Tilman Plehn

Supersymmetry

LHC Signals

Masse

Spins

Parameters

Phenomenology 3: Beyond the Standard Model

Tilman Plehn

MPI für Physik & University of Edinburgh

Campos do Jordao, 2/2007

Outline

Tilman Plehn

- Supersymmetry
- LHC Signals
- IVIdSSES
- opins
- Parameters

TeV-scale supersymmetry

Supersymmetric signatures

New physics mass measurements

New physics spin measurements

Supersymmetric parameter studies

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

TeV-scale supersymmetry: 1

Starting from data...

- ...which seems to indicate a light Higgs [e-w precision data]
- problem of light Higgs: mass driven to cutoff of effective Standard Model: $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \ \Lambda^2$
- $\Rightarrow\,$ easy solution: counter term to cancel loops $\,\,\Rightarrow\,\,$ artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless, composite Higgs, TopColor, YourFavoriteNewPhysics...
- $\Rightarrow\,$ typically cancellation by new particles or discussing away high scale
- $\Rightarrow \ \text{beautiful concepts, but problematic at TeV scale} \quad \ \ \left[\text{data seriously in the way} \right] \\$
- \Rightarrow new physics models in baroque state

Idea of supersymmetry:

cancellation of divergences through statistics factor (-1)

[SM fermions to scalar; SM gauge bosons to fermions; SM scalars to fermions]

Tilman Plehn

Supersymmetry

- LHC Signals
- Masses
- Spins
- Parameters

TeV-scale supersymmetry: 2

SUSY breaking: (yet) unobserved partners heavy

- link to BSM dark matter
- link to BSM $(g-2)_{\mu}$?
- link to flavor physics and baryogenesis? [Standard Model fine??]
- mechanism for SUSY masses unknown [soft SUSY breaking mediated somehow?] maximally blind mediation: mSUGRA [not a LHC paradigm!] scalars: m_0 , fermions: $m_{1/2}$, tri-scalar term: A_0 plus sign(μ) and tan β in Higgs sector
- alternatives: gauge, anomaly, gaugino mediation · · · ?
- \Rightarrow measure spectrum at LHC instead

LHC phenomenology: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to *t* and *b*?
 - \rightarrow two Higgs doublets
- SUSY Higgs alone interesting
- \Rightarrow would be another talk...
- ⇒ SUSY partners at LHC

d			spin	d.o.f.	
~	fermion	f_L, f_R	1/2	1+1	
	\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
1	gluon	G_{μ}	1	n-2	
	\rightarrow gluino	ĝ	1/2	2	Majorana
1	gauge bosons	γ, Z	1	2+3	
	Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
	\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	LSP?
	gauge bosons	W±	1	2 · 3	
	Higgs bosons	н±	0	2	
ļ	\rightarrow charginos	\tilde{x}_i^{\pm}	1/2	2 · 4	

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Supersymmetric signatures: 1

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\tilde{q}) \sim m(\tilde{g})$]
- large rates at hadron colliders
- decays to jets and LSP $\tilde{g} \rightarrow \tilde{q}\bar{q}, \tilde{q}_L \rightarrow q\tilde{\chi}_2^0, \tilde{q}_R \rightarrow q\tilde{\chi}_1^0$

[additional jets and leptons possible]

- gaugino mass unification assumed for details
- \Rightarrow we know inclusive jets plus LSP

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Supersymmetric signatures: 1

Inclusive: squarks and gluinos at Tevatron

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ [best if $m(\tilde{q}) \sim m(\tilde{g})$]
- large rates at hadron colliders
- decays to jets and LSP $\tilde{g} \rightarrow \tilde{q}\bar{q}, \, \tilde{q}_L \rightarrow q \tilde{\chi}_2^0, \, \tilde{q}_R \rightarrow q \tilde{\chi}_1^0$

[additional jets and leptons possible]

- gaugino mass unification assumed for details
- \Rightarrow we know inclusive jets plus LSP

When do we see SUSY-QCD?

