Tilman Plehn

Standard Mode

LHC searches

Weak boson fusion

Top-associated

Higgs coupling

Higgs potential

Statistics

Phenomenology 2: Higgs Searches

Tilman Plehn

MPI für Physik & University of Edinburgh

Campos do Jordao, 2/2007

Tilman Plehn

Standard Mode

LHC searches Weak boson fusion Top–associated Higgs couplings Higgs potential

Standard–Model Higgs Sector

LHC Higgs searches

Outline

Weak-boson-fusion Higgs production

Associated quark-Higgs production

Higgs couplings extraction

Higgs potential and self coupling

Modern statistics tools

Tilman Plehn

Standard Model

- LHC searches Weak boson fusion Top-associated Higgs couplings Higgs potential
- Statistics

Standard–Model Higgs sector: 1

Theory of W, Z bosons

- start with SU(2) gauge theory [like QED with massless W, Z]
- include measured masses $\mathcal{L} \sim -\textit{m}_{\textit{W},\textit{Z}}\textit{A}_{\mu}\textit{A}^{\mu}$
- \Rightarrow not gauge invariant, not renormalizable, so not pretty, but try...

Unitarity and Higgs scalar

- test theory in $WW \rightarrow WW$ scattering
 - $\rightarrow {\cal A} \propto G_F E^2$ like Fermi's theory, not unitary above 1.2 TeV $~_{\rm [barely\,LHC\ energy]}$
 - \rightarrow postulate additional scalar Higgs boson to conserve unitarity
 - ightarrow fixed coupling $g_{WWH} \propto m_W$
- add fermions and test $WW \to f\bar{f}$
 - ightarrow fixed coupling $g_{\it ffH} \propto m_{\it f}/m_W$
- test new theory in $WW \rightarrow WWH$
 - ightarrow fixed coupling $g_{HHH} \propto m_{H}^2/m_{W}$
- final test: $WW \rightarrow HHH$
 - ightarrow fixed coupling $g_{HHHH} \propto m_{H}^2/m_{W}^2$
- \Rightarrow all Higgs couplings non-negotiable

Tilman Plehn

Standard Model

LHC searches Weak boson fusior Top–associated Higgs couplings Higgs potential

Statistics

Standard–Model Higgs sector: 2

Higgs potential

- remember Lagrangian invariant under $SU(2) \times U(1)$
- break symmetry through vacuum: SU(2) doublet with vev
- minimize Higgs potential $\Phi = (0, (v + H)/2)$ [v = 246 GeV known from W, Z masses]
- $\Rightarrow \ \text{first attempt: renormalizable Higgs potential} \quad \ \ [\text{does all we want}]$

$$\mathcal{L}_{\text{Higgs}} = |D_{\mu}\Phi|^2 - V$$
$$V = \lambda \left(|\Phi|^2 - \frac{v^2}{2}\right)^2 = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \text{const}$$

- not the whole story with new scale Λ [Standard Model as effective theory]

$$V = \sum_{n=0} \frac{\lambda_n}{\Lambda^{2n}} \left(|\Phi|^2 - \frac{v^2}{2} \right)^{2+\varepsilon}$$

 \Rightarrow Higgs self couplings reflecting Higgs potential

Tilman Plehn

Standard Mode

LHC searches

- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potential
- Statistics

Conversion of beam energy into particle mass

- search for new particles easier if particle produced \rightarrow highest possible energies
- clean e⁺e⁻ colliders: LEP: Z pole
 LEP2: 206 GeV for e.g. ZH
 ILC/CLIC: 1...4 TeV in future

LHC Higgs searches

- powerful hadron colliders: Tevatron: $p\bar{p}$ with 2 TeV [valence quarks] LHC: pp with 14 TeV [gluons]
- LHC mass reach \sim 3 TeV [win by luminosity]

Tilman Plehn

Standard Model

LHC searches

- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potential
- Statistics

Conversion of beam energy into particle mass

- search for new particles easier if particle produced
 → highest possible energies
- clean e⁺e⁻ colliders: LEP: Z pole
 LEP2: 206 GeV for e.g. ZH
 ILC/CLIC: 1...4 TeV in future

LHC Higgs searches

- powerful hadron colliders: Tevatron: pp̄ with 2 TeV [valence quarks] LHC: pp with 14 TeV [gluons]
- LHC mass reach $\sim 3~\text{TeV}$ [win by luminosity]

