Understanding the TeV Scale at the LHC Tilman Plehn

New Physics

WBF & unitarity

Cluinos

Extra dimension

Final goa

Understanding the TeV Scale at the LHC

Tilman Plehn

University of Edinburgh

Freiburg, 1/2008

Outline

WBF & unitarity
Gluinos?

New Physics

New physics at the LHC

Weak boson fusion and unitarity

Gluinos or else?

UV-complete extra dimensions

Final goal: Underlying theory

TeV Scale at the LHC Tilman Plehn New Physics

Understanding the

Standard–Model effective theory

WBF & unitarity

Remember the Standard Model

- gauge theory $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive SU(2) gauge bosons [spontaneous symmetry breaking]
- massive Dirac fermions [via Yukawas] perturbatively renormalizable Lagrangian [no effective theory]
- one missing piece: Higgs [fundamental? minimal? mass?]
- ⇒ defined by particle content, interactions, renormalizability
- ⇒ truly fundamental theory at high energies

How complete experimentally?

- dark matter? [solid evidence! for weak–scale new physics?]
- $-(g-2)_{\mu}$? [possible evidence for weak–scale new physics?]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?] matter—antimatter asymmetry? [universe mostly matter]
- gauge—coupling unification? [almost perfect, but proton stable]
- gravity? [mostly negligible but perturbatively non-renormalizable]
- ⇒ cut-off scale unavoidable: SM effective theory

Tilman Plehn

New Physics

WBF & unitarity

Standard–Model effective theory

Consistency of fundamental theory

- problem of light Higgs: mass driven to cutoff of effective Standard Model $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) \Lambda^2$
- cancelled by counter term, cosmological constant tuned anyway [a-word] but problems not linked ['weakless universe': Harnik, Kribs, Perez]
- or new physics at TeV scale: supersymmetry [my favorite]
 - extra dimensions [cool idea] little Higgs [old idea, now working]
 - composite Higgs, TopColor... [not pretty]
- ⇒ fundamental Higgs without TeV–scale completion useless

Tilman Plehn

New Physics

WBF & unitarity

Gluinos'

Extra dimensio

Final goal

Standard–Model effective theory

Consistency of fundamental theory

- problem of light Higgs: mass driven to cutoff of effective Standard Model $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_\tau^2) \Lambda^2$
 - cancelled by counter term, cosmological constant tuned anyway [a-word]
- but problems not linked [weakless universe': Harnik, Kribs, Perez]

 or new physics at TeV scale: supersymmetry [my favorite]
 - extra dimensions [cool idea]

 little Higgs [old idea, now working]

 composite Higgs, TopColor... [not pretty]
 - composite Higgs, TopColor... [no
- ⇒ fundamental Higgs without TeV–scale completion useless
 - discrete symmetry for e-w precision constraints, proton decay
 - stable lightest new particle: dark matter [weakly coupled, TeV range]
 - skipping all introductions into models here
- ⇒ general: TeV–scale models in baroque state

New Physics

WBF & unitarity

Extra dimension

Final goal

Physics in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark–matter candidate?

Particle theory and new physics

- model–independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?]
 discrete hypotheses: spins,....
 continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto (2008)]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD [not today]
- ⇒ aim at underlying theory

Physics in the LHC era

New Physics

WBF & unitarity

Gluinos

Extra dimension

Final goal

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark–matter candidate?