- gluinos: strongly interacting Majorana fermions
- first jet in gluino decay: q or \bar{q}
- final-state leptons with both charges
- \Rightarrow like–sign dileptons from $\tilde{g}\tilde{g}$

min

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Supersymmetric signatures: 2

New physics at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
- (2) measurements
- (3) parameter studies

Catania 18

Tilman Plehn

Supersymmetry

LHC Signals

Masse

opins

Parameters

Supersymmetric signatures: 2

New physics at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
 - (2) measurements masses, cross sections, decays
 - (3) parameter studies MSSM Lagrangean, SUSY breaking
 - \Rightarrow approach independent of new physics model

Some SUSY signals at Tevatron

- like–sign dileptons: $pp
 ightarrow ilde{g} ilde{g}$
- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$

- tri-leptons:
$$pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^-$$

 $[\tilde{\chi}_2^0 \to \bar{\ell}\bar{\ell} \to \tilde{\chi}_1^0 \ell \bar{\ell}; \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell \bar{\nu}]$

Tilman Plehn

Supersymmetry

LHC Signals

Masse

opins

Parameters

Supersymmetric signatures: 2

New physics at the LHC

- (1) possible discovery signals for new physics, exclusion of parameter space
 - (2) measurements masses, cross sections, decays
 - (3) parameter studies MSSM Lagrangean, SUSY breaking
 - $\Rightarrow\,$ approach independent of new physics model

Some SUSY signals at LHC

- like–sign dileptons: $pp
 ightarrow ilde{g} ilde{g}$
- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- tri-leptons: $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$

$$[\tilde{\chi}^0_2 \rightarrow \tilde{\ell} \bar{\ell} \rightarrow \tilde{\chi}^0_1 \ell \bar{\ell}; \tilde{\chi}^-_1 \rightarrow \tilde{\chi}^0_1 \ell \bar{\nu}]$$

- \Rightarrow inclusive: similar to Tevatron
- \Rightarrow exclusive: enough events for studies

Tilman Plehn

Supersymmetr

LHC Signals

Masses

Spins

Parameters

New physics mass measurements: 1

Spectra from cascade decays

- decay $\tilde{g} \rightarrow \tilde{b}\bar{b} \rightarrow \tilde{\chi}_2^0 b\bar{b} \rightarrow \mu^+ \mu^- b\bar{b}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 $pb \quad \mbox{[more than 3 <math display="inline">\times \ 10^7 \ events]}$
- thresholds & edges

$$m_{\ell\ell}^2 < rac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} rac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$$

 \Rightarrow spectrum information from decay kinematics [mass differences with smaller errors]

Gluino mass from kinematic endpoints

- all decay jets b-tagged [otherwise dead by QCD]
- most of time: cascade assumption correct
- \Rightarrow gluino mass to \sim 1%

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics mass measurements: 2

Squarks and gluinos always with many jets [QCD lecture]

- cascade studies sensitive to jet simulation?
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- compared with Pythia shower
- hard scale μ_F huge for SUSY
- ⇒ Shower and matrix element identical for SUSY

σ [pb]	tt ₆₀₀	ĝĝ	ũLĝ
σoi	1.30	4.83	5.65
σ_{1i}	0.73	2.89	2.74
σ2j	0.26	1.09	0.85

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics spin measurements: 1

All new physics is hypothesis testing

- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where squark is a fermion: universal extra dimensions [spectra degenerate —ignore; cross section larger —ignore]

Squark cascade $\tilde{q}_L \to q \tilde{\chi}^0_2 \to q \ell \tilde{\ell} \to q \ell \bar{\ell} \tilde{\chi}^0_1$

- (1) compare with first excited Z and ℓ [assume near/far lepton for now]
 - polarization: 1: $(q_L, \ell_L^-, \ell_L^+)$ 2: $(q_L, \ell_L^+, \ell_L^-)=(q_L, \ell_R^-, \ell_R^+)=(\bar{q}_L, \ell_L^-, \ell_L^+)$
 - distribution of angle θ between q and ℓ : $dP_{1,2}^{SUSY}/d\cos\theta \propto (1 \mp \cos\theta)$
- (2) mass variable: $\hat{m} = m_{ql}/m_{ql}^{\max} = \sin\theta/2$

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics spin measurements: 1

All new physics is hypothesis testing

- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where squark is a fermion: universal extra dimensions [spectra degenerate —ignore; cross section larger —ignore]

Squark cascade $\tilde{q}_L \to q \tilde{\chi}_2^0 \to q \ell \tilde{\ell} \to q \ell \bar{\ell} \tilde{\chi}_1^0$

- (1) compare with first excited Z and ℓ [assume near/far lepton for now]
 - polarization: 1: $(q_L, \ell_L^-, \ell_L^+)$ 2: $(q_L, \ell_L^+, \ell_L^-) = (q_L, \ell_R^-, \ell_R^+) = (\bar{q}_L, \ell_L^-, \ell_L^+)$
 - distribution of angle θ between q and ℓ : $dP_{1,2}^{SUSY}/d\cos\theta \propto (1 \mp \cos\theta)$
- (2) mass variable: $\hat{m} = m_{ql}/m_{ql}^{\rm max} = \sin\theta/2$

