Tilman Plehn

BSM@LHC

Parameters

Errors

SFitter

Large dimensions

Effective theo

String theory

UV Fixed point

Fun physics at the LHC

Tilman Plehn

Edinburgh

Cambridge 11/2008

Tilman Plehn

BSM@LHC

Parameters

Errors

SFitter

Large dimensions

Effective theory

String theory

UV Fixed point

Outline

Effective Standard Model

Underlying parameters

Annoying Errors

TeV-scale MSSM: SFitter

Large extra dimensions

Effective KK theory

String theory completion

Fixed-point completion

Tilman Plehn

BSM@LHC

- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Effective Standard–Model

Data vs renormalizable Standard Model

- dark matter? [only solid evidence for new physics, weak-scale?]
- $-(g-2)_{\mu}$? [loop effects around weak scale?]
- flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses? [see-saw at 10¹¹ GeV?]
- gauge-coupling unification? [something happening above 10¹⁶ GeV?]
- gravity? [mostly negligible below 10¹⁹ GeV]
- \Rightarrow obviously effective theory, cutoff negotiable

Problem with fundamental Higgs

- mass driven to cutoff: $\delta m_H^2/m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \Lambda^2$
- easy solution: tune counter term
- whole idea of fundamental gauge theories betrayed, evil
- or new physics at TeV scale: supersymmetry extra dimensions

little Higgs, Higgsless, composite Higgs...

- typically cancellation by new states or discussing away high scale
- beautiful concepts, challenged at TeV scale
- \Rightarrow whatever is there LHC's job to sort it out

Tilman Plehn

BSM@LHC

Parameters

- Errors
- SFitte
- Large dimensions
- Effective theory
- .
- UV Fixed point

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark–matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,....
 continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Tilman Plehn

BSM@LHC

Parameters

- Errors
- SFitter
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,.... continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- \Rightarrow aim at underlying theory

Tilman Plehn

BSM@LHC

Parameters

- Errors
- SFitter
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,.... continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- \Rightarrow aim at underlying theory

Tilman Plehn

BSM@LHC

- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Masses from cascades

Cascade decays [Atlas-TDR, you Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $ilde{g}
 ightarrow ilde{b} ar{b}
 ightarrow ilde{\chi}_2^0 b ar{b}
 ightarrow \mu^+ \mu^- b ar{b} ilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

Tilman Plehn

BSM@LHC

- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- Chuine a bla a ann a
- UV Fixed point

Masses from cascades

Cascade decays [Atlas-TDR, you Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

Gluino decay [Gjelsten, Miller, Osland, Raklev...]

- all decay jets b quarks [otherwise
- no problem: off-shell [Catpiss]
- no problem: jet radiation?
- gluino mass to $\sim 1\%$

Tilman Plehn

BSM@LHC

- Parameters
- Errors
- SFitte
- Large dimensions
- 0
- 2.1000.100 0.100
- -----j

Masses from cascades

Cascade decays [Atlas-TDR, you Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

Likely bad ideas [Tait & TP; Alwall, Maltoni, de Visscher]

- decay jets vs QCD radiation
- collinear initial state radiation $[P_{T,j} < M_{hard}]$
- proper description: CKKW/MLM [in MadEvent]
- $\langle N_{\rm jet} \rangle$ dependent on hard scale
- study: two heavy states
- \Rightarrow QCD basics useful at LHC...

Tilman Plehn

BSM@LHC

- Parameters
- Errors
- SFitte
- Large dimensions
- 0
- 2.1000.100 0.100
- -----j

Masses from cascades

Cascade decays [Atlas-TDR, you Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

- decay jets vs QCD radiation
- collinear initial state radiation $[P_{T,j} < M_{hard}]$
- proper description: CKKW/MLM [in MadEvent]
- $-\langle N_{\rm jet} \rangle$ dependent on hard scale
- study: two heavy states
- \Rightarrow QCD basics useful at LHC...

