new energy scales bring new physics
- field looking like solid-state physics otherwise ...

Tilman Plehn

New physics

Supersymmetry

- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

TeV-scale supersymmetry

Supersymmetry

- give each Standard–Model particle a partner [with different spin, including strong interactions]
- SUSY obviously broken by masses [soft breaking, mechanism unknown]
- sooo not an LHC paradigm: maximally blind mediation [MSUGRA, CMSSM]

scalars — m_0 fermions — $m_{1/2}$ tri-scalar — A_0 Higgs sector — sign(μ), tan β

- assume dark matter, stable lightest partner
- \Rightarrow measure BSM spectrum with missing energy at LHC

Tilman Plehn

New physics

Supersymmetry

- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

TeV-scale supersymmetry

Supersymmetry

- give each Standard–Model particle a partner [with different spin, including strong interactions]
- SUSY obviously broken by masses [soft breaking, mechanism unknown]
- sooo not an LHC paradigm: maximally blind mediation [MSUGRA, CMSSM]

scalars — m_0 fermions — $m_{1/2}$ tri-scalar — A_0 Higgs sector — sign(μ), tan β

- assume dark matter, stable lightest partner
- \Rightarrow measure BSM spectrum with missing energy at LHC

LHC searches: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to *t* and *b*?
 - \rightarrow five Higgs bosons
- SUSY-Higgs alone interesting...
 - ...but not conclusive
 - ...and another talk
- \Rightarrow list of SUSY partners

		spin	d.o.f.	
fermion fL, fR		1/2	1+1	
\rightarrow sfermion \tilde{f}_L, \tilde{f}_R		0	1+1	
gluon G_{μ}		1	n-2	
\rightarrow gluino \tilde{g}		1/2	2	Majorana
gauge bosons γ, Z		1	2+3	
Higgs bosons h ⁰ , H ⁰	°, A ⁰	0	3	
\rightarrow neutralinos $\tilde{\chi}_{i}^{0}$		1/2	4 · 2	LSP
gauge bosons W [±]		1	2 · 3	
Higgs bosons H^{\pm}		0	2	
\rightarrow charginos $\tilde{\chi}_i^{\pm}$		1/2	2 · 4	

Tilman Plehn

New physics

Supersymmetry

Masses

- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge, ask Alan]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [unavoidable: focus point]
- easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $ilde{g}
 ightarrow ilde{b} b
 ightarrow ilde{\chi}_2^0 b ar{b}
 ightarrow \mu^+ \mu^- b ar{b} ilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$

 \Rightarrow new-physics mass spectrum from cascade kinematics

Tilman Plehn

New physics

Supersymmetry

Masses

- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge, ask Alan]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [unavoidable: focus point]
- easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain ${ ilde g} o { ilde b} ar b o { ilde \chi}_2^0 b ar b o \mu^+ \mu^- b ar b { ilde \chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$

 \Rightarrow new-physics mass spectrum from cascade kinematics

Tilman Plehn

New physics

Supersymmetry

Masses

- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge, ask Alan]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [unavoidable: focus point]
- easier: cascade kinematics [107 ... 108 events]
- long chain ${ ilde g} o { ilde b} { ilde b} o { ilde \chi}_2^0 b { ilde b} o \mu^+ \mu^- b { ilde b} { ilde \chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

Gluino decay [Gjelsten, Miller, Osland]

- all decay jets b quarks [otherwise dead by QCD]
- no problem: off-shell effects [Catpiss: Hagiwara et al.]
- no problem: jet radiation

Tilman Plehn

New physics

Supersymmetry

Masses

- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge, ask Alan]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [unavoidable: focus point]
- easier: cascade kinematics [107 ... 108 events]
- long chain $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

Gluino decay [Gjelsten, Miller, Osland]

- all decay jets b quarks [otherwise dead by QCD]
- no problem: off-shell effects
- no problem: jet radiation
- gluino mass to $\sim 1\%$
- \Rightarrow but why physical masses?

Tilman Plehn

New physics

Supersymmetry

Masses

- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Squarks and gluinos always with many jets [Rainwater, TP, Skands]

- cascade studies sensitive to jet activity? [compare to Pythia shower]
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- hard scale μ_F huge for SUSY

New physics and jets

- obvious: $p_{T,i}$ spectra fine with jet radiation
- miracle: angular correlations better than 10%
- ⇒ QCD not a problem in new–physics signals [Jay's next paper]

σ [pb]	tī ₆₀₀	ĝĝ	ũĻĝ
σoi	1.30	4.83	5.65
σli	0.73	2.89	2.74
σ_{2i}	0.26	1.09	0.85

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian
- measurements: masses or edges,

branching fractions, rates,... [Prospino] flavor, dark matter, electroweak constraints,...

- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- fully exclusive likelihood map p(d|m) over m [hard part]
- LHC problem: remove pathetic directions [e.g. endpoints or dark matter vs rates]
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local maxima in p(d|m)
 - (3) Bayesian-frequentist dance to reduce dimensions

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian
- measurements: masses or edges,

branching fractions, rates,... [Prospino] flavor, dark matter, electroweak constraints,...

- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

MSUGRA as of today [Allanach, Cranmer, Lester, Weber]

- 'Which is the most likely parameter point?'
- 'How does dark matter annihilate/couple?'

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

Underlying parameters

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]

$$P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^{N}1/p}$$

 SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima

- strong correlation e.g. of A₀ and y_t [including all errors]

200							10000	⁰ χ ²	<i>m</i> 0	^m 1/2	$\tan \beta$	A ₀	μ	mt
190	199						10000	0.3e-04	100.0	250.0	10.0	-99.9	+	171.4
É 100							100	27.42 54.12	99.7 107.2	251.6	11.7	.97 4	+	181.6
- 160				- T			1	70.99	108.5	246.9	13.9	26.4		173.6
170								88.53	107.7	245.9	12.9	802.7	-	182.7
160														
-10	000 -500	0	500 A ₀	1000	1500	2000								

 \Rightarrow correlations and secondary maxima significant

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A₀ and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC

Underlying parameters

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- three neutralinos observed [profile likelihood]

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free yr]

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A₀ and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC

Underlying parameters

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- three neutralinos observed [left: Bayesian right: likelihood]

 \Rightarrow no best approach to BSM statistics

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A₀ and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC

Underlying parameters

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- \Rightarrow no best approach to BSM statistics

Theorists' goal [SFitter + Kneur]

- unification and supersymmetry
- test mass unification with errors [Cohen, Schmalz]
- properly: RGE running bottom-up
- \Rightarrow LHC: fundamental physics from weak scale

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters

Spin & casacades

- Spin & Jets
- Extra dimensions

Spin from cascades

What kind of mass term? [Barger,...; Barnett,...; Baer,...]

- gluino = strongly interacting Majorana fermion [Gregoire,...]
- first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- \Rightarrow like-sign dileptons in SUSY sample means gluino

ũ

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters

Spin & casacades

- Spin & Jets
- Extra dimensions

What kind of mass term? [Barger,...; Barnett,...; Baer,...]

- gluino = strongly interacting Majorana fermion
- first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- \Rightarrow like-sign dileptons in SUSY sample means gluino

New physics is hypothesis testing [Barr, Lester, Smillie, Webber]

- loop hole: 'gluino is Majorana if it is a fermion'
- gluino a fermion?

Spin from cascades

- assume gluino cascade observed
- model-independent analysis unlikely
- straw-man model where 'gluino' is a boson: universal extra dimensions
 [spectra degenerate ignore; cross section larger ignore; higher KK states ignore; Higgs sector ignore]
- \Rightarrow compare angular correlations

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters

Spin & casacades

- Spin & Jets
- Extra dimensions

Spin from cascades

What kind of mass term? [Barger,...; Barnett,...; Baer,...]

- first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- \Rightarrow like-sign dileptons in SUSY sample means gluino

Gluino-bottom cascade [Alves, Eboli, TP; like Cambridge squarks]

- decay chain from gluino mass [simulated for SUSY]
- compare SUSY with excited KK g, b, Z, ℓ, γ
- below edge: $m_{b\mu}/m_{b\mu}^{max} = \sin \theta/2$

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters

Spin & casacades

- Spin & Jets
- Extra dimensions

What kind of mass term? [Barger,...; Barnett,...; Baer,...]

- first jet (q or \bar{q}) fixes lepton charge

Spin from cascades

- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow ilde{q} ilde{q}$
- \Rightarrow like-sign dileptons in SUSY sample means gluino

Gluino-bottom cascade [Alves, Eboli, TP; like Cambridge squarks]

- decay chain from gluino mass [simulated for SUSY]
- compare SUSY with excited KK g, b, Z, ℓ, γ
- below edge: $m_{b\mu}/m_{b\mu}^{\rm max} = \sin \theta/2$
- better: asymmetry b vs. b [independent of production]

$$\mathcal{A}(m_{\mu b}) = \frac{\sigma(b\ell^+) - \sigma(b\ell^-)}{\sigma(b\ell^+) + \sigma(b\ell^-)}$$

- stable w.r.t production channels and cuts
- less cool: angle between b and \bar{b} [3-body decays: Csaki,...]
- ⇒ SUSY = gluino = fermionic like-sign dileptons

Tilman Plehn

- New physics

Spin & casacades

- Spin & Jets

Spin from cascades

What kind of mass term? [Barger,...; Barnett,...; Baer,...]

