Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Phenomenology 4: Beyond the Standard Model

Tilman Plehn

MPI für Physik & University of Edinburgh

Campos do Jordao, 2/2007

Phenomenology 4:
Beyond the
Standard Model
Tilmon Plohn

Large dimensions at the LHC

at the LHC

Outline

Large extra dimensions

Large extra dimensions at the LHC

Warped extra dimensions

Warped extra dimensions at the LHC

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Large extra dimensions: 1

Remember the hierarchy problem

- fundamental scalars cannot deal with a high scale in theory
- weakness of gravitational interaction means large Planck scale $G_N=1/(16\pi M_{Planck})^2$
- \Rightarrow solution: there is another reason why we see a huge M_{Planck}

Large extra dimensions (ADD)

- Einstein-Hilbert action for fundamental Planck scale

$$S = -\frac{1}{2} \int d^4x \sqrt{|g|} M_*^2 R \to -\frac{1}{2} \int d^{4+n}x \sqrt{|g|} M_*^{2+n} R$$

- compactify additional dimensions on torus

$$S = -\frac{1}{2} \int d^{4+n} x \sqrt{|g|} M_*^{2+n} R = -\frac{1}{2} (2\pi r)^n \int d^4 x \sqrt{|g|} M_*^{2+n} R$$

- match the two theories on our brane [also: match to measurements]

$$-\frac{1}{2}(2\pi r)^n \int d^4x \sqrt{|g|} \, M_*^{2+n} \, R \equiv -\frac{1}{2} \int d^4x \sqrt{|g|} \, M_{\text{Planck}}^2 \, R$$

 \Rightarrow express the 4D Planck scale in terms of fundamental Planck scale

$$M_{\rm Planck} = M_* (2\pi r M_*)^{n/2}$$

Tilman Plehn

Large dimensions

at the LHC

Narped dimensions

at the LHC

Large extra dimensions: 1

Remember the hierarchy problem

- fundamental scalars cannot deal with a high scale in theory
- weakness of gravitational interaction means large Planck scale $G_N=1/(16\pi M_{\rm Planck})^2$
- \Rightarrow solution: there is another reason why we see a huge M_{Planck}

Numbers to make it work

- wanted $rM_* \gg 1$
- constraints from gravity tests above $\mathcal{O}(mm)$
- $-M_* = 1 \text{ TeV} \ll M_{\text{Planck}}$ fine for $n \gtrsim 2$

n	r
1	10 ¹² m
2	10 ⁻³ m
3	10 ⁻⁸ m
6	10 ⁻¹¹ m

 \Rightarrow signatures of strong gravitation in extra dimension?

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Large extra dimensions: 2

Only gravitons in extra dimensions

- expand the metric in (4 + n) dimensions [graviton field h]

$$ds^{2} = g_{MN}^{(4+n)} dx^{M} dx^{N} = \left(\eta_{MN} + \frac{1}{M_{*}^{n/2+1}} h_{MN}\right) dx^{M} dx^{N}$$

- include matter into Einstein's equation

$$R_{AB} - rac{1}{2+n}g_{AB}R = -rac{1}{M_*^{2+n}} \left(egin{array}{cc} T_{\mu
u}(x)\,\delta^{(n)}(y) & 0 \ 0 & 0 \end{array}
ight)$$

- Fourier transformation of extra dimensions [KK excitations for periodic boundary conditions]

$$h_{AB}(x;y) = \sum_{m_1=-\infty}^{\infty} \cdots \sum_{m_j=-\infty}^{\infty} \frac{h_{AB}^{(m)}(x)}{\sqrt{(2\pi r)^n}} e^{i\frac{m_j y_j}{r}}$$

- only the interacting (tensor) graviton $[h_{AB} \rightarrow G_{\mu\nu}, QCD massless]$

$$(\Box + m_k^2) \ \mathbf{G}_{\mu\nu}^{(k)} = \frac{1}{M_{\text{Planck}}} \left[-T_{\mu\nu} + \left(\frac{\partial_{\mu}\partial_{\nu}}{\hat{m}^2} + \eta_{\mu\nu} \right) \frac{T_{\lambda}^{\lambda}}{3} \right] = \frac{-T_{\mu\nu}}{M_{\text{Planck}}}$$

- KK mass splitting [M_{*} = 1 TeV]

$$\delta m \sim \frac{1}{r} = 2\pi M_* \left(\frac{M_*}{M_{\text{Planck}}}\right)^{2/n} = \begin{cases} 0.003 \text{ eV} & (n=2)\\ 0.1 \text{ MeV} & (n=4)\\ 0.05 \text{ GeV} & (n=6) \end{cases}$$

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions at the LHC

Large extra dimensions at the LHC: 1

Gravitons for LHC phenomenologists

- tower of KK tensor gravitons $G^{(k)}_{\mu\nu}$ with mass m_k
- mass splitting $\delta m \ll {\rm GeV}$ [below mass resolution]
- universal couplings to massless SM particles via $-T_{\mu
 u}/M_{Planck}$

$$f(k_1) - f(k_2) - G_{\mu\nu}$$
: $-\frac{i}{4M_{\text{Planck}}} (W_{\mu\nu} + W_{\nu\mu})$ with $W_{\mu\nu} = (k_1 + k_2)_{\mu} \gamma_{\nu}$