New physics at hadron colliders

- what is a jet and what is inside? [b, \(\tau\) tag]
- trigger: 'no leptons/photons no data'
- backgrounds $pp \rightarrow jj, t\bar{t}, WZ$ +jets
- Gaussian statistics: $S/\sqrt{B} > 5$ discovery

Tilman Plehn

Standard Mode

LHC searches

- Weak boson fusio Top–associated
- Higgs coupling:
- Higgs potential
- Statistics

Higgs production and decay: 1

Design Higgs searches for LHC

- (a) unitarity limit: $m_H < 1$ TeV
 (b) electroweak precision tests: $m_H \lesssim 250$ GeV
- production and decay of light Higgs

$$\begin{array}{c} gg \rightarrow H \\ qq \rightarrow qqH \\ gg \rightarrow t\bar{t}H \\ q\bar{q}' \rightarrow WH \end{array} \leftrightarrow \begin{array}{c} \text{signal} \times \text{trigger} \\ \text{backgrounds} \\ \text{systematics} \\ S/\sqrt{B} \text{ vs. } S/B \\ \text{mass resolution...} \end{array} \leftrightarrow \begin{array}{c} H \rightarrow b\bar{b} \\ H \rightarrow WW \\ H \rightarrow \tau_{\ell h}^+ \tau_{\ell}^- \\ H \rightarrow \gamma\gamma \\ H \rightarrow \mu\mu... \end{array}$$

Tilman Plehn

Standard Model

LHC searches

Weak boson fusion Top-associated

Higgs potentia

Statistics

Higgs production and decay: 1

Design Higgs searches for LHC

- (a) unitarity limit: $m_H <$ 1 TeV (b) electroweak precision tests: $m_H \lesssim$ 250 GeV
- production and decay of light Higgs

Production rates [[luminosity 30-300 fb⁻¹]

Tilman Plehn

Standard Model

LHC searches

- Weak boson fusion
- Higgs coupling
- Higgs potentia
- Statistics

Higgs production and decay: 1

Design Higgs searches for LHC

- (a) unitarity limit: $m_H <$ 1 TeV (b) electroweak precision tests: $m_H \lesssim$ 250 GeV
- production and decay of light Higgs

Branching fractions [up to 10⁶ events]

Tilman Plehn

Standard Mode

LHC searches

Weak boson fusior Top–associated Higgs couplings Higgs potential

Statistics

Higgs production and decay: 2

Some numbers behind it

- gluon-fusion production and $H\to Z\!Z\to 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- $H \rightarrow WW \text{ only slightly harder, but no mass peak}$ $[above 150 \text{ GeV, off-shell still not clear, } gg \rightarrow WW \text{ background only recently}]$
- 6 million light Higgses in gluon fusion: $gg \rightarrow H \rightarrow \gamma\gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{S} < 0.5\%$]
- backgrounds smaller in WW fusion: $qq \rightarrow qqH \rightarrow qqWW$ [works off-shell down to $m_H <$ 120 GeV]
- light Higgs: qq
 ightarrow qqH
 ightarrow qq au au [my favorite; will discuss later]
- more challenging channels:

 $\begin{array}{l} gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b} \quad \mbox{[also later]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}WW \quad \mbox{[likely to work]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \quad \mbox{[yet unclear]} \\ q\bar{q}' \rightarrow WH \rightarrow Wb\bar{b} \quad \mbox{[killer QCD backgrounds]} \\ qq \rightarrow qqH \rightarrow qqb\bar{b} \quad \mbox{[no ATLAS trigger]} \\ qq \rightarrow qqH \rightarrow qq\mu\mu \quad \mbox{[maybe later]} \end{array}$

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

Tilman Plehn

Standard Model

LHC searches

Weak boson fusion Top-associated Higgs couplings

Higgs potenti

Statistics

Higgs production and decay: 2

Some numbers behind it

- gluon-fusion production and $H \rightarrow ZZ \rightarrow 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- $H \rightarrow WW$ only slightly harder, but no mass peak [above 150 GeV, off-shell still not clear, $gg \rightarrow WW$ background only recently]
- 6 million light Higgses in gluon fusion: $gg \rightarrow H \rightarrow \gamma\gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{S} < 0.5\%$]
- backgrounds smaller in WW fusion: $qq \rightarrow qqH \rightarrow qqWW$ [works off-shell down to $m_H <$ 120 GeV]