Particle theory and new physics

- model–independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?]
 discrete hypotheses: spins,....
 continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto (2008)]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD [not today] 10
- ⇒ aim at underlying theory

Final goal

Weak boson fusion and unitarity

Illustrating testable hypotheses: spin of LSP [Alwall, TP, Rainwater (2007)]

- Majorana LSP with like-sign charginos?
- hypotheses: like–sign charginos (SUSY)
 - like-sign scalars (scalar dark matter)
 like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used
- \Rightarrow WBF : two key distributions $\Delta\phi_{jj}, p_{T,j}$ [like $extit{H} o extit{ZZ} o extit{4} \mu$ or WBF-Higgs]

- distinct WBF signal? [ask Karl; \(\rho_{T,j} \sim m_W\), forward jets]
 visible over backgrounds? [SUSY-QCD backgrounds dominant]
- toy model, but not swamped by SUSY-QCD

 $5 w^{+}$

Tilman Plehn

New Physics

WBF & unitarity

Evtra dimonaia

Final goal

Weak boson fusion and unitarity

Like-sign scalars instead of fermions

- charged Higgs in 2HDM
- − H⁺H[−] same as simple heavy H⁰ [TP, Rainwater, Zeppenfeld (2001); Buszello, Marquard, v.d. Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

 \Rightarrow scalars with softer $p_{T,j}$

$$P_L(x, p_T) \sim \frac{(1-x)^2}{x} \; \frac{m_W^2}{p_T^4}$$

New Physics

WBF & unitarity

Gluinos

Extra dimensio

Final goal

Like-sign scalars instead of fermions

- charged Higgs in 2HDM
- $-~H^+H^-$ same as simple heavy $H^0~$ [TP, Rainwater, Zeppenfeld (2001); Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

$$P_L(x, p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors instead of fermions

- little–Higgs inspired
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Tilman Plehn

New Physics

WBF & unitarity

Weak boson fusion and unitarity

Like-sign scalars instead of fermions

- charged Higgs in 2HDM
- H⁺H⁻ same as simple heavy H⁰ [TP, Rainwater, Zeppenfeld (2001); Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

$$P_L(x, p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$$

 \Rightarrow scalars with softer $p_{T,i}$

Like-sign vectors instead of fermions

- little-Higgs inspired
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{ii}$

Heavy fermions in little-Higgs models

- eavy fermions in little—Higgs models

 part of unitary UV completion [Englert, Zeppenfeld] \$\frac{y}{y}\$ 0.002 huge effects on distributions [at low scales]
- ⇒ look-alike of strongly interacting Ws [Reuter,...]

Understanding the TeV Scale at the LHC Tilman Plehn

New Physics

WBF & unitarity

Gluinos?

Gluinos or else?

Gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet $(q \text{ or } \bar{q})$ fixes lepton charge
- same—sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp \rightarrow \tilde{q}\tilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Tilman Plehn

New Physics

WBF & unitarity

Gluinos?

Extra dimensio

Final goal

Gluinos or else?

Gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet $(q \text{ or } \bar{q})$ fixes lepton charge
- same—sign dileptons in 1/2 of events
- similar: t-channel gluino in $pp
 ightarrow ilde{q} ilde{q}$
- ⇒ gluino = like–sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP (2006)]

- all new physics is hypothesis testing [Barr, Lester, Smillie, Webber]
- start with mass-measurement cascade [Gjelsten, Miller, Osland]
- physics between the endpoints
- model-independent analysis unlikely [Smillie]

Tilman Plehn

New Physics

WBF & unitarity

Gluinos?

Gluinos or else?

Gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet $(q \text{ or } \bar{q})$ fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp \rightarrow \tilde{q}\tilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP (2006)]

- all new physics is hypothesis testing [Barr, Lester, Smillie, Webber]
- start with mass-measurement cascade [Gjelsten, Miller, Osland]
- physics between the endpoints
- model-independent analysis unlikely [Smillie]
- 'gluino' as a boson: universal extra dimensions [spectra degenerate, cross sections, higher KK states - ignore]
- simple distributions [3-body decays: Csaki,...]
- threshold behavior? [under study]
- ⇒ gluino = fermion with like-sign dileptons

Understanding the TeV Scale at the LHC Tilman Plehn

New Physics

WBF & unitarity

Gluinos?

Extra dimensio

Final goal

Gluinos or else?

Gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet $(q \text{ or } \bar{q})$ fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: t-channel gluino in $pp \to \tilde{q}\tilde{q}$
- ⇒ gluino = like–sign dileptons in SUSY sample

Elegant LHC universe [Alves, Eboli, TP (2006)]

- angular correlation: $m_{b\mu}/m_{b\mu}^{\rm max} = \sin \theta/2$
- asymmetry b vs. $ar{b}$ [independent of production]

$$\mathcal{A}(m_{\mu b}) = rac{\sigma(b\ell^+) - \sigma(b\ell^-)}{\sigma(b\ell^+) + \sigma(b\ell^-)}$$

stable w.r.t production channels and cuts

m_{bl}± [GeV]

New Physics

WBF & unitarity

Gluinos?

Gluinos or else?

Gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet $(q \text{ or } \bar{q})$ fixes lepton charge
- same—sign dileptons in 1/2 of events
- similar: t-channel gluino in $pp \rightarrow \tilde{q}\tilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Elegant LHC universe [Alves, Eboli, TP (2006)]

- angular correlation: $m_{b\mu}/m_{b\mu}^{\rm max}=\sin\theta/2$
- asymmetry b vs. \bar{b} [independent of production]

$$\mathcal{A}(m_{\mu b}) = \frac{\sigma(b\ell^+) - \sigma(b\ell^-)}{\sigma(b\ell^+) + \sigma(b\ell^-)}$$

- stable w.r.t production channels and cuts
- unstable w.r.t model details.
- positive: use information [Hagiwara, Kim, Mawatari, Zerwas]
- ⇒ LHC only as good as understood hypotheses

Tilman Plehn

New Physics

WBF & unitarity

Gluinos'

Extra dimensions

Final goal

UV-complete extra dimensions

Elegant solution to hierarchy problem [Arkani-Hamed, Dimopoulos, Dvali]

- highest scale: Planck scale $G_N \sim 1/M_{\rm Planck}^2$ [$M_{\rm Planck} \sim 10^{19}$ GeV]
- Einstein-Hilbert action in 4+n dimensions [on torus periodic boundaries]

$$\int d^4x \sqrt{|g|} \frac{M_{\text{Planck}}^2 R}{M_{\text{Planck}}} \rightarrow \int d^{4+n}x \sqrt{|g|} \frac{M_D^{2+n} R}{M_D^{2+n} R} = \frac{(2\pi r)^n}{\int} d^4x \sqrt{|g|} \frac{M_D^{2+n} R}{M_D^{2+n} R}$$

$$M_{\text{Planck}} = M_D (2\pi r M_D)^{n/2} \gg M_D \sim 1 \text{ TeV}$$

- to get numbers right: $r = 10^{12}, 10^{-3}, ... 10^{-11}$ m for n = 1, 2, ... 6
- ⇒ fundamental Planck scale at TeV

Kaluza-Klein gravitons

periodic boundaries: Fourier-transform in extra dimensions [QCD massless]

$$(\Box + m_k^2) \; G_{\mu\nu}^{(k)} = -rac{T_{\mu\nu}}{M_{
m Planck}} \qquad \qquad \delta m \sim rac{1}{r} = 2\pi M_D \left(rac{M_D}{M_{
m Planck}}
ight)^{2/n} \lesssim 0.05 \; {
m GeV}$$

- KK tower of single gravitons, each coupled as $1/M_{\rm Planck}$ [Giudice, Ratazzi, Wells]
- constraints from supernova cooling only on IR spectrum
- LHC effects from TeV-scale UV spectrum [Giudice, Strumia, TP (2005); cosmic rays]
- ⇒ KK effective theory at LHC?

Tilman Plehn

New Physics

WBF & unitarity

_. . .