Tilman Plehn

BSM@LHC

- Parameters
- Errors
- SFitte
- Large dimensions
- -
- 2.1000.100 0.100
- -----j

Masses from cascades

Cascade decays [Atlas-TDR, you Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- \Rightarrow new-physics mass spectrum from cascade kinematics

Likely bad ideas [Tait & TP; Alwall, Maltoni, de Visscher]

- decay jets vs QCD radiation
- collinear initial state radiation $[P_{T,j} < M_{hard}]$
- proper description: CKKW/MLM [in MadEvent]
- $-\langle N_{\rm jet} \rangle$ dependent on hard scale
- study: two heavy states
- \Rightarrow QCD basics useful at LHC...

Tilman Plehn

BSM@LHC

Parameters

- Errors
- SFitte
- Large dimensions
- -
- String theory
- UV Fixed point

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian

Underlying parameters

- measurements: better edges than masses, branching fractions, rates,... [NLO, of course] flavor, dark matter, electroweak constraints,...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- want to evaluate probability of model being true p(m|d)
- can compute fully exclusive likelihood map p(d|m) over m [tough]
- additional LHC challenge: remove poor directions [e.g. endpoints vs rates]
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local best-fitting points
 - (3) predict additional observables

Tilman Plehn

BSM@LHC

Parameter

Errors

- SFitte
- Large dimensions
- String theory
- UV Fixed point

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground [will do anything for citations]
- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A₀ and y_t [including all errors]
- ⇒ correlations and secondary maxima significant [0709.3985]

Correlations and errors

	100000	χ^2	<i>m</i> 0	^m 1/2	tan β	A ₀	μ	mt
٠	10000	0.3e-04	100.0	250.0	10.0	-99.9	+	171.4
	1000	27.42	99.7	251.6	11.7	848.9	+	181.6
	10	54.12	107.2	243.4	13.3	-97.4	-	171.1
-	1	70.99	108.5	246.9	13.9	26.4	-	173.6
		88.53	107.7	245.9	12.9	802.7	-	182.7

Tilman Plehn

- BSM@LHC
- Paramete

Errors

- SFitter
- Large dimensions
- Effective theor
- String theory
- UV Fixed point

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground [will do anything for citations]
- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A_0 and y_t [including all errors]
- ⇒ correlations and secondary maxima significant [0709.3985]

A word on errors

- central values secondary locally
- statistical errors Gaussian systematic errors Gaussian, correlated theory errors flat
- RFit scheme [CKMFitter]

$$\begin{split} \chi^{2} &= -2 \log \mathcal{L} = \vec{\chi}_{d}^{T} \ \mathcal{C}^{-1} \ \vec{\chi}_{d} \\ \chi_{d,i} &= \begin{cases} 0 & |d_{i} - \vec{d}_{i}| < \sigma_{i}^{\text{(theo)}} \\ \frac{\mathcal{D} |d_{i} - \vec{d}_{i}| - \sigma_{i}^{\text{(theo)}}}{\mathcal{D} \sigma_{i}^{\text{(exp)}}} & |d_{i} - \vec{d}_{i}| > \sigma_{i}^{\text{(theo)}} \\ \end{cases} \\ \mathcal{C}_{i,i} &= 1 & C_{i,j} = C_{j,i} = \frac{0.99 \ \sigma_{i}^{(\ell)} \ \sigma_{j}^{(\ell)} + 0.99 \ \sigma_{i}^{(j)} \ \sigma_{j}^{(j)}}{\sigma_{i}^{\text{(exp)}} \ \sigma_{j}^{\text{(exp)}}} \end{split}$$

Tilman Plehn

- BSM@LHC
- Paramete

Errors

- SFitter
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground [will do anything for citations]
- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A₀ and y_t [including all errors]
- ⇒ correlations and secondary maxima significant [0709.3985]

A word on errors

- central values secondary locally
- statistical errors Gaussian systematic errors Gaussian, correlated theory errors flat
- theory error sizeable

