Tilman Plehn

Otalidala Model

Weak boson fusion

Top-associated

Higgs potential

riiggo potoritio

Statistics

Phenomenology 2: Higgs Searches

Tilman Plehn

MPI für Physik & University of Edinburgh

RAL School, Oxford, 9/2007

Outline

Standard-Model Higgs Sector

Weak boson fusion

Top-Higgs production

Higgs couplings

Higgs potential and self coupling

Spin and CP

Modern statistics

Standard Model Weak boson fusion

Standard-Model Higgs sector: 1

Theory of W, Z bosons

- start with SU(2) gauge theory [like QED with massless W, Z]
- include measured masses $\mathcal{L} \sim -m_{W,Z} A_{\mu} A^{\mu}$
- ⇒ not gauge invariant, not renormalizable, so not pretty, but try...

Unitarity and Higgs scalar

- test theory in WW → WW scattering
 - $ightarrow \mathcal{A} \propto G_F E^2$ like Fermi's theory, not unitary above 1.2 TeV [barely LHC energy]
 - → postulate additional scalar Higgs boson to conserve unitarity
 - \rightarrow fixed coupling $g_{WWH} \propto m_W$
- add fermions and test $WW \rightarrow f\bar{f}$
 - \rightarrow fixed coupling $g_{ffH} \propto m_f/m_W$
- test new theory in WW → WWH
- \rightarrow fixed coupling $g_{HHH} \propto m_H^2/m_W$
- final test: WW → HHH
 - \rightarrow fixed coupling $g_{HHHH} \propto m_H^2/m_W^2$
- ⇒ Higgs couplings non-negotiable

Tilman Plehn

Standard Model

Weak boson fusio

lop-associated

Higgs couplings

Higgs potentia

.

Statistics

Standard–Model Higgs sector: 2

Higgs potential

- remember Lagrangian invariant under $SU(2) \times U(1)$
- break symmetry through vacuum: SU(2) doublet with vev
- minimize Higgs potential $\Phi = (0, (v + H)/2)$ [v = 246 GeV known from W, Z masses]
- ⇒ first attempt: renormalizable Higgs potential [does all we want]

$$\mathcal{L}_{\mathrm{Higgs}} = |D_{\mu}\Phi|^2 - V$$

$$V = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \mathrm{const}$$

not the whole story with new scale Λ [Standard Model as effective theory]

$$V = \sum_{n=0}^{\infty} \frac{\lambda_n}{\Lambda^{2n}} \left(|\Phi|^2 - \frac{v^2}{2} \right)^{2+n}$$

 $\begin{array}{ll} \Rightarrow \mbox{ gauge-invariant dimension-6 Higgs operators } \mathcal{L}'_{Higgs} = \sum f_i/\Lambda^2 \ \mathcal{O}_i \\ \\ \mathcal{O}_{kin} & = & \frac{1}{2} \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi) \\ \\ \mathcal{O}_{pot} & = & -\frac{1}{3} (\Phi^{\dagger} \Phi)^3 \end{array}$

⇒ Higgs self couplings reflecting Higgs potential

Tilman Plehn

Standard Model

Weak boson fusion

Top-associated

niggs potential

CP properties

Statistic

Higgs production and decay: 1

Design Higgs searches for LHC

- (a) unitarity limit: $m_H <$ 1 TeV (b) electroweak precision tests: $m_H \lesssim$ 250 GeV
- production and decay of light Higgs

mm

Backgrounds

Tilman Plehn

Standard Model

Weak boson fusion

lop-associated

Higgs potential

riiggo potoritica

Statistics

Higgs production and decay: 1

Design Higgs searches for LHC

- (a) unitarity limit: $m_H < 1$ TeV (b) electroweak precision tests: $m_H \lesssim 250$ GeV
- production and decay of light Higgs

 $\begin{array}{ll} Production \ rates & \hbox{$[[luminosity 30-300 \ fb^{-1}]$} \end{array}$