UED and SUSY distributions [SPS1a spectrum]

(

$$\frac{dP_1^{\text{SUSY}}}{d\hat{m}} = 4\hat{m}^3 \qquad \qquad \frac{dP_2^{\text{SUSY}}}{d\hat{m}} = 4\hat{m}\left(1 - \hat{m}^2\right)$$
$$\frac{dP_1^{\text{UED}}}{d\hat{m}} = 1.213\,\hat{m} + 3.108\,\hat{m}^3 - 2.310\,\hat{m}^5 \qquad \frac{dP_2^{\text{UED}}}{d\hat{m}} = 2.020\,\hat{m} + 1.493\,\hat{m}^3 - 2.310\,\hat{m}^5$$

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics spin measurements: 2

All new physics is hypothesis testing

- assume squark cascade observed
- \Rightarrow strongly interacting scalar?
- ⇒ straw-man model where squark is a fermion: universal extra dimensions [spectra degenerate —ignore; cross section larger —ignore]

Squark cascade $\tilde{q}_L
ightarrow q \tilde{\chi}_2^0
ightarrow q \ell \tilde{\ell}
ightarrow q \ell \tilde{\ell} \chi_1^0$

- (1) compare with first excited Z and ℓ [assume near/far lepton for now]
 - polarization: 1: $(q_L, \ell_L^-, \ell_L^+)$ 2: $(q_L, \ell_L^+, \ell_L^-)$
 - distribution of angle θ between q and ℓ
- (2) mass variable: $\hat{m} = m_{ql}/m_{ql}^{\rm max} = \sin\theta/2$
 - typically largest $pp
 ightarrow { ilde q} { ilde q} { ilde q}$
- (3) production asymmetry $\tilde{q} : \tilde{q}^* \sim 2 : 1$ $\Rightarrow \mathcal{A} = [\sigma(j\ell^+) - \sigma(j\ell^-)]/[\sigma(j\ell^+) + \sigma(j\ell^-)]$

Masses or spin or both?

- masses from kinematic endpoints [use m_{lj}, m_{ll}, m_{jll}...]
- spins from distributions between endpoints [endpoints identical in SUSY and UED]

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics spin measurements: 3

Back to sign of SUSY-QCD

- like-sign dileptons indicate Majorana fermion?
- always like-sign dileptons from bosonic gluon
- \Rightarrow show gluino fermionic
- \Rightarrow compare with usual UED straw man

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics spin measurements: 3

Back to sign of SUSY-QCD

- like-sign dileptons indicate Majorana fermion?
- always like-sign dileptons from bosonic gluon
- $\Rightarrow \text{ show gluino fermionic}$
- \Rightarrow compare with usual UED straw man

Gluino-bottom cascade

- decay chain like for gluino mass
- compare with first KK g, q, Z, ℓ , γ
- replace initial-state asymmetry by b vs. \bar{b}
- independent of production channels
- asymmetry to write down: $\mathcal{A} = [\sigma(b\ell^+) - \sigma(b\ell^-)] / [\sigma(b\ell^+) + \sigma(b\ell^-)]$

[still visible after cuts and smearing]

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics spin measurements: 3

Back to sign of SUSY-QCD

- like-sign dileptons indicate Majorana fermion?
- always like-sign dileptons from bosonic gluon
- \Rightarrow show gluino fermionic
- $\Rightarrow\,$ compare with usual UED straw man

Gluino-bottom cascade

- interchange $\tilde{\ell}_{LR}$ in cascade
- test of lepton-ino couplings
- purely hadronic ϕ_{bb}
- independent of weak decays
- sensitive to gluino/KK-gluon boost
- \Rightarrow masses and spins from decays, but messy

Tilman Plehn

Supersymmetry

LHC Signals

IVId55C

Spins

Parameters

Supersymmetric parameters: 1

Theory output from LHC: SUSY parameters

- parameters: weak-scale Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum?