	SPS1a	$\Delta_{zero}^{theo-exp}$	$\Delta_{zero}^{expNoCorr}$	$\Delta_{zero}^{theo-exp}$	$\Delta_{gauss}^{theo-exp}$	$\Delta_{\text{flat}}^{\text{theo}-\text{exp}}$
		masses				
m ₀	100	4.11	1.08	0.50	2.97	2.17
m1/2	250	1.81	0.98	0.73	2.99	2.64
tan β	10	1.69	0.87	0.65	3.36	2.45
A	-100	36.2	23.3	21.2	51.5	49.6
mt	171.4	0.94	0.79	0.26	0.89	0.97

 \Rightarrow errors mean: endpoints instead of masses

Tilman Plehn

- BSM@LHC
- Parameters
- Errors

SFitter

- Large dimensions
- Effective theory
- String theory
- UV Fixed point

TeV-scale MSSM: SFitter

MSSM map from LHC

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- Markov chain globally + hill climber locally
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- three neutralinos observed [left: Bayesian right: likelihood]

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitter
- Large dimensions
- Effective theor
- String theory
- UV Fixed point

TeV-scale MSSM: SFitter

MSSM map from LHC

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- Markov chain globally + hill climber locally
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- three neutralinos observed [left: Bayesian right: likelihood]

- quality of fit not always useful

	$\mu < 0$				$\mu > 0$			
M1	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
tan β	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M ₃	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
Μ _{μ̃}	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8
M _µ	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9
mA	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1
mt	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

 \Rightarrow means probably much more work to do...

Tilman Plehn

- BSM@LHC
- Parameters
- Errors

SFitter

- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

Tilman Plehn

- BSM@LHC
- Parameters
- Errors

SFitter

- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: $\tan\beta$ from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]

Tilman Plehn

- BSM@LHC
- Parameters
- Errors

SFitter

- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: $\tan \beta$ from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]
- (1) use current precision on $(g-2)_{\mu} \sim aneta$ [SFitter + Alexander, Kreiss]
 - strongly correlated and promising

	LHC		LHC $\otimes (g$	$LHC \otimes (g - 2)$		
tan β	10.0±	4.5	10.3 \pm	2.0	10.0	
M ₁	102.1±	7.8	$102.7\pm$	5.9	103.1	
Mo	193.3±	7.8	$193.2 \pm$	5.8	192.9	
M3	577.2±	14.5	$578.2 \pm$	12.1	577.9	
M _{µ̃}	193.2±	8.8	194.0 \pm	6.8	194.4	
M _{µ̃}	135.0±	8.3	$135.6\pm$	6.3	135.8	
M _{ã3} ,	481.4±	22.0	$485.6\pm$	22.4	480.8	
M _Ď	501.7±	17.9	499.2 \pm	19.3	502.9	
Mã	$524.6\pm$	14.5	$525.5\pm$	10.6	526.6	
M _q R	507.3±	17.5	$507.6\pm$	15.8	508.1	
m∆	406.3±C	2(10 ³)	411.1±C	(10^2)	394.9	
μ^{\prime}	$350.5\pm$	14.5	$352.5\pm$	10.8	353.7	

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitter
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: $\tan \beta$ from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]
- (1) use current precision on $(g-2)_{\mu} \sim aneta$ [SFitter + Alexander, Kreiss]
 - strongly correlated and promising
- (2) use BR $(B_{s}
 ightarrow \mu \mu)$ with stop-chargino sector [Hisano, Kawagoe, Nojiri]
 - 7% error on f_{Bs} by 2015 crucial [Della Morte, Del Debbio; SFitter + Jäger, Spannowsky]
 - perturbative effects secondary

	nc	theory erro	$\Delta BR/BR = 15\%$		
	true	best	error	best	error
tan β	30	29.5	3.4	29.5	6.5
MA	344.3	344.4	33.8	344.3	31.2
M ₁	101.7	100.9	16.3	100.9	16.4
Mo	192.0	200.3	18.9	200.3	18.8
M3	586.4	575.8	28.8	575.8	28.7
μ μ	345.8	325.6	20.6	325.6	20.6
M _{t,R}	430.0	400.4	79.5	399.8	79.5