Tilman Plehn

Standard Model

Weak boson fusion

Higgs production and decay: 1

Design Higgs searches for LHC

- (a) unitarity limit: $m_H < 1$ TeV

Branching fractions [up to 10⁶ events]

Higgs production and decay: 2

Gluon fusion

- heavy quark loop: aaH coupling
- effective operator $\mathcal{L} \sim g_{aaH}\,H\,G^{\mu
 u}G_{\mu
 u}/\Lambda$
- without any approximation [just compute top loop]

$$\frac{g_{ggH}}{\Lambda} \sim \frac{y_t^2 \alpha_s}{4\pi M_H^3} \left[1 + (1-\tau)f(\tau)\right]$$

with
$$\tau = \frac{4m_t^2}{M_H^2}$$
 and $f(\tau) = \begin{cases} \left[\sin^{-1}\sqrt{1/\tau}\right]^2 & \tau > 1\\ -\frac{1}{4}\left[\log\frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} - i\pi\right]^2 & \tau < 1 \end{cases}$

 \Rightarrow all we need to compute $gg \rightarrow H$ at Tevaton/LHC

Effective couplings

- compute heavy-top limit: $g_{aaH}/\Lambda \sim y_t^2 \alpha_s/m_t^3 = \alpha_s/m_t$
- attach more gluons: gggH, ggggH [QCD gauge invariance]
- attach more Higgs bosons [low-energy theorems]

link leading
$$g_{ggH^n}$$
 to gluon self energy: $F T_{\mu
u}$

$$F_{(n+1)H} = m_t^2 \partial (F_{nH}/m_t)/\partial m_t$$
 or $F_{ggH} = -F_{ggHHH} = F_{ggHHH} = \frac{2}{3} + \mathcal{O}(m_H^2/m_t^2)$

Higgs production and decay: 3

Some numbers behind it

- gluon-fusion production and $H \rightarrow ZZ \rightarrow 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- H → WW only slightly harder, but no mass peak

[above 150 GeV, angular correlation, off-shell still not clear]

- 6 million light Higgses in gluon fusion: $gg \rightarrow H \rightarrow \gamma \gamma$ [mass resolution $\Delta m_{\mu}/m_{\mu} \sim \Gamma/\sqrt{S} < 0.5\%$]
- backgrounds smaller in WW fusion: qq → qqH → qqWW [works off-shell down to $m_H < 120 \text{ GeV}$]
- light Higgs: $qq \rightarrow qqH \rightarrow qq\tau\tau$ [my favorite; will discuss later]
- more challenging channels: $qq \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ [also later]

$$aa \rightarrow t\bar{t}H \rightarrow t\bar{t}WW$$
 [likely to work]

$$gg
ightarrow t ar{t} H
ightarrow t ar{t} au au$$
 [yet unclear]

$$qar q' o WH o Wbar b$$
 [killer QCD backgrounds]

$$qq o qqH o qqbar{b}$$
 [no ATLAS trigger]

$$qq
ightarrow qqH
ightarrow qq\mu\mu$$
 [maybe later]

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

Top-associated

Higgs couplings

niggs potentia

CP properties

Statistics

Higgs production and decay: 3

Some numbers behind it

- gluon-fusion production and $H oup ZZ oup 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- H → WW only slightly harder, but no mass peak

[above 150 GeV, angular correlation, off-shell still not clear]

- 6 million light Higgses in gluon fusion: $gg \to H \to \gamma \gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{s} < 0.5\%$]
- backgrounds smaller in WW fusion: qq o qqH o qqWW [works off-shell down to $m_H <$ 120 GeV]
- light Higgs: qq o qqH o qq au au [my favorite; will discuss later]
- more challenging channels:

$$egin{align*} gg &
ightarrow tar{t}H
ightarrow tar{t}bar{b} & ext{[also later]} \ gg &
ightarrow tar{t}H
ightarrow tar{t}WW & ext{[likely to work]} \ gg &
ightarrow tar{t}H
ightarrow tar{t} au au & ext{[yet unclear]} \ \end{array}$$

qar q' o WH o Wbar b [killer QCD backgrounds]

$$qq
ightarrow qqH
ightarrow qqbar{b}$$
 [no ATLAS trigger] $qq
ightarrow qqH
ightarrow qq\mu\mu$ [maybe later]