- light Higgs: qq
 ightarrow qqH
 ightarrow qq au au [my favorite; will discuss later]
- more challenging channels:

 $\begin{array}{l} gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b} \quad \mbox{[also later]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}WW \quad \mbox{[likely to work]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \quad \mbox{[yet unclear]} \\ q\bar{q}' \rightarrow WH \rightarrow Wb\bar{b} \quad \mbox{[killer QCD backgrounds]} \\ qq \rightarrow qqH \rightarrow qqb\bar{b} \quad \mbox{[no ATLAS trigger]} \\ qq \rightarrow qqH \rightarrow qq\mu\mu \quad \mbox{[maybe later]} \end{array}$

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

Tilman Plehn

Standard Model

- LHC searches
- Weak boson fusion Top–associated Higgs couplings
- Higgs potentia
- Statistics

Higgs production and decay: 2

Some numbers behind it

- gluon-fusion production and $H \rightarrow ZZ \rightarrow 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- $H \rightarrow WW$ only slightly harder, but no mass peak [above 150 GeV, off-shell still not clear, $gg \rightarrow WW$ background only recently]
- 6 million light Higgses in gluon fusion: $gg \rightarrow H \rightarrow \gamma\gamma$ [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{S} < 0.5\%$]
- backgrounds smaller in WW fusion: $qq \rightarrow qqH \rightarrow qqWW$ [works off-shell down to $m_H <$ 120 GeV]
- light Higgs: $qq \rightarrow qqH \rightarrow qq au au$ [my favorite; will discuss later]
- more challenging channels:

 $\begin{array}{l} gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b} \quad \mbox{[also later]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}WW \quad \mbox{[ikely to work]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \quad \mbox{[yet unclear]} \\ q\bar{q}' \rightarrow WH \rightarrow Wb\bar{b} \quad \mbox{[killer QCD backgrounds]} \\ qq \rightarrow qqH \rightarrow qqH\bar{b} \quad \mbox{[no ATLAS trigger]} \\ qq \rightarrow qqH \rightarrow qq\mu\mu \quad \mbox{[maybe later]} \end{array}$

 \Rightarrow Very cool, just $H \rightarrow b\bar{b}$ a sad story...

Tilman Plehn

Standard Mode

LHC searches

Weak boson fusion

Top–associated Higgs couplings

Higgs potentia

Statistics

Weak-boson-fusion Higgs production: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable

– $\,\tau$ from Higgs decay strongly boosted

[lepton ($\vec{k})$ and τ ($\vec{p})$ approximately collinear: momentum fraction x]

$$\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{miss}}$$

- \Rightarrow solve for x_1, x_2 and obtain $m_{ au au}^{
 m coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim$ 15 GeV/ $\sqrt{S} \sim$ 5 GeV

Tilman Plehn

Standard Mode

LHC searches

Weak boson fusion

Top–associated Higgs couplings Higgs potential Weak-boson-fusion Higgs production: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable

– $\,\tau$ from Higgs decay strongly boosted

[lepton (\vec{k}) and τ (\vec{p}) approximately collinear: momentum fraction x]

$$\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{miss}}$$

- \Rightarrow solve for x_1, x_2 and obtain $m_{ au au}^{
 m coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim$ 15 GeV/ $\sqrt{S} \sim$ 5 GeV

After acceptance cuts

signal $pp ightarrow H_{ m SM} + jj$ [m_{H} = 120 GeV]
$pp ightarrow tar{t} + ar{j}$ ets [tagging jet either $t ightarrow bW$ or additional jet]
$pp ightarrow bar{b} + jj$ [with $b ightarrow \ell u c$]
$pp ightarrow W^+ W^- + jj \ (QCD) [with W ightarrow \ell u]$
$ ho p ightarrow W^+ W^- + j j$ (EW)
pp ightarrow au au + jj (QCD)
pp ightarrow au au + jj (EW)
$pp ightarrow H_{ m SM} + jj ightarrow W^+ W^- + jj$

Tilman Plehn

- Standard Mode
- LHC searches

Weak boson fusion

Top–associated Higgs couplings Higgs potential Statistics

Weak-boson-fusion Higgs production: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable

– τ from Higgs decay strongly boosted

[lepton ($\vec{k})$ and τ ($\vec{p})$ approximately collinear: momentum fraction x]

$$\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{mis}}$$

- \Rightarrow solve for x_1, x_2 and obtain $m_{ au au}^{
 m coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim$ 15 GeV/ $\sqrt{S} \sim$ 5 GeV

Background suppression cuts

- veto central $p_{T_b} > 20 \text{ GeV}$ [$t\bar{t}$ +jets down to 72 fb]
- $p_T^{
 m miss} > 30~{
 m GeV}$ [soft $bar{b}$ jj gone]
- $-m_{jj} > 800~{
 m GeV}$ [anti-QCD: gluons with low m_{jj}]
- non- τ rejection [anti-W]

 \Rightarrow S/B up to 1/1 for $m_H = 120 \pm 10$ GeV

Tilman Plehn

- Standard Mode
- LHC searches

Weak boson fusion

Top–associated Higgs couplings Higgs potential Statistics

Weak-boson-fusion Higgs production: 1

Signal: $pp \rightarrow qqH, \ H \rightarrow \tau\tau \rightarrow e^{\pm}\mu^{\mp}4\nu$

- $\tau \rightarrow \ell \bar{\nu}_{\ell} \nu_{\tau}$ not reconstructable

– τ from Higgs decay strongly boosted

[lepton (\vec{k}) and au (\vec{p}) approximately collinear: momentum fraction x]

$$\Rightarrow \text{ solve eqs: } \vec{k}_{T,1}/x_1 + \vec{k}_{T,2}/x_2 = \vec{p}_{T,1} + \vec{p}_{T,2} = \vec{k}_{T,1} + \vec{k}_{T,2} + \vec{p}_T^{\text{mis}}$$

- \Rightarrow solve for x_1, x_2 and obtain $m_{\tau\tau}^{\rm coll} \sim 2(k_1 \cdot k_2)/(x_1 x_2)$
- \Rightarrow mass measurement $\Delta m_H/m_H \sim$ 15 GeV/ $\sqrt{S} \sim$ 5 GeV

Background suppression cuts

- veto central $p_{T_h} > 20 \text{ GeV}$ [$t\bar{t}$ +jets down to 72 fb]
- $p_T^{
 m miss} > 30~{
 m GeV}$ [soft $bar{b}$ jj gone]
- $-m_{jj} > 800~{
 m GeV}$ [anti-QCD: gluons with low m_{jj}]
- non- τ rejection [anti-W]

 \Rightarrow S/B up to 1/1 for $m_H = 120 \pm 10$ GeV

Tilman Plehn

Standard Model

LHC searches

Weak boson fusion

Top-associated

Higgs coupling:

Higgs potential

Statistics

Weak-boson-fusion Higgs production: 2

Anti-QCD: central mini-jet veto

- additional jet emission cross section large (e.g. $t\bar{t}, t\bar{t}j, t\bar{t}j$) $\sigma_2 \lesssim \sigma_3 \equiv \int_{p_T^{\min}}^{\infty} d\sigma_3 \quad \text{ for } \begin{array}{c} p_T^{\min} \sim 10 \text{ GeV (WBF)} \\ p_T^{\min} \sim 40 \text{ GeV (QCD)} \end{array}$

- veto
$$p_{\mathcal{T}_j} >$$
 20 GeV and $\eta_j^{\min} < \eta_j < \eta_j^{\max}$ to suppress QCD

- probability like Sudakov: additional jet with p_{jet} [initial state radiation, $p_T^{min} = 20 \text{ GeV}$]

$$p_{\text{jet}} = \frac{\sigma_3^{\text{reg}}}{\sigma_2^{\text{reg}}} = \frac{\sigma_{n+1}^{\text{reg}}}{\sigma_n^{\text{reg}}} \qquad f(n; p_{\text{jet}}) = \frac{p_{\text{jet}}^n e^{-\rho_{\text{jet}}}}{n!} \qquad f(n \neq 0; p_{\text{jet}}) = 1 - e^{-\rho_{\text{jet}}}$$

veto probabilities 0.88 (signal) and 0.85...0.24 (backgrounds) \Rightarrow S/B=2.8/1 for m_H = 120 ± 10 GeV

Both au au channels with safe margins [Standard Model with 60fb⁻¹]