Citalilos:

Extra dimensions

Final goa

UV-complete extra dimensions

Hope for collider searches [Giudice, Rattazzi, Wells; Han, Lykken, Zhang]

- real radiation of continuous KK tower

$$\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \ S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \ \frac{S_{n-1} \ m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{\text{Planck}}}{M_D}\right)^2$$

higher-dimensional operator from virtual gravitons [UV dominated]

$$A(s; m) = \frac{1}{M_{\text{Planck}}^{2}} T_{\mu\nu} T^{\mu\nu} \frac{1}{s - m^{2}} \to \frac{S_{n-1}}{2M_{D}^{4}} \left(\frac{\Lambda}{M_{D}}\right)^{n-2}$$

 \Rightarrow KK tower coupling with 1/ M_D at LHC

Understanding the TeV Scale at the LHC Tilman Plehn

New Physics

WBF & unitarity

Gluinos'

Extra dimensions

riilai yoai

UV-complete extra dimensions

Hope for collider searches [Giudice, Rattazzi, Wells; Han, Lykken, Zhang]

real radiation of continuous KK tower

$$\sigma^{ ext{tower}} \sim \sigma^{ ext{graviton}} \int dm \ S_{n-1} m^{n-1} r^n = \sigma^{ ext{graviton}} \int dm \ rac{S_{n-1} \ m^{n-1}}{(2\pi M_D)^n} \left(rac{M_{ ext{Planck}}}{M_D}
ight)^2$$

- higher-dimensional operator from virtual gravitons [UV dominated]

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s - m^2} \rightarrow \frac{S_{n-1}}{2M_D^4} \left(\frac{\Lambda}{M_D}\right)^{n-2}$$

$$\Rightarrow \text{KK tower coupling with } 1/M_D \text{ at LHC}$$

Virtual gravitons at LHC [e.g. Giudice, TP, Strumia (2005)]

- *s*–channel $gg \rightarrow \mu^+\mu^-$
- LHC rates (or reach) dependent on cut-off Λ
- ⇒ effective theory poor at LHC

Tilman Plehn

New Physics

WBF & unitarity

Gluinos'

Extra dimensions

Final goa

UV-complete extra dimensions

Renormalization flow of gravity [Reuter; Litim; Wetterich;...]

- Einstein–Hilbert action with running $G(\mu)$ and $\Lambda(\mu)$
- dimensionless coupling $g(\mu)=G(\mu)\,\mu^{2+n}=G_0\,Z_G^{-1}(\mu)\,\mu^{2+n}$
- attractive non–Gaussian UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_{\mathbf{G}} \propto g$]

$$\mu \frac{\partial}{\partial \mu} g_*(\mu) = (2 + n + \eta(g_*)) \ g_*(\mu) = 0 \quad \text{for} \quad g_* \neq 0 \quad \eta(g_*) = -2 - n$$

- gravity asymptotically free in UV $G(\mu) \sim g_* \mu^{-(2+n)}$
- ⇒ coupling small enough for LHC predictions?

Tilman Plehn

New Physics

WBF & unitarity

Olumbar of

Extra dimensions

Final goal

UV-complete extra dimensions

Renormalization flow of gravity [Reuter; Litim; Wetterich;...]

- Einstein–Hilbert action with running $G(\mu)$ and $\Lambda(\mu)$
- dimensionless coupling $g(\mu)=G(\mu)\,\mu^{2+n}=G_0\,Z_G^{-1}(\mu)\,\mu^{2+n}$

$$\mu rac{\partial}{\partial \mu} \, g_*(\mu) = (2+n+\eta(g_*)) \, \, g_*(\mu) = 0 \qquad ext{for} \qquad g_*
eq 0 \qquad \eta(g_*) = -2-n$$

- gravity asymptotically free in UV $G(\mu) \sim g_* \mu^{-(2+n)}$
- ⇒ coupling small enough for LHC predictions?

UV—safe gravity [Weinberg (1979)]

- gravity non-fundamental effective theory $G \propto 1/M_D^{2+n}$?
- 't Hooft's perturbative renormalizability: finite number of counter terms
- Wilson's (weaker) renormalizability: no unphysical UV divergences
- consistent theory beyond perturbation theory [no ghosts: Weinberg & Gomez]
- fixed point likely to $\sqrt{|g|} R^8$ and including matter [no proof; not perturbative series]
- great idea for gravity great for LHC

Tilman Plehn

New Physics

WBF & unitarity

. . .