Tilman Plehn

- BSM@LHC
- Parameters
- Errors

SFitter

- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: tan β from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]
- (1) use current precision on $(g-2)_{\mu} \sim aneta$ [SFitter + Alexander, Kreiss]
 - strongly correlated and promising
- (2) use BR $(B_{s}
 ightarrow \mu \mu)$ with stop-chargino sector [Hisano, Kawagoe, Nojiri]
 - 7% error on f_{Bs} by 2015 crucial [Della Morte, Del Debbio; SFitter + Jäger, Spannowsky]
 - perturbative effects secondary

Renormalization group bottom-up [SFitter + Kneur]

- SUSY breaking, unification, GUT?
- scale-invariant sum rules? [Cohen, Schmalz]
- \Rightarrow solidly inference from weak scale

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitter
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Large extra dimensions

Remember the hierarchy problem

- fundamental scalars bad with high scale present
- weakness of gravity means large Planck scale $G_N = 1/(16\pi M_{\rm Planck})^2$
- \Rightarrow solution: another reason why we see huge non-fundamental $M_{
 m Planck}$

Large extra dimensions (ADD) [Antoniadis, Arkani-Hamed, Dimopoulos, Dvali]

- Einstein-Hilbert action for low fundamental Planck scale

$$S = -\frac{1}{2} \int a^{4}x \sqrt{|g|} M_{D}^{2} R \rightarrow -\frac{1}{2} \int a^{4+n}x \sqrt{|g|} M_{D}^{2+n} R$$
$$= -\frac{1}{2} (2\pi r)^{n} \int a^{4}x \sqrt{|g|} M_{D}^{2+n} R$$
$$\equiv -\frac{1}{2} \int a^{4}x \sqrt{|g|} M_{Planck}^{2} R$$

 \Rightarrow express M_{Planck} in terms of fundamental M_D

$$M_{\rm Planck} = M_D \left(2\pi r M_D\right)^{n/2}$$

Numbers to make it work

- free parameter $rM_D \gg 1$
- constraints from gravity tests above $\mathcal{O}(\text{mm})$
- \Rightarrow signatures of strong gravity in extra dimension?

M	₀ = 1 TeV
n	r
1	10 ¹² m
2	10 ⁻³ m
3	10 ⁻⁸ m
6	10 ⁻¹¹ m

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Toy model: only gravitons in extra dimensions

- expand the metric [graviton field h]

Effective KK theory

$$ds^{2} = g_{MN}^{(4+n)} dx^{M} dx^{N} = \left(\eta_{MN} + \frac{1}{M_{D}^{n/2+1}} h_{MN}\right) dx^{M} dx^{N}$$

- matter in Einstein's equation [no cosmological constant]

$$R_{AB} - \frac{1}{2+n}g_{AB}R = -\frac{1}{M_D^{2+n}} \begin{pmatrix} T_{\mu\nu}(x)\,\delta^{(n)}(y) & 0\\ 0 & 0 \end{pmatrix}$$

- Fourier transformation of extra dimensions [KK excitations for periodic boundary conditions]

$$h_{AB}(x;y) = \sum_{m_1=-\infty}^{\infty} \cdots \sum_{m_j=-\infty}^{\infty} \frac{h_{AB}^{(m)}(x)}{\sqrt{(2\pi r)^n}} e^{i\frac{m_j y_j}{r}}$$

- universal interactions of KK gravitons $[h_{AB} \rightarrow G_{\mu\nu}, QCD massless]$

$$(\Box + m_k^2) \ G_{\mu\nu}^{(k)} = \frac{1}{M_{\text{Planck}}} \left[-T_{\mu\nu} + \left(\frac{\partial_{\mu}\partial_{\nu}}{\hat{m}^2} + \eta_{\mu\nu} \right) \frac{T_{\lambda}^{\lambda}}{3} \right] = \frac{-T_{\mu\nu}}{M_{\text{Planck}}}$$