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

Tilman Plehn

Standard Model
Weak boson fusion

Top-associated

Higgs couplings

niggs potential

Statistics

Higgs production and decay: 3

Some numbers behind it

- gluon-fusion production and $H\to ZZ\to 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- − H → WW only slightly harder, but no mass peak
 [above 150 GeV, angular correlation, off-shell still not clear]
- 6 million light Higgses in gluon fusion: $gg \to H \to \gamma \gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{s} < 0.5\%$]
- backgrounds smaller in WW fusion: qq o qqH o qqWW [works off-shell down to $m_H <$ 120 GeV]
- light Higgs: qq o qqH o qq au au [my favorite; will discuss later]
- more challenging channels:

$$\begin{array}{ll} gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b} & \text{[also later]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}WW & \text{[likely to work]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau & \text{[yet unclear]} \\ q\bar{q}' \rightarrow WH \rightarrow Wb\bar{b} & \text{[killer QCD backgrounds]} \\ qq \rightarrow qqH \rightarrow qqb\bar{b} & \text{[no ATLAS trigger]} \\ qq \rightarrow qqH \rightarrow qq\mu\mu & \text{[maybe later]} \end{array}$$

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

 $H_{SM} \rightarrow \gamma \gamma$

Weak boson fusion

Top-associated

niggs potential

CP properties

Statistics

Higgs production and decay: 3

Some numbers behind it

- gluon-fusion production and $H oup ZZ oup 4\mu$ no-brainer ['golden channel' above 140 GeV. mass resolution excellent]
- − H → WW only slightly harder, but no mass peak
 [above 150 GeV, angular correlation, off-shell still not clear]
- 6 million light Higgses in gluon fusion: $gg \to H \to \gamma \gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{3} < 0.5\%$]
- backgrounds smaller in WW fusion: qq o qqH o qqWW[works off-shell down to $m_H <$ 120 GeV]
- light Higgs: qq o qqH o qq au au [my favorite; will discuss later]
- more challenging channels:

$$egin{align*} gg & \to t ar{t} H \to t ar{t} b ar{b} & ext{[also later]} \ gg & \to t ar{t} H \to t ar{t} WW & ext{[likely to work]} \ gg & \to t ar{t} H \to t ar{t} au au & ext{[yet unclear]} \ \end{bmatrix}$$

 $qar{q}' o WH o Wbar{b}$ [killer QCD backgrounds] $qq o qqH o qqbar{b}$ [no ATLAS trigger] $qq o qqH o qq\mu\mu$ [maybe later]

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

.....

Weak boson fusion

Higgs coupling

Higgs potenti

CP propertie

Statistics

Weak boson fusion: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable
- $\,\tau$ from Higgs decay strongly boosted

[lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

$$\Rightarrow$$
 solve eqs: $\vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{miss}}$

$$\Rightarrow$$
 solve for x_1, x_2 and obtain $m_{\tau\tau}^{\rm coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$

 \Rightarrow mass measurement $\Delta m_H/m_H \sim$ 15 GeV/ $\sqrt{S} \sim$ 5 GeV

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV< $m_{\tau\tau}^{\rm coll}$ <160 GeV

Weak boson fusion: 1

Signal: $pp \rightarrow qqH$, $H \rightarrow \tau\tau \rightarrow e^{\pm}u^{\mp}4\nu$

- $-\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable
- $-\tau$ from Higgs decay strongly boosted

[lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

- \Rightarrow solve eqs: $\vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_{T}^{\text{miss}}$
- \Rightarrow solve for x_1, x_2 and obtain $m_{\tau\tau}^{\text{coll}} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim 15 \text{ GeV}/\sqrt{S} \sim 5 \text{ GeV}$