Extra dimensions

Final goal

UV-complete extra dimensions

UV-completed graviton production [Litim & TP (2007)]

- $\text{ form factor for } G(\mu) \quad \text{[Hewett & Rizzol]} \\ \frac{1}{M_D^{2+n}} \longrightarrow \frac{1}{M_D^{2+n}} \left[1 + \left(\frac{\sqrt{s}}{a M_D} \right)^{2+n} \right]^{-1}$
- alternative: changing anomalous dimension of graviton [QCD inspired]

$$P(s,m) = \frac{1}{s+m^2} \longrightarrow \frac{M_D^{n+2}}{(s+m^2)^{n/2+2}}$$
 around $m \sim M_D$

 $-\,$ integration kernel after integration over $m_{\rm KK}$

$$\frac{1}{M_D^{2+n}} \int_0^\infty \frac{dm}{m^{n-1}} P(s,m) = \frac{1}{n-2} \frac{1}{M_D^4} \left(\frac{aM_D}{M_D} \right)^{n-2} \left[1 + \frac{n-2}{4} \right] \left[1 + \mathcal{O}\left(\frac{s}{M_D^2} \right) \right]$$

- $-\sqrt{s}>M_D$: kernel only function of \sqrt{s} [matching at M_D ?, black-hole solutions?]
- \Rightarrow UV-safe gravity safe at LHC

Tilman Plehn

New Physics

WBF & unitarity

Gluinos

Extra dimensions

Final goa

UV-complete extra dimensions

UV-completed graviton production [Litim & TP (2007)]

$$- \text{ form factor for } G(\mu) \quad \text{[Hewett \& Rizzol]}_{\frac{1}{M_D^{2+n}}} \longrightarrow \frac{1}{M_D^{2+n}} \, \left[1 + \left(\frac{\sqrt{s}}{a M_D} \right)^{2+n} \right]^{-1}$$

- alternative: changing anomalous dimension of graviton [QCD inspired]

$$P(s,m) = \frac{1}{s+m^2} \longrightarrow \frac{M_D^{n+2}}{(s+m^2)^{n/2+2}}$$
 around $m \sim M_D$

- integration kernel after integration over $m_{\rm KK}$

$$\frac{1}{M_D^{2+n}} \int_0^\infty \frac{dm}{m^{n-1}} P(s,m) = \frac{1}{n-2} \frac{1}{M_D^4} \left(\frac{aM_D}{M_D} \right)^{n-2} \left[1 + \frac{n-2}{4} \right] \left[1 + \mathcal{O}\left(\frac{s}{M_D^2} \right) \right]$$

- $-\sqrt{s}>M_D$: kernel only function of \sqrt{s} [matching at M_D ?, black-hole solutions?]
- ⇒ UV–safe gravity safe at LHC

String theory as UV completion [e.g. Cullen, Perelstein, Peskin]

- Veneziano form factor

$$\frac{\Gamma(1 - \alpha's) \, \Gamma(1 - \alpha't)}{\Gamma(1 - \alpha'(s + t))} = \frac{\Gamma(1 - s/M_S^2) \, \Gamma(1 - t/M_S^2)}{\Gamma(1 - (s + t)/M_S^2)} = 1 - \frac{\pi^2}{6} \, \frac{st}{M_S^4} + \mathcal{O}\left(M_S^{-6}\right)$$

- string resonances in UV: $\sqrt{n} M_S$
- ⇒ quantum gravity testable at LHC

Hillian Fi

New Physics

WBF & unitarity

Gluinos'

Extra dimension

Final goal

Final goal: Underlying theory

From LHC to high scales [Fittino; SFitter: Lafaye, TP, Rauch, D. Zerwas; Arkani–Hamed et al]