M _H [GeV]	100	110	120	130	140	150
$\epsilon \cdot \sigma_{siq}$ (fb)	0.62	0.58	0.50	0.37	0.23	0.11
S	37.4	35.0	30.0	22.3	13.7	6.5
В	67.5	27.0	10.8	6.7	5.7	5.3
S/B	0.6	1.3	2.8	3.3	2.4	1.2
σ_{Gauss} (dual leptonic)	4.2	5.7	6.9	6.2	4.4	2.3
σ_{Gauss} (lepton-hadron)		5.7	7.4	6.3	4.7	2.6

Tilman Plehn

Standard Model

LHC searches

Weak boson fusion

Top-associated

Higgs couplings

Higgs potential

Statistics

Weak-boson-fusion Higgs production: 2

Anti-QCD: central mini-jet veto

- additional jet emission cross section large (e.g. $t\bar{t}, t\bar{t}j, t\bar{t}jj$) $\sigma_2 \lesssim \sigma_3 \equiv \int_{p_T^{\min}}^{\infty} d\sigma_3 \quad \text{ for } \begin{array}{c} p_T^{\min} \sim 10 \text{ GeV (WBF)} \\ p_T^{\min} \sim 40 \text{ GeV (QCD)} \end{array}$

- veto
$$p_{\mathcal{T}_j} >$$
 20 GeV and $\eta_j^{\min} < \eta_j < \eta_j^{\max}$ to suppress QCD

- probability like Sudakov: additional jet with p_{jet} [initial state radiation, $\rho_T^{min} = 20 \text{ GeV}$]

$$p_{\text{jet}} = \frac{\sigma_3^{\text{reg}}}{\sigma_2^{\text{reg}}} = \frac{\sigma_{n+1}^{\text{reg}}}{\sigma_n^{\text{reg}}} \qquad f(n; p_{\text{jet}}) = \frac{p_{\text{jet}}^n e^{-\rho_{\text{jet}}}}{n!} \qquad f(n \neq 0; p_{\text{jet}}) = 1 - e^{-\rho_{\text{jet}}}$$

veto probabilities 0.88 (signal) and 0.85...0.24 (backgrounds) \Rightarrow S/B=2.8/1 for m_H = 120 ± 10 GeV

General features of WBF production

- cross section
$$10 \cdots 3$$
 pb for $m_H < 200 \text{ GeV}$
 $\Rightarrow (H \rightarrow \gamma \gamma) @50 \text{ fb}^{-1}$ for $m_H = 110 \cdots 145 \text{ GeV}$ [$\gamma \gamma$ mass resolution]
 $(H \rightarrow \tau \tau) @60 \text{ fb}^{-1}$ for $m_H = 100 \cdots 140 \text{ GeV}$ [lepton-hadron and dual lepton]
 $(H \rightarrow WW) @5 \text{ fb}^{-1}$ for $m_H = 140 \cdots 200 \text{ GeV}$
even invisible higgs decay observable!

Tilman Plehn

Standard Model

Weak boson fusion

Top-associated

Higgs couplings Higgs potential Statistics

Associated quark-Higgs production

Decay $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by QCD background
- WBF fusion: no trigger, killed by QCD backgrounds
- WH production: killed by low rate and NLO background
- $\sigma(t\bar{t}H)\sim$ 100 fb

$t\bar{t}H, H \rightarrow b\bar{b}$ for a light Higgs [Atlas study, CMS-TDR even worse]

- trigger: one $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$
- reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- reconstruct m_H in $pp \rightarrow 4b_{tag} \ 2j \ \ell \nu$
- \Rightarrow higher lumi means poorer b-tag, no-win
- \Rightarrow likely to be 'challenging'

Tilman Plehn

Standard Model

- Weak boson fusion
- Top-associated
- Higgs couplings Higgs potential

Associated quark-Higgs production

Decay $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by QCD background
- WBF fusion: no trigger, killed by QCD backgrounds
- WH production: killed by low rate and NLO background
- $\sigma(t\bar{t}H)\sim$ 100 fb

$t\bar{t}H, H \rightarrow b\bar{b}$ for a light Higgs [Atlas study, CMS-TDR even worse]

- trigger: one $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$
- reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- reconstruct m_H in $pp \rightarrow 4b_{tag} \ 2j \ \ell \nu$
- \Rightarrow higher lumi means poorer b-tag, no-win
- \Rightarrow likely to be 'challenging'

Tilman Plehn

Standard Model

Weak boson fusion

Top-associated

Higgs couplings Higgs potential Statistics

Associated quark-Higgs production

Decay $H \rightarrow b\bar{b}$ for a light Higgs?