After acceptance cuts

2.2 fb signal
$$pp \rightarrow H_{SM} + jj$$
 [$m_H = 120 \text{ GeV}$]

1230 fb
$$pp \rightarrow t\bar{t} + jets$$
 [tagging jet either $t \rightarrow bW$ or additional jet]

1050 fb
$$pp \rightarrow b\bar{b} + jj$$
 [with $b \rightarrow \ell \nu c$]

4.9 fb
$$pp \rightarrow W^+W^- + jj \text{ (QCD)} \text{ [with } W \rightarrow \ell \nu \text{]}$$

3.3 fb
$$pp \to W^+W^- + jj$$
 (EW)

57 fb
$$pp \rightarrow \tau\tau + ii$$
 (QCD)

2.3 fb
$$pp \rightarrow \tau \tau + jj$$
 (EW)

2.3 fb
$$pp \rightarrow \tau\tau + jj$$
 (EW)
 $pp \rightarrow H_{SM} + jj \rightarrow W^+W^- + jj$

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV $< m_{\tau\tau}^{\rm coll} < 160$ GeV

Statistic

Weak boson fusion: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $au
 ightarrow \ell \bar{
 u}_{\ell}
 u_{ au}$ not reconstructable
- au from Higgs decay strongly boosted

[lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

- \Rightarrow solve eqs: $\vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{miss}}$
- \Rightarrow solve for x_1, x_2 and obtain $m_{\tau\tau}^{\rm coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim 15~\text{GeV}/\sqrt{S} \sim 5~\text{GeV}$

Background suppression cuts

- veto central $ho_{T_b} > 20~{
 m GeV}~_{[tar{t}+{
 m jets}~{
 m down}~{
 m to}~72~{
 m fb}]}$
- $p_T^{
 m miss} >$ 30 GeV [soft $bar{b}$ jj gone]
- $-~m_{jj} > 800~{
 m GeV}~$ [anti-QCD: gluons with low m_{jj}]
- non-τ rejection [anti-W]
- \Rightarrow S/B up to 1/1 for $m_H = 120 \pm 10$ GeV

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV < $m_{\tau\tau}^{\rm coll}$ < 160 GeV

Statisti

Weak boson fusion: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $au
 ightarrow \ell ar{
 u}_\ell
 u_ au$ not reconstructable
- au from Higgs decay strongly boosted

[lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

- \Rightarrow solve eqs: $\vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{miss}}$
- \Rightarrow solve for x_1, x_2 and obtain $m_{\tau\tau}^{\rm coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim$ 15 GeV/ $\sqrt{S} \sim$ 5 GeV

Background suppression cuts

- veto central $ho_{T_b} >$ 20 GeV $_{[t\bar{t}+{
 m jets}\ down\ to\ 72\ fb]}$
- $-p_T^{
 m miss} > 30~{
 m GeV}~{
 m [soft}~{\it bbjj}~{
 m gone}$
- $-~m_{jj} > 800~{
 m GeV}~$ [anti-QCD: gluons with low m_{jj}]
- non-τ rejection [anti-W]
- \Rightarrow S/B up to 1/1 for $m_H=$ 120 \pm 10 GeV

two hard, isolated leptons missing transverse momentum two forward tagging jets 90 GeV < $m_{\tau\tau}^{\rm coll}$ <160 GeV

Tilman Plehn

Otalidala Model

Weak boson fusion

lop-associated

Higgs coupling

Higgs potentia

Statistics

Weak boson fusion: 2

Anti-QCD: central mini-jet veto

- additional jet emission cross section large (e.g. $t\bar{t}, t\bar{t}j, t\bar{t}jj$)

$$\sigma_2 \lesssim \sigma_3 \equiv \int_{
ho_T^{
m min}}^{\infty} d\sigma_3 \qquad ext{for} \quad
ho_T^{
m min} \sim ext{10 GeV (WBF)} \
ho_T^{
m min} \sim ext{40 GeV (QCD)}$$