- tiny KK mass splitting [M_D = 1 TeV]

$$\delta m \sim \frac{1}{r} = 2\pi M_D \left(\frac{M_D}{M_{\text{Planck}}}\right)^{2/n} = \begin{cases} 0.003 \text{ eV} & (n=2)\\ 0.1 \text{ MeV} & (n=4)\\ 0.05 \text{ GeV} & (n=6) \end{cases}$$

 \Rightarrow continuum of weakly interacting gravitons at the LHC

Tilman Plehn

BSM@LHC

Parameters

Errors

SFitte

Large dimensions

Effective theory

String theory

UV Fixed point

Effektive KK theory at the LHC

Effective KK theory [Giudice, Rattazzi, Wells; Han, Lykken, Zhang;...]

- real radiation of continuous KK tower $[dm/d|k| = 1/r; (d\sigma) \propto 1/M_{Planck}^2]$

$$(d\sigma) \rightarrow \int dm (d\sigma) S_{n-1} m^{n-1} r^n = \int dm (d\sigma) \frac{S_{n-1} m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{\text{Planck}}}{M_D}\right)^2$$

- higher-dimensional operator from virtual graviton exchange [s-channel in DY]

$$\mathcal{A} = \frac{1}{M_{\text{Planck}}^2} \frac{1}{s - m_{\text{KK}}^2} \rightarrow \frac{S_{\delta-1}}{2} \frac{\Lambda^{n-2}}{M_D^{n+2}}$$

- $1/M_D^2$ interactions for KK tower
- \Rightarrow like any effective theory valid for $E < M_D$

Real emission $pp \rightarrow G_{KK}$ +jets [Giudice, Rattazzi, Wells; Vacavant, Hichliffe...]

- recoil against hard jet $[E_j \sim M_D]$ background: radiation of $Z \rightarrow \nu \bar{\nu}$
- M = 0 for $E_{parton} > \Lambda_{cutoff}$ M = 0 automatically for $m_{KK} > E_{parton}$
- effective cutoff: steep gluon density
- little UV sensitivity for $\Lambda_{cutoff} \to \infty$
- ⇒ explicit cutoff not crucial

Tilman Plehn

BSM@LHC

Parameters

Errors

SFitte

Large dimensions

Effective theory

String theory

UV Fixed point

Effektive KK theory at the LHC

Effective KK theory [Giudice, Rattazzi, Wells; Han, Lykken, Zhang;...]

- real radiation of continuous KK tower $[dm/d|k| = 1/r; (d\sigma) \propto 1/M_{Planck}^2]$

$$(d\sigma) \rightarrow \int dm (d\sigma) S_{n-1} m^{n-1} r^n = \int dm (d\sigma) \frac{S_{n-1} m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{\text{Planck}}}{M_D}\right)^2$$

- higher-dimensional operator from virtual graviton exchange [s-channel in DY]

$$\mathcal{A} = \frac{1}{M_{\text{Planck}}^2} \frac{1}{s - m_{\text{KK}}^2} \rightarrow \frac{S_{\delta - 1}}{2} \frac{\Lambda^{n - 2}}{M_D^{n + 2}}$$

- $1/M_D^2$ interactions for KK tower
- \Rightarrow like any effective theory valid for $E < M_D$

Real emission $pp \rightarrow G_{KK}$ +jets [Giudice, Rattazzi, Wells; Vacavant, Hichliffe...]

- recoil against hard jet $[E_j \sim M_D]$ background: radiation of $Z \rightarrow \nu \bar{\nu}$
- M = 0 for $E_{parton} > \Lambda_{cutoff}$ M = 0 automatically for $m_{KK} > E_{parton}$
- effective cutoff: steep gluon density
- little UV sensitivity for $\Lambda_{cutoff} \to \infty$
- ⇒ explicit cutoff not crucial

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitter
- Large dimensions

Effective theory

- String theory
- UV Fixed point

Virtual gravitons at LHC

Effective theory of virtual gravitons [Giudice & Strumia; Giudice, Strumia, TP; Kachelries & Plümacher,...]