- first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: t-channel gluino in $pp \rightarrow \tilde{q}\tilde{q}$
- \Rightarrow like-sign dileptons in SUSY sample means gluino

Gluino-bottom cascade [Alves, Eboli, TP; like Cambridge squarks]

- decay chain from gluino mass [simulated for SUSY]
- compare SUSY with excited KK g, b, Z, ℓ , γ
- below edge: $m_{b\mu}/m_{b\mu}^{\rm max} = \sin\theta/2$
- better: asymmetry b vs. \overline{b} [independent of production]

$$\mathcal{A}(m_{\mu b}) = \frac{\sigma(b\ell^+) - \sigma(b\ell^-)}{\sigma(b\ell^+) + \sigma(b\ell^-)}$$

- stable w.r.t production channels and cuts
- less cool: angle between b and \bar{b} [3-body decays: Csaki,...]

 \Rightarrow SUSY = gluino = fermionic like-sign dileptons

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

More hypothesis testing: spin of LSP [Alwall, TP, Rainwater]

- Majorana LSP with like-sign charginos?

Spins from jets

- hypotheses: like-sign charginos (SUSY) like-sign scalars (scalar dark matter model) like-sign vector boson (like litte Higgs)
- u _____ d 2 W' 2 Z' X' X' X' X' X' X' X' X' X' X'

- stable for simplicity chargino kinematics not used [SM backgrounds]
- WBF signal: two key distributions $\Delta \phi_{jj}$, $p_{T,j}$ [like $H \rightarrow ZZ \rightarrow 4\mu$ or WBF-Higgs]
- ⇒ distinct WBF signal? [p_{T,j} ~ m_W, forward jets] visible over backgrounds? [SUSY-QCD backgrounds dominant]
- \Rightarrow long shot, but not swamped by SUSY-QCD

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Spins from jets

Like-sign scalars instead

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2}$$

 \Rightarrow scalars identified by softer $p_{T,j}$

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Spins from jets

Like-sign scalars instead

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim \frac{1+(1-x)^2}{2x} \frac{1}{p_T^2}$$
 $P_L(x,p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$

 \Rightarrow scalars identified by softer $p_{T,j}$

Like-sign vectors instead

- alternative hypothesis like little Higgs
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors identified by peaked $\Delta \phi_{jj}$

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Spins from jets

Like-sign scalars instead

- assume stable charged Higgs (type-II two-Higgs doublet model)
- H^+H^- same as simple heavy H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim \frac{1+(1-x)^2}{2x} \frac{1}{p_T^2}$$
 $P_L(x,p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$

 \Rightarrow scalars identified by softer $p_{T,j}$

Like-sign vectors instead

- alternative hypothesis like little Higgs
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors identified by peaked $\Delta \phi_{jj}$

Heavy fermions in little-Higgs models

- not part of the naive set of WBF diagrams
- huge effect on p_{T,j}
- \Rightarrow well–defined hypothesis mandatory

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions

Also solving the hierarchy problem [Arkani-Hamed, Dimopoulos, Dvali]

- weak gravity = large Planck scale $G_N \sim 1/M_{\rm Planck}^2~_{\rm [M_{\rm Planck}~\sim 10^{19}~GeV]}$

- Einstein-Hilbert action in 4 + *n* dimensions [on torus - periodic boundaries]

$$\int d^{4}x \sqrt{|g|} M_{\text{Planck}}^{2} R \to \int d^{4+n}x \sqrt{|g|} M_{*}^{2+n} R = (2\pi r)^{n} \int d^{4}x \sqrt{|g|} M_{*}^{2+n} R$$
$$M_{\text{Planck}} = M_{*} (2\pi r M_{*})^{n/2} \gg M_{*} \sim 1 \text{ TeV}$$

- to get numbers right: $r = 10^{12}, 10^{-3}, ...10^{-11}$ m for n = 1, 2, ...6
- ⇒ fundamental Planck scale at TeV