- what about the 90% of Higgses decaying to $b\bar{b}$?
- gluon-fusion: killed by QCD background
- WBF fusion: no trigger, killed by QCD backgrounds
- WH production: killed by low rate and NLO background
- $\sigma(t\bar{t}H)\sim$ 100 fb

$t\bar{t}H, H \rightarrow b\bar{b}$ for a light Higgs [Atlas study, CMS-TDR even worse]

- trigger: one $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$
- reconstruction and rate: one $t \rightarrow bW^+ \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- reconstruct m_H in $pp \rightarrow 4b_{tag} \ 2j \ \ell \nu$
- \Rightarrow higher lumi means poorer b-tag, no-win
- \Rightarrow likely to be 'challenging'

Tilman Plehn

- Standard Mode
- LHC searches
- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potential

Higgs couplings extraction

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measurements: $gg: H \rightarrow ZZ, WW, \gamma\gamma$ $VV: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $t\bar{t}H: H \rightarrow WW, b\bar{b}...$
 - \rightarrow light Higgs: 8 good $\sigma \cdot BR$ plus $H \rightarrow b\bar{b}$
- extract: couplings to $W, Z, t, b, \tau, g, \gamma$, invisible
 - $\rightarrow most \ complete: \ 8 \ parameters \quad \ \ [plus Higgs mass]$
- trick: cancel uncertainties
 - $(WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau)$ $(WBF: H \rightarrow WW)/(gg: H \rightarrow WW)...$
- goals: Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- ⇒ unwanted assumption: $g_{WWH} \leftrightarrow g_{ZZH}$ via SU(2) unwanted assumption: $g_{bbH} \leftrightarrow g_{\tau\tau H}$ via down-type Yukawa

Tilman Plehn

- Standard Mode
- LHC searches
- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potential Statistics

Higgs couplings extraction

Coupling extraction at the LHC

- motivation: e.g. little Higgs axions vs. radion vs. Higgs?
- measurements: $gg: H \rightarrow ZZ, WW, \gamma\gamma$ $VV: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $t\bar{t}H: H \rightarrow WW, b\bar{b}...$
 - \rightarrow light Higgs: 8 good $\sigma \cdot BR$ plus $H \rightarrow b\bar{b}$
- extract: couplings to $W, Z, t, b, \tau, g, \gamma$, invisible \rightarrow most complete: 8 parameters [plus Higgs mass]

Include total width

- on-shell degeneracy: $\sigma BR \propto (g_p^2/\sqrt{\Gamma_H}) (g_d^2/\sqrt{\Gamma_H})$ [from (*WBF* : *WW*/ $\tau\tau$) measure $g_{WWH}/g_{\tau\tau H}$]
- additional constraint: $\sum \Gamma_i(g^2) < \Gamma_H \Rightarrow \Gamma_H|_{min}$
- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \Rightarrow \Gamma_H|_{max}$
- \Rightarrow couplings and width extraction great but hard

Tilman Plehn

- Standard Model LHC searches Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potential
- Statistics

Higgs potential and self coupling

Higgs self coupling

- scalar with Yukawa couplings to fermions, so what?
- renormalizable SM potential: $\mu^2 = -\lambda v^2$ with $\lambda = m_H^2/(2v^2)$ and self couplings $\lambda_{3H}/\lambda_{4H} = v$
- MSSM: $\lambda_{3h}/\lambda_{4h} = v \sin(\beta + \alpha)/\cos 2\alpha$
- D6 operator: $\mu^2/\nu^2 = -\lambda_0 + 3\lambda_1\nu^2/(4\Lambda^2)$ and $\lambda = \lambda_0 3\lambda_1\nu^2/(2\Lambda^2)$.