- virtual graviton in s channel $pp
 ightarrow \mu^+ \mu^-$ [q $ar{q}$ and gg initial states]
- reconstructed $m_{\mu\mu}$ for photon, Z, graviton
- loop-induced D6 operator [axial vector-axial vector]

$$\mathcal{O} = rac{1}{16} \; rac{1}{M_D^2} \; rac{\pi^{n-2}}{\Gamma^2(n/2)} \; \left(rac{\Lambda_{
m cutoff}}{M_D}
ight)^{2n+2}$$

- tree-induced D8 operator [leading constant in $\sqrt{s}/\Lambda_{cutoff}$]

$$S = \frac{S_{n-1}}{M_D^{2+n}} \int dm \; \frac{m^{n-1}}{s+m^2} = \begin{cases} \frac{4\pi}{M_{\text{eff}}^4} & \text{(effective scale)} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D}\right)^{n-2} & \text{(NDA)} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D}\right)^{n-2} & \text{(cutoff }\Theta) \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitter
- Large dimensions

Effective theory

- String theory
- UV Fixed point

Virtual gravitons at LHC

Effective theory of virtual gravitons [Giudice & Strumia; Giudice, Strumia, TP; Kachelries & Plümacher,...]

- virtual graviton in s channel $pp
 ightarrow \mu^+ \mu^-$ [q $ar{q}$ and gg initial states]
- reconstructed $m_{\mu\mu}$ for photon, Z, graviton
- loop-induced D6 operator [axial vector-axial vector]

$$\mathcal{O} = \frac{1}{16} \frac{1}{M_D^2} \frac{\pi^{n-2}}{\Gamma^2(n/2)} \left(\frac{\Lambda_{\text{cutoff}}}{M_D}\right)^{2n+2}$$

- tree-induced D8 operator [leading constant in $\sqrt{s}/\Lambda_{cutoff}$]

$$S = \frac{S_{n-1}}{M_D^{2+n}} \int dm \; \frac{m^{n-1}}{s+m^2} = \begin{cases} \frac{4\pi}{M_{\text{eff}}^4} & \text{(effective scale)} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D}\right)^{n-2} & \text{(NDA)} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D}\right)^{n-2} & \text{(cutoff }\Theta) \end{cases}$$

- two-dimensional integration over (m, s)cutoff requiring $m \leq M_D$ additional cutoff for $\sqrt{s} \leq M_D$

- rates scaling
$$M_D^{\text{max}} \sim \Lambda_{\text{cutoff}}^{(n-2)/(n-2)}$$

 \Rightarrow breakdown of effective theory

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

String theory completion

String theory as UV completion [e.g. Cullen, Perelstein, Peskin; Antoniadis, Benakli, Laugier...]

- 'In particular, the only known framework that allows for a self-consistent description of quantum gravity is string theory'
- Regge excitations of Standard Model [Burikham, Figy, Han]
- compute different helicity contributions, like

$$\begin{aligned} \mathcal{A}(e_L^+ e_R^- \to \gamma_L \gamma_R) &= -2e^2 \,\sqrt{\frac{u}{t}} \,\left(\frac{u}{s} + \frac{t}{s} - 1\right) = 2e^2 \,\sqrt{\frac{u}{t}} \\ &= -2e^2 \,\sqrt{\frac{u}{t}} \,\left(\frac{u}{s} \,\mathcal{S}(s,t) + \frac{t}{s} \,\mathcal{S}(s,u) - \mathcal{S}(t,u)\right) \end{aligned}$$

- with Veneziano form factor

$$\mathcal{S}(s,t) = \frac{\Gamma(1-\alpha's)\,\Gamma(1-\alpha't)}{\Gamma(1-\alpha'(s+t))} = \frac{\Gamma(1-s/M_S^2)\,\Gamma(1-t/M_S^2)}{\Gamma(1-(s+t)/M_S^2)}$$

$$=1-\frac{\pi}{6}\frac{Sl}{M_S^4}+\mathcal{O}\left(M_S^{-6}\right)$$

- dominant over KK because M_{eff} >> M_S closed-string gravitons suppressed
- effective operator below string scale
- string resonances: $\sqrt{n} M_S$

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimension
- String theory
- UV Fixed point

Renormalization flow of gravity

Renormalization flow of gravity [Reuter; Litim; Wetterich;...]