- veto $p_{T_i} >$ 20 GeV and $\eta_i^{\min} < \eta_j < \eta_i^{\max}$ to suppress QCD
- probability like Sudakov: additional jet with p_{jet} [initial state radiation, $p_T^{\text{min}} = 20 \text{ GeV}$]

$$p_{\text{jet}} = \frac{\sigma_3^{\text{reg}}}{\sigma_2^{\text{reg}}} = \frac{\sigma_{n+1}^{\text{reg}}}{\sigma_n^{\text{reg}}} \qquad f(n; p_{\text{jet}}) = \frac{p_{\text{jet}}^n e^{-p_{\text{jet}}}}{n!} \qquad f(n \neq 0; p_{\text{jet}}) = 1 - e^{-p_{\text{jet}}}$$

veto probabilities 0.88 (signal) and 0.85...0.24 (backgrounds)

$$\Rightarrow$$
 S/B=2.8/1 for $m_H=120\pm10~{\rm GeV}$

Both au au channels with safe margins [Standard Model with 60fb $^{-1}$]

M _H [GeV]	100	110	120	130	140	150
$\epsilon \cdot \sigma_{sig}$ (fb)	0.62	0.58	0.50	0.37	0.23	0.11
S	37.4	35.0	30.0	22.3	13.7	6.5
В	67.5	27.0	10.8	6.7	5.7	5.3
S/B	0.6	1.3	2.8	3.3	2.4	1.2
σ_{Gauss} (dual leptonic)	4.2	5.7	6.9	6.2	4.4	2.3
σ_{Gauss} (lepton-hadron)		5.7	7.4	6.3	4.7	2.6

Tilma

Weak boson fusion

Top doodolated

Higgs couplings

niggs potentia

CP properties

Weak boson fusion: 2

Anti-QCD: central mini-jet veto

– additional jet emission cross section large (e.g. $t\bar{t}, t\bar{t}j, t\bar{t}jj$)

$$\sigma_2 \lesssim \sigma_3 \equiv \int_{
ho_T^{
m min}}^{\infty} d\sigma_3 \qquad {
m for} \quad
ho_T^{
m min} \sim {
m 10\,GeV\,(WBF)} \
ho_T^{
m min} \sim {
m 40\,GeV\,(QCD)}$$

- veto $p_{\mathcal{T}_i} >$ 20 GeV and $\eta_i^{\min} < \eta_j < \eta_i^{\max}$ to suppress QCD
- probability like Sudakov: additional jet with $p_{\rm jet}$ [initial state radiation, $p_T^{\rm min}=20~{
 m GeV}$]

$$\rho_{\text{jet}} = \frac{\sigma_{3}^{\text{reg}}}{\sigma_{2}^{\text{reg}}} = \frac{\sigma_{n+1}^{\text{reg}}}{\sigma_{n}^{\text{reg}}} \qquad f(n; \rho_{\text{jet}}) = \frac{\rho_{\text{jet}}^{n} e^{-\rho_{\text{jet}}}}{n!} \qquad f(n \neq 0; \rho_{\text{jet}}) = 1 - e^{-\rho_{\text{jet}}}$$

veto probabilities 0.88 (signal) and 0.85...0.24 (backgrounds)

$$\Rightarrow$$
 S/B=2.8/1 for $m_H=120\pm10$ GeV

General features of WBF production

- cross section $10 \cdots 3$ pb for $m_H < 200$ GeV

$$\Rightarrow$$
 $(H \to \gamma \gamma)$ @50 fb⁻¹ for $m_H = 110 \cdots 145$ GeV [$\gamma \gamma$ mass resolution] $(H \to \tau \tau)$ @60 fb⁻¹ for $m_H = 100 \cdots 140$ GeV [lepton-hadron and dual lepton] $(H \to WW)$ @5 fb⁻¹ for $m_H = 140 \cdots 200$ GeV even invisible higgs decay observable!