Higgs pair production

- $HH \rightarrow 4W$: serious detector simulation needed, not hopeless

[use observable $m_{\rm vis}$ to determine $\lambda_{\rm HHH}$, need NLO $\sigma(t\bar{t}j)$]

- $HH \rightarrow b\bar{b}\tau\tau$: miracle required
- $HH \rightarrow 4b$: several major miracles mandatory [ILC in better shape]
- $HH \rightarrow b\bar{b}\mu\mu$: small miracle would be helpful [might come out of $\mu\mu$ mass resolution]
- $HH \rightarrow b\bar{b}\gamma\gamma$: some enhancement needed
- \Rightarrow serious challenge to detectors and machine

Tilman Plehn

- Standard Model LHC searches Weak boson fusion Top–associated
- Higgs couplings
- Higgs potential
- Statistics

Modern statistics tools

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Matrix element method

- compute likelihood of top events estimating $|\mathcal{M}|^2$
- maximize probability $p(d|SM, m_t)$ as function of m_t ...

Tilman Plehn

- Standard Mode
- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potentia
- Statistics

Modern statistics tools

Statistics: Neyman–Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Maximum significance for LHC signals

- example: Poisson statistics $[p(n|s+b) = e^{-(s+b)} (s+b)^n/n!]$

$$q = \log \frac{p(n|s+b)}{p(n|b)} = -s + n \log \left(1 + \frac{s}{b}\right) \longrightarrow -\sum_{j} s_{j} + \sum_{j} n_{j} \log \left(1 + \frac{s_{j}}{b_{j}}\right)$$

– phase space integration of $s,b o p(s,b) \sim |\mathcal{M}_{s,b}|^2$ [LEP-Higgs inspired]

$$q(\vec{r}) = -\sigma_{s}\mathcal{L} + \log\left(1 + \frac{|\mathcal{M}_{s}(\vec{r})|^{2}}{|\mathcal{M}_{b}(\vec{r})|^{2}}\right)$$

- probability distribution function via Fourier transform: $\rho_{s,b}(q)$
- ightarrow compute $CL_b(q)=\int_q^\infty dq'
 ho_b(q')$ [5 σ is CL_b = 2.85 10⁻⁷]

Tilman Plehn

- Standard Mode
- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potentia
- Statistics

Modern statistics tools

Statistics: Neyman-Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Tilman Plehn

- Standard Mode
- Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potentia
- Statistics

Modern statistics tools

Statistics: Neyman–Pearson lemma

- assume correct hypothsis m₁: Higgs signal assume wrong hypothsis m₂: SM background
- likelihood ratio $p(d|m_1)/p(d|m_2)$ most powerful estimator [lowest probability to mistake right for fluctuation of wrong (type-II error)]
- probability of event $p(d|m) \sim |\mathcal{M}|^2$
- combined likelihood ratios of events \rightarrow PS integral over likelihood ratio
- ⇒ Compute maximum statistical significance

Semi-realistic results

- irreducible & unsmeared

$$\sigma_{\rm tot} = \int dPS \ M_{PS} \ d\sigma_{PS} = \int d\vec{r} \ M(\vec{r}) \ d\sigma(\vec{r})$$

- smearing
$$\Delta m_{\mu\mu}^{\text{width}} \ll \Delta m_{\mu\mu}^{\text{meas}}$$

 $\sigma_{\text{tot}} = \int d\vec{r}_{\perp} dr_m^* \int_{-\infty}^{\infty} dr_m \ M(\vec{r}) \ d\sigma(\vec{r}) \ W(r_m, r_m^*)$

- acceptance cuts to reduce phase space...
- \Rightarrow WBF $H \rightarrow \mu\mu$: 3.5 σ in 300 fb⁻¹
- \Rightarrow Tool works, waiting for applications

Tilman Plehn

- Standard Model LHC searches Weak boson fusion
- Top-associated
- Higgs couplings
- Higgs potential

Statistics

Outlook

Standard-Model Higgs at the LHC

- we will find it in more than one channel for all m_H
- we will measure many properties more or less well:

set of couplings and width self coupling (only λ_{HHH}) CP properties and WWH coupling structure invisible decays Higgs to muons (2nd generation Yukawa) former stealth models...

- hardly anything still correct in Higgs chapter of Atlas TDR
- \Rightarrow for WBF we need to understand central jet veto [or give up and measure it]
- \Rightarrow for some measurements we need NLO backgrounds
- \Rightarrow it is a disgrace that we will miss $H \rightarrow b ar{b}$
- $\Rightarrow \ higher-dimensional \ operators \ mandatory \quad \ [little \ done \ yet]$

Tilman Plehn

Standard Mode

LHC searches

Weak boson fusion

Top-associated

Higgs couplings

Higgs potential

Statistics