- Einstein-Hilbert action with running $G(\mu)$ and $\Lambda(\mu)$ $\Gamma_k = 1/(16\pi G_k) \int d^{4+n}x \sqrt{g} \left[-R(g) + \cdots\right]$
- dimensionless coupling $g(\mu)=G(\mu)\,\mu^{2+n}=G_0\,Z_G^{-1}(\mu)\,\mu^{2+n}$
- attractive finite UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_G \propto g$]

$$\mu \frac{\partial}{\partial \mu} g_*(\mu) = (2 + n + \eta(g_*)) \ g_*(\mu) = 0 \quad \text{ for } \quad g_* \neq 0 \quad \eta(g_*) = -2 - n$$

- gravity asymptotically free in UV $~~G(\mu) \sim g_* \mu^{-(2+n)}$
- ⇒ coupling weak enough for finite LHC predictions?

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Largo annonoron
- String theory
- UV Fixed point

Renormalization flow of gravity

Renormalization flow of gravity [Reuter; Litim; Wetterich;...]

- Einstein-Hilbert action with running $G(\mu)$ and $\Lambda(\mu)$ $\Gamma_k = 1/(16\pi G_k) \int d^{4+n} x \sqrt{g} \left[-R(g) + \cdots\right]$
- dimensionless coupling $g(\mu)=G(\mu)\,\mu^{2+n}=G_0\,Z_G^{-1}(\mu)\,\mu^{2+n}$
- attractive finite UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_{G} \propto g$]

 $\mu \frac{\partial}{\partial \mu} g_*(\mu) = (2 + n + \eta(g_*)) \ g_*(\mu) = 0 \quad \text{ for } \quad g_* \neq 0 \quad \eta(g_*) = -2 - n$

- gravity asymptotically free in UV $~~G(\mu) \sim g_* \mu^{-(2+n)}$
- \Rightarrow coupling weak enough for finite LHC predictions?

UV-safe gravity [Weinberg (1979)]

- gravity really non-fundamental because $G \propto 1/M_D^{2+n}$?
- 't Hooft's perturbative renormalizability: finite number of counter terms
- Wilson's renormalizability: no unphysical UV divergences
- consistent theory beyond perturbation theory [no ghosts: Weinberg & Gomez]
- fixed point seen for $\sqrt{|g|} R^8$ and including matter [no proof; not perturbative series]
- great idea for gravity great for LHC

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Large unitensions
- String theory
- UV Fixed point

Fixed-point form factor

Naive form factor [Hewett & Rizzo]

- dress s-channel coupling

$$\frac{1}{M_D^{2+n}} \longrightarrow \frac{1}{M_D^{2+n}} F(s) = \frac{1}{M_D^{2+n}} \left(1 + \left(\frac{\sqrt{s}}{tM_D}\right)^{2+n}\right)^{-1}$$

- avoids matching of *s* integration (unitarity)

$$\frac{1}{M_D^{2+n}} F(s) \sim \frac{1}{M_D^{2+n}} \left(\frac{tM_D}{\sqrt{s}}\right)^{2+n} \sim \frac{1}{s^{(2+n)/2}}$$

- improvement of s integration/matching
- still cutoff in KK-mass integration

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Large annensione
- String theory
- UV Fixed point

Fixed-point form factor

Naive form factor [Hewett & Rizzo]

- dress s-channel coupling

$$\frac{1}{M_D^{2+n}} \longrightarrow \frac{1}{M_D^{2+n}} F(s) = \frac{1}{M_D^{2+n}} \left(1 + \left(\frac{\sqrt{s}}{tM_D}\right)^{2+n}\right)^{-1}$$