 \Rightarrow KK gravitons light and weakly coupled

Hope for collider searches

- real radiation of continuous KK tower $[dm/d|k] = 1/r; (d\sigma) \propto 1/M_{\text{Planck}}^2]$ $d\sigma^{\text{tower}} = (d\sigma) \int dm \ S_{\delta-1} m^{n-1} r^n = (d\sigma) \int dm \ \frac{S_{\delta-1} m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$
- higher-dimensional operator from virtual graviton exchange [s-channel in DY]

$$\mathcal{A} = rac{1}{M_{
m Planck}^2} T_{\mu
u} T^{\mu
u} rac{1}{s - m_{
m KK}^2} \sim rac{S_{\delta-1}}{2} rac{\Lambda^{n-2}}{M_*^{n+2}}$$

 $\Rightarrow 1/M_*^2$ interactions after integration over KK tower

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Large extra dimensions at the LHC: 2

Gravitons radiation

- off single-jet production [huge rate]
- off DY production [precise knowledge]
- background: radiation of $Z \rightarrow \nu \bar{\nu}$ [measure $Z \rightarrow \ell \ell$ and subtract]

 \Rightarrow jet channel no challenge at LHC

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Large extra dimensions at the LHC: 2

Gravitons radiation

- off single-jet production [huge rate]
- off DY production [precise knowledge]
- \Rightarrow jet channel no challenge at LHC

Virtual gravitons

- s channel $gg \to \mu^+\mu^-$ new at LHC
- s channel $gg \rightarrow jets$ useless [QCD background uncertainty huge]
- effective field theory in M_{Planck} [1/ M_{eff}^4 better]

Tilman Plehn

Large dimensions at the LHC

Warped dimensions

at the LHC

Warped extra dimensions: 1

Alternative Solution

- try one extra dimension, but not flat [TeV brane at y = b]

$$ds^2 = e^{-2k|y|}\eta_{\mu
u}dx^{\mu}dx^{
u} - dy^2 \quad \Leftrightarrow \quad g_{AB} = \begin{pmatrix} e^{-2k|y|}\eta_{\mu
u} & 0 \\ 0 & \eta_{jk} \end{pmatrix}$$

- integration measure in our usual Lagrangian $d^{4}\tilde{x}e^{-4kb}$, $\tilde{g}_{\mu\nu} = \eta_{\mu\nu}$ $S = \int dy \delta(y) \ d^{4}\tilde{x} \ e^{-4kb} \ \mathcal{L} = \int d^{4}\tilde{x} \ e^{-4kb} \ \left[|D_{\mu}H|^{2} - \lambda(|H|^{2} - v^{2})^{2} + ... \right]$
- write effecive 4D theory on TeV brane scaling all fields

$$\begin{array}{ll} \tilde{H}=e^{-kb}H & \text{scalars} \\ \tilde{A}_{\mu}=e^{-kb}A_{\mu} & \text{or } \tilde{D}_{\mu}=e^{-kb}D_{\mu} \\ \tilde{\Psi}=e^{-3kb/2}\Psi & \text{fermions} \\ \tilde{m}=e^{-kb}m \\ \tilde{\nu}=e^{-kb}v \end{array}$$

- assume kb \sim 35 and large $M^* \sim k \sim M_{
 m Planck}$
- ⇒ mass scale on TeV brane shifted

$$\tilde{\nu} \sim 0.1 \: e^{-\textit{kb}} \: \textit{M}_{\rm Planck} \sim 0.1 \: {\rm TeV}$$

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Warped extra dimensions: 2

Gravitons in one warped extra dimension

- re-write the metric including 4D graviton

$$ds^{2} = \frac{1}{(1+kz)^{2}} \left(\eta_{\mu\nu} + h_{\mu\nu}(x,z) \, dx^{\mu} \, dx^{\nu} - dz^{2} \right)$$

- solve Einstein's equations separating variables $\tilde{h}_{\mu\nu}(x, z) = \hat{h}_{\mu\nu}(x)\Phi(z)$ $\partial_{\mu}\partial^{\mu}\hat{h}_{\mu\nu} = m^{2}\hat{h}_{\mu\nu}$

$$-\partial_{z}^{2}\Phi + \frac{15}{4}\frac{k^{2}}{(k|z|+1)^{2}}\Phi = m^{2}\Phi$$

 \Rightarrow Bessel functions, masses given by roots $J_1(x_j) = 0$ [Neumann boundary conditions] $m_j = x_j \ k \ e^{-kb}$ $x_j = 3.8, 7.0, 10.2, 16.5, ...$

- couplings via wave-function overlap in z [approximately, neglect Bessel functions]

$$\frac{\Phi(z)\big|_{\text{TeV}}}{\Phi(z)\big|_{\text{Planck}}} \sim \frac{\sqrt{kz+1}\big|_{\text{Planck}}}{\sqrt{kz+1}\big|_{\text{TeV}}} \sim \frac{1}{\sqrt{e^{ky}}\big|_{\text{TeV}}} \sim \frac{1}{e^{kb/2}}$$

 \Rightarrow universal couplings except for zero mode graviton

$$\mathcal{L} \sim rac{1}{M_{ ext{Planck}}} \, T^{\mu
u} \, h^{(0)}_{\mu
u} + rac{1}{M_{ ext{Planck}} e^{-kb}} \, T^{\mu
u} \sum h^{(m)}_{\mu
u}$$

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

Warped extra dimensions at the LHC

TeV-scale resonances to e.g. leptons, revisited...

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC

New physics at the LHC: 2

Extra dimensions alternative scenario for LHC

- interesting new model
- signal: missing energy or resonances
- no challenge for LHC trigger
- identification of model parameters?

Tilman Plehn

Large dimensions

at the LHC

Warped dimensions

at the LHC