Tilman Plehn

Weak boson fusion

Top-associated

Top-Higgs production

Decay $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by QCD background
- WBF fusion: no trigger, killed by QCD backgrounds
- WH production: killed by low rate and NLO background
- $-\sigma(t\bar{t}H)\sim 100 \text{ fb}$

$t\bar{t}H, H \rightarrow b\bar{b}$ for a light Higgs [Atlas study, CMS-TDR even worse]

- trigger: one $t \to bW^+ \to b\ell^+\nu$
- reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [weighted by b-tag]
- reconstruct m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$
- ⇒ higher lumi means poorer b-tag, no-win
- ⇒ likely to be 'challenging'

Tilman Plehn

Weak boson fusion

Weak Dosoii iusi

Top-associated

18-----

niggs potentia

CP properties

Statisti

Top—Higgs production

Decay $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by QCD background
- WBF fusion: no trigger, killed by QCD backgrounds
- WH production: killed by low rate and NLO background
- $-\sigma(t\bar{t}H)\sim$ 100 fb

$t\bar{t}H,H o bar{b}$ for a light Higgs [Atlas study, CMS-TDR even worse]

- trigger: one $t \to bW^+ \to b\ell^+\nu$
- − reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [weighted by b-tag]
- reconstruct m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell\nu$
- ⇒ higher lumi means poorer b-tag, no-win
- ⇒ likely to be 'challenging'

Tilman Plehn

Statiuatu Muuei

Weak boson fusion

Top-associated

Higgs potential

riiggs poteritiai

CP properties

Statistic

Top-Higgs production

Decay $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by QCD background
- WBF fusion: no trigger, killed by QCD backgrounds
- WH production: killed by low rate and NLO background
- $-\sigma(t\bar{t}H)\sim$ 100 fb

$t\bar{t}H, H \to b\bar{b}$ for a light Higgs [Atlas study, CMS-TDR even worse]

- trigger: one $t \to bW^+ \to b\ell^+\nu$
- − reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [weighted by b-tag]
- reconstruct m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell\nu$
- ⇒ higher lumi means poorer b-tag, no-win
- ⇒ likely to be 'challenging'

Tilman Plehn

Standard Model

Weak boson fusion

lop-associated

Higgs couplings

niggs potentia

CP properties

Statistics

Higgs couplings

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measurements: $gg: H \rightarrow ZZ, WW, \gamma\gamma$

 $VV: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $t\bar{t}H: H \rightarrow WW, b\bar{b}...$

 $ttH: H \rightarrow WW, bb...$

- ightarrow light Higgs: 8 good $\sigma \cdot BR$ plus $H \rightarrow b\bar{b}$
- extract: couplings to $W, Z, t, b, \tau, g, \gamma$, invisible
 - \rightarrow most complete: 8 parameters [plus Higgs mass]
- trick: cancel uncertainties

 $(WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau)$ $(WBF: H \rightarrow WW)/(gg: H \rightarrow WW)...$

- goals: Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- \Rightarrow unwanted assumption: $g_{WWH} \leftrightarrow g_{ZZH}$ via SU(2) unwanted assumption: $g_{bbH} \leftrightarrow g_{\tau\tau H}$ via down-type Yukawa

Tilman Plehn

Higgs couplings

Higgs couplings

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measurements: $gg: H \rightarrow ZZ, WW, \gamma\gamma$

 $VV: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$

 $t\bar{t}H: H \rightarrow WW. b\bar{b}...$

- \rightarrow light Higgs: 8 good $\sigma \cdot BR$ plus $H \rightarrow b\bar{b}$
- extract: couplings to $W, Z, t, b, \tau, q, \gamma$, invisible
 - → most complete: 8 parameters [plus Higgs mass]

Include total width

- on-shell degeneracy: $\sigma BR \propto (g_p^2/\sqrt{\Gamma_H}) (g_d^2/\sqrt{\Gamma_H})$ [from (WBF: $WW/\tau\tau$) measure $q_{WWH}/q_{\pi\pi H}$]
- additional constraint: $\sum \Gamma_i(g^2) < \Gamma_H \Rightarrow \Gamma_H|_{min}$
- $WW \rightarrow WW$ unitarity: $g_{WWH} \leq g_{WWH}^{SM} \Rightarrow \Gamma_H|_{max}$
- ⇒ couplings and width extraction great but hard