- avoids matching of s integration (unitarity)

$$\frac{1}{M_D^{2+n}} F(s) \sim \frac{1}{M_D^{2+n}} \left(\frac{tM_D}{\sqrt{s}}\right)^{2+n} \sim \frac{1}{s^{(2+n)/2}}$$

- improvement of s integration/matching
- still cutoff in KK-mass integration
- also applicable to graviton emission [less impressive effect]

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Large unitensions
- String theory
- UV Fixed point

Modified graviton propagator [Reuter; Fischer & Litim]

Fixed-point completion

- effective action: $\Gamma_k = 1/(16\pi G_k) \int d^{4+n}x \sqrt{g} \left[-R(g) + \cdots\right]$
- IR no running; M_D regime strong effects; UV fixed point
- iterative approach: start with anomalous dimension of graviton

$$P(s, m) = \begin{cases} \frac{1}{s + m^2} & \sqrt{s}, m < k_{\text{trans}} \\ \frac{M_D^{n+2}}{(s + m^2)^{n/2+2}} & \sqrt{s}, m > k_{\text{trans}} \end{cases}$$

- IR and UV contributions to D8 operator [leading in \sqrt{s}/m , matched to $1/s^2$]

$$S^{(FP)} = \frac{S_{n-1}}{M_D^4} \left(\frac{k_{\text{trans}}}{M_D}\right)^{n-2} \frac{n-1}{n-2} = (1 + (n-2)) S^{(\Theta)}$$

- needed and not needed:
 - (1) transition scale $k_{
 m trans} \sim M_D$ [anomalous dimension modeled]
 - (2) no artificial Λ_{cutoff} for *m* integration
 - (3) matching/cutoff for s integration

 \Rightarrow UV fixed point indeed solution to our problems

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Fixed-point completion

test with artificial Λ_{cutoff} setting $\mathcal{M}_{KK}=0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Fixed-point completion

test with artificial Λ_{cutoff} setting $\mathcal{M}_{KK}=0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n

Shape of graviton kernel

- shift to larger $m_{\ell\ell}$ [shown n = 3] small $m_{\ell\ell}$: factor $S \propto (n-1)$ large $m_{\ell\ell}$: factor $S^2 \propto (n-1)^2$
- UV contribution predicted and not negligible

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- Effective theory
- String theory
- UV Fixed point

Fixed-point completion

test with artificial Λ_{cutoff} setting $\mathcal{M}_{KK}=0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{
 m trans} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n

Shape of graviton kernel

- shift to larger $m_{\ell\ell}$ [shown n = 3] small $m_{\ell\ell}$: factor $S \propto (n - 1)$ large $m_{\ell\ell}$: factor $S^2 \propto (n - 1)^2$
- UV contribution predicted and not negligible

predicted LHC rates

– $\,\mathcal{S}\,^{(\text{FP})}$: UV regime in addition to $\mathcal{S}^{(\Theta)}\equiv\mathcal{S}^{\text{IR}}$

σ[fb]		<i>n</i> = 3			<i>n</i> = 6	
MD	2 TeV	5 TeV	8 TeV	2 TeV	5 TeV	8 TeV
$S^{(NDA)}$	43.6	0.18	0.0053	263	1.11	0.031
$\mathcal{S}^{(\Theta)}$	173	0.72	0.0204	66	0.28	0.008
$S^{(FP)}$	408	1.24	0.0317	398	1.21	0.031

 \Rightarrow proof of concept quantitatively very promising

Tilman Plehn

- BSM@LHC
- Parameters
- Errors
- SFitte
- Large dimensions
- String theory
- UV Fixed point

Outlook

Understanding the TeV scale

- (1) look for solid new-physics signals
- (2) measure weak-scale Lagrangian
- (3) determine fundamental physics
 - construct new-physics hypotheses
 - compute reliable predictions
- avoid getting killed by QCD
- enjoy toying around with UV gravity
- ⇒ LHC more than a discovery machine!

Tilman Plehn

BSM@LHC

Parameters

Errors

SFitter

Large dimensions

Effective theory

Chuine the serve

UV Fixed point