Kaluza-Klein gravitons

Large extra dimensions

- Fourier-transform extra dimensions [QCD massless] $(\Box + m_k^2) \ G_{\mu\nu}^{(k)} = -\frac{T_{\mu\nu}}{M_{\text{Planck}}} \qquad \delta m \sim \frac{1}{r} = 2\pi M_* \left(\frac{M_*}{M_{\text{Planck}}}\right)^{2/n} \lesssim 0.05 \text{ GeV}$
- graviton couplings to quarks and gluons

$$f(k_1) - f(k_2) - G_{\mu\nu}$$
: $-\frac{i}{4M_{\text{Planck}}} (W_{\mu\nu} + W_{\nu\mu})$ with $W_{\mu\nu} = (k_1 + k_2)_{\mu} \gamma_{\nu}$

 \Rightarrow single gravitons tightly spaced and coupled as $1/M_{\text{Planck}}$

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Large extra dimensions

Hope for collider searches

– real radiation of continuous KK tower $[dm/d|k| \sim 1/r]$

$$\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \; S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \; \frac{S_{n-1} \; m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$$

n-2

- higher-dimensional operator from virtual gravitons

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Large extra dimensions

Hope for collider searches

– real radiation of continuous KK tower $[dm/d|k| \sim 1/r]$

$$\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \; S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \; \frac{S_{n-1} \; m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$$

- higher-dimensional operator from virtual gravitons

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Graviton radiation at LHC [Giudice, Rattazzi, Wells]

- off single-jet production jets plus missing energy — like SUSY
- background $Z \rightarrow \nu \bar{\nu}$
- \Rightarrow no challenge at LHC

KK

-000000000

KK

-00000000

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Large extra dimensions

Hope for collider searches

– real radiation of continuous KK tower $[dm/d|k| \sim 1/r]$

$$\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \; S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \; \frac{S_{n-1} \; m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$$

- higher-dimensional operator from virtual gravitons

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \to \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

$$\frac{1}{M_*} \text{ coupling for KK tower}$$

Virtual gravitons at LHC

- s-channel $gg \rightarrow \mu^+ \mu^-$
- LHC rates (or reach) dependent on cut-off Λ
- effective theory not useful at LHC
- \Rightarrow UV completion necessary

[Antoniadis, Benakli, Laugier; Cullen, Perelstein, Peskin,...]

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Large extra dimensions

Hope for collider searches

– real radiation of continuous KK tower $[dm/d|k| \sim 1/r]$

$$\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \; S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \; \frac{S_{n-1} \; m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$$

- higher-dimensional operator from virtual gravitons

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Virtual gravitons at LHC

- s-channel $gg \rightarrow \mu^+\mu^-$
- LHC rates (or reach) dependent on cut-off Λ
- effective theory not useful at LHC
- \Rightarrow UV completion necessary

[Antoniadis, Benakli, Laugier; Cullen, Perelstein, Peskin,...]

KK

-000000000

KK

-00000000

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets
- Extra dimensions

Large extra dimensions

Renormalization flow of gravity [Reuter,...; Litim,...]

- dimensionless coupling $g(\mu)=G(\mu)\mu^{2+n}=G_0Z_G^{-1}(\mu)\mu^{2+n}$
- UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_G \propto g$] $\mu \frac{\partial}{\partial \mu} g(\mu) = (2 + n + \eta(g)) \ g(\mu) = 0$ for $g \neq 0$ $\eta(g) = -2 - n$
- asymptotic safety ${\it G}(\mu) \sim Z_G^{-1} \sim \mu^{-(2+n)}
 ightarrow 0$ [Weinberg]
- ⇒ gravity weak enough for LHC predictions?

Graviton propagator [Litim, TP; Hewett & Rizzo]

- iterative approach: start with anomalous dimension [similar to QCD analyses]
- UV: dressed scalar propagator $[1/(Z_G(|p|) p^2) \sim 1/p^{4+n}]$

Tilman Plehn

- New physics
- Supersymmetry
- Masses
- Parameters
- Spin & casacades
- Spin & Jets

Extra dimensions

New physics at the LHC

TeV-scale new physics

- know there is BSM physics [dark matter,...]
- trust solution of hierarchy problem
- explain dark matter

Theory/Phenomenology in the LHC era

- (1) look for solid new-physics signals [missing energy?]
- (2) measure weak-scale Lagrangian [highD parameter spaces?]
- (3) determine fundamental physics
 - test discrete new-physics properties
 - construct sensible new-physics hypotheses
 - avoid getting killed by QCD
- \Rightarrow LHC more than a discovery machine!

Tilman Plehn

New physics

Supersymmetry

Masses

Parameters

Spin & casacades

Spin & Jets

Extra dimensions