Higgs couplings

Higgs potential

OD -----

Statistic

Higgs potential and self coupling

Higgs self coupling

- scalar with Yukawa couplings to fermions, so what?
- renormalizable SM potential: $\mu^2=-\lambda v^2$ with $\lambda=m_H^2/(2v^2)$ and self couplings $\lambda_{3H}/\lambda_{4H}=v$
- MSSM: $\lambda_{3h}/\lambda_{4h} = v \sin(\beta + \alpha)/\cos 2\alpha$
- D6 operator: $\mu^2/v^2=-\lambda_0+3\lambda_1v^2/(4\Lambda^2)$ and $\lambda=\lambda_0-3\lambda_1v^2/(2\Lambda^2)$.

Higgs pair production

- $HH \rightarrow 4W$: serious detector simulation needed, not hopeless [use observable m_{Vis} to determine λ_{HHH} , need NLO $\sigma(t\bar{t})$]
- $HH \rightarrow b\bar{b}\tau\tau$: miracle required
- $HH \rightarrow 4b$: several major miracles mandatory
- $HH o bar{b}\mu\mu$: small miracle would be helpful [might come out of $\mu\mu$ mass resolution]
- $HH \rightarrow b\bar{b}\gamma\gamma$: some enhancement needed
- ⇒ serious challenge to detectors and machine

Tilman Plehn

Weak boson fusion

Higgs couplir

Higgs potential

CP properties

or proportio

Statistics

Spin and CP

Higgs Spin

- spin-1/2 not coupling to WW,gg; no production
- spin-1 not coupling to $\gamma\gamma$ on mass shell [Landau–Yang theorem for spin-1 bosons]
- threshold behavior in $H \rightarrow ZZ$ for $m_H \sim 155 \text{ GeV}$
- \Rightarrow spin-0 fairly obvious

Scalar or pseudoscalar?

- pseudoscalar couplings $g_{HVV}/\Lambda \sim \epsilon^{\mu
 u
 ho \sigma} p_{
 ho} p_{\sigma}' \Lambda$
- decay–plane angle

$$\frac{d\sigma}{d\phi} \propto 1 + a\cos\phi + b\cos(2\phi)$$
 $a_{-1} = 0$ $b_{-1} = \frac{1}{4}$ $a_{+1}(m_H) > \frac{1}{4}$

 \Rightarrow easy with $H \rightarrow ZZ$

Tilman Plehn

Weak boson fusion

CP properties

Spin and CP

Higgs Spin

- spin-1/2 not coupling to WW, gg; no production
- spin-1 not coupling to $\gamma\gamma$ on mass shell [Landau-Yang theorem for spin-1 bosons]
- threshold behavior in $H \rightarrow ZZ$ for $m_H \sim 155$ GeV
- ⇒ spin-0 fairly obvious

Scalar or pseudoscalar?

- pseudoscalar couplings $g_{HVV}/\Lambda \sim \epsilon^{\mu\nu\rho\sigma} p_{\rho} p_{\sigma}' \Lambda$
- decay-plane angle

$$\frac{d\sigma}{d\phi} \propto 1 + a\cos\phi + b\cos(2\phi)$$
 $a_{-1} = 0$ $b_{-1} = \frac{1}{4}$ $a_{+1}(m_H) > \frac{1}{4}$

$$a_{-1} = 0$$
 $b_{-1} =$

$$a_{+1}(m_H) > \frac{1}{4}$$

 \Rightarrow easy with $H \rightarrow ZZ$

Coupling structures

- same azimuthal angle between jets in WBF
- distinguish: $g_{\mu\nu}$, CP-even $T_{\mu\nu}$, CP-odd
- ⇒ independent of decay

Tilman Plehn

Weak boson fusion

Top-associated

Higgs coupling

Higgs potential

33- |----

CP properties

Statistics

Modern statistics

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- $-\ \ likelihood\ ratio\ p(d|m_1)/p(d|m_2)\ most\ powerful\ estimator$ [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events → PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Matrix element method

- compute likelihood of top events estimating $|\mathcal{M}|^2$
- maximize probability $p(d|SM, m_t)$ as function of m_t ...