First go at problem

- ask a friend how SUSY is broken \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu), y_t, \dots$
- no problem, include indirect constraints
- \Rightarrow probability map as of today
- \Rightarrow best fit from LHC/ILC measurements

	SPS1a	ΔLHC	ΔLHC	ΔILC	∆LHC+ILC
		masses	edges		
m ₀	100	3.9	1.2	0.09	0.08
m _{1/2}	250	1.7	1.0	0.13	0.11
tan β	10	1.1	0.9	0.12	0.12
A ₀	-100	33	20	4.8	4.3

Tilman Plehn

Supersymmetry

LHC Signals

IVIA55C

opins

Parameters

Supersymmetric parameters: 1

Theory output from LHC: SUSY parameters

- parameters: weak-scale Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum?

MSSM instead of mSUGRA

- (1) grid for closed subset
 (2) fit of other parameters
 (3) complete fit
- LHC+ILC perfect
- ⇒ too few measurements? secondary minima? ...

	LHC	ILC	LHC+ILC	SPS1a
tanβ	10.22±9.1	10.26 ± 0.3	10.06 ± 0.2	10
M1	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67±15	fix 500	588.05±11	589.4
$M_{\tilde{\tau}_{I}}$	fix 500	197.68±1.2	199.25±1.1	197.8
M _Ť	129.03 ± 6.9	$135.66 {\pm} 0.3$	133.35 ± 0.6	135.5
M _{µ̃L}	198.7±5.1	198.7 ± 0.5	198.7 ± 0.5	198.7
M _{q31}	498.3±110	497.6±4.4	521.9±39	501.3
M	fix 500	420±2.1	411.73 ± 12	420.2
M _B R	522.26±113	fix 500	504.35±61	525.6
A_{τ}	fix 0	-202.4±89.5	352.1 ± 171	-253.5
At	-507.8±91	-501.95±2.7	-505.24 ± 3.3	-504.9
Ab	-784.7±35603	fix 0	-977±12467	-799.4

Tilman Plehn

Supersymmetry

LHC Signals

IVId55et

Parameters

Supersymmetric parameters: 2

Probability maps of new physics

- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- Pythia/Herwig/Sherpa: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m)
- ⇒ given measurements: (1) compute map p(m|d) of parameter space (2) rank local maxima

Weighted Markov chains

- classical: produce representative set of spin states compute average energy based on this reduced sample
- $\Rightarrow\,$ map (chain) based on probability of a state expensive energy function on sample
 - BSM physics: produce map p(m|d) of parameter points evaluate same probability from (binned) density
 - already for mSUGRA: MCMC resolution not sufficient
- \Rightarrow use additional probability maximization to rank maxima

Tilman Plehn

Supersymmetry

LHC Signals

IVId55et

opins

Parameters

Supersymmetric parameters: 2

Probability maps of new physics

- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- Pythia/Herwig/Sherpa: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m)
- ⇒ given measurements: (1) compute map p(m|d) of parameter space (2) rank local maxima

Toy model

- test function $V(\vec{x})$ in 5 dimensions [general high-dimensional extraction tool]
- Sfitter output #1: probability map
 Sfitter output #2: list of local maxima [best fit]

V=74.929 @(655.00,253.72,347.83,348.57,349.59) V=59.972 @(850.04,224.99,650.00,649.99,654.56) V=58.219 @(849.97,225.01,587.08,650.01,650.02) V=25.110 @(750.00,749.99,450.00,450.01,450.01) V=16.042 @(245.45,253.44,552.51,542.58,544.75) V=12.116 @(350.70,650.40,650.36,650.40,650.38)

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

Supersymmetric parameters: 2

Probability maps of new physics

- Bayes' theorem: $p(m|d) = p(d|m) \; p(m)/p(d) \;$ [p(d) through normalization]
- Pythia/Herwig/Sherpa: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m)
- ⇒ given measurements: (1) compute map p(m|d) of parameter space (2) rank local maxima

mSUGRA with LHC measurements alone

- SPS1a kinematic edges with free m_t

Tilman Plehn

Supersymmetry

LHC Signals

IVIdSSES

opins

Parameters

Supersymmetric parameters: 2

Probability maps of new physics

- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) through normalization]
- Pythia/Herwig/Sherpa: data given a model $p(d|m) \sim |\mathcal{M}|^2$
- theorist's prejudice: model p(m)
- ⇒ given measurements: (1) compute map p(m|d) of parameter space (2) rank local maxima

mSUGRA with today's measurements alone

- electroweak precision data with free m_t

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters

New physics at the LHC

Supersymmetry as a well-studied example for BSM physics

- inclusive signatures from Tevatron
- exclusive analysis only at LHC
- mass and spin measurements
- parameter extraction/probability maps

Tilman Plehn

Supersymmetry

LHC Signals

Masses

Spins

Parameters