Weak boson fusion

Weak boson lusio

Higgs coupling

33-1----

CP properties

Statistics

Modern statistics

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- $-\ \ likelihood\ ratio\ p(d|m_1)/p(d|m_2)\ most\ powerful\ estimator$ [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events → PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Maximum significance for LHC signals

- example: Poisson statistics $[p(n|s+b) = e^{-(s+b)} (s+b)^n/n!]$

$$q = \log \frac{p(n|s+b)}{p(n|b)} = -s + n \log \left(1 + \frac{s}{b}\right) \longrightarrow -\sum_{j} s_{j} + \sum_{j} n_{j} \log \left(1 + \frac{s_{j}}{b_{j}}\right)$$

– phase space integration of $s,b o p(s,b) \sim |\mathcal{M}_{s,b}|^2$ [LEP-Higgs inspired]

$$q(\vec{r}) = -\sigma_{s}\mathcal{L} + \log\left(1 + \frac{|\mathcal{M}_{s}(\vec{r})|^{2}}{|\mathcal{M}_{b}(\vec{r})|^{2}}\right)$$

- probability distribution function via Fourier transform: $\rho_{s,b}(q)$
- \rightarrow compute $CL_b(q) = \int_q^{\infty} dq' \rho_b(q')$ [5 σ is $CL_b = 2.85 \cdot 10^{-7}$]

Tilman Plehn

Weak boson fusion

Statistics

Modern statistics

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m_1 : Higgs signal assume wrong hypothsis m2: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events → PS integral over likelihood ratio
- Compute maximum statistical significance

Weak boson fusion

Higgs coupling

Higgs potentia

OD -----

Statistics

Modern statistics

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events → PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Semi-realistic results

- irreducible & unsmeared

$$\sigma_{
m tot} = \int dPS \; M_{PS} \; d\sigma_{PS} = \int d\vec{r} \; M(\vec{r}) \; d\sigma(\vec{r})$$

- smearing $\Delta m_{\mu\mu}^{
m width} \ll \Delta m_{\mu\mu}^{
m meas}$

$$\sigma_{\text{tot}} = \int d\vec{r}_{\perp} dr_{m}^{*} \int_{-\infty}^{\infty} dr_{m} M(\vec{r}) d\sigma(\vec{r}) W(r_{m}, r_{m}^{*})$$

- acceptance cuts to reduce phase space...
- \Rightarrow WBF $H \rightarrow \mu\mu$: 3.5 σ in 300 fb⁻¹
- ⇒ Tool works, waiting for applications

Tilman Plehn

Weak boson fusion

Ton_associated

10p-associated

Higgs potential

riiggo potoritio

Statistics

Outlook

Standard-Model Higgs at the LHC

- we will find it in more than one channel for all m_H
- we will measure many properties more or less well:

set of couplings and width

self coupling (only λ_{HHH})

CP properties and WWH coupling structure

invisible decays

Higgs to muons (2nd generation Yukawa)

former stealth models...

- hardly anything still correct in Higgs chapter of Atlas TDR
- ⇒ for WBF we need to understand central jet veto [or give up and measure it]
- ⇒ for some measurements we need NLO backgrounds
- \Rightarrow it is a disgrace that we will miss $H \rightarrow b\bar{b}$
- ⇒ higher-dimensional operators mandatory [little done yet]

Phenomenology 2: Higgs Searches Tilman Plehn Standard Model Weak boson fusion

Weak boson fusion

Top-associated
Higgs couplings

Higgs potential
CP properties

Statistics