- parameters: weak-scale Lagrangian and up from there
- measurements: LHC and beyond [dark matter, e-w precision,...?]
- errors challenge: statistics & systematics & theory [flat theory errors!]
- statistics challenge: get it right in many dimensions [Bayesian and frequentist]

Tilman Plehn

New Physics

WBF & unitarity

Chriman

Extra dimensio

Final goal

Final goal: Underlying theory

From LHC to high scales [Fittino; SFitter: Lafaye, TP, Rauch, D. Zerwas; Arkani–Hamed et al]

- parameters: weak-scale Lagrangian and up from there
- measurements: LHC and beyond [dark matter, e-w precision,...?]
- errors challenge: statistics & systematics & theory [flat theory errors!]
- statistics challenge: get it right in many dimensions [Bayesian and frequentist]

MSSM parameter space in LHC era

one degeneracy: three of four neutralinos

Tilman Plehn

New Physics

WBF & unitarity

. . .

Extra dimension

Final goal

Final goal: Underlying theory

From LHC to high scales [Fittino; SFitter: Lafaye, TP, Rauch, D. Zerwas; Arkani–Hamed et al]

- parameters: weak-scale Lagrangian and up from there
- measurements: LHC and beyond [dark matter, e-w precision,...?]
- errors challenge: statistics & systematics & theory [flat theory errors!]
- statistics challenge: get it right in many dimensions [Bayesian and frequentist]

MSSM parameter space in LHC era

- one degeneracy: three of four neutralinos
- beyond LHC: an eta using $(g-2)_{\mu}$

	LHC		$LHC \otimes (g-2)$		SPS1a
tan eta	10.0±	4.5	10.3±	2.0	10.0
M ₁	102.1±	7.8	102.7±	5.9	103.1
M_2	193.3±	7.8	193.2±	5.8	192.9
Ma	577.2±	14.5	578.2±	12.1	577.9
$M_{\tilde{\mu}_L}^3$	193.2±	8.8	194.0±	6.8	194.4
$M_{\tilde{\mu}_R}$	135.0±	8.3	135.6±	6.3	135.8
$M_{\tilde{q}3_L}$	481.4±	22.0	485.6±	22.4	480.8
$M_{\tilde{b}_R}$	501.7±	17.9	499.2±	19.3	502.9
$M_{\tilde{q}_L}$	524.6±	14.5	$525.5 \pm$	10.6	526.6
$M_{\tilde{q}_R}^{\eta_L}$	507.3±	17.5	$507.6 \pm$	15.8	508.1
A_{τ}	fixed 0		fixed 0		-249.4
A_t	-509.1±	86.7	-530.6±	116.6	-490.9
A_b	fixed 0		fixed 0		-763.4
m_A	$406.3 \pm \mathcal{O}(10^3)$		$411.1 \pm \mathcal{O}(10^2)$		394.9
μ'	350.5±	14.5	352.5±	10.8	353.7

Tilman Plehn

New Physics

WBF & unitarity

Oluinan

Extra dimensio

Final goal

Final goal: Underlying theory

From LHC to high scales [Fittino; SFitter: Lafaye, TP, Rauch, D. Zerwas; Arkani–Hamed et al]

- parameters: weak-scale Lagrangian and up from there
- measurements: LHC and beyond [dark matter, e-w precision,...?]
- errors challenge: statistics & systematics & theory [flat theory errors!]
- statistics challenge: get it right in many dimensions [Bayesian and frequentist]

MSSM parameter space in LHC era

- one degeneracy: three of four neutralinos
- beyond LHC: an eta using $(g-2)_{\mu}$ [SFitter (2008)]

Fundamental theory [SFitter + Kneur (2007+)]

- SUSY breaking?
- unification, GUT?
- scale-invariant sum rules? [Cohen. Schmalz]
- new & crucial: renormalization group bottom-up
- ⇒ solidly infer models from weak scale

Tilman Plehn

New Physics

WBF & unitarity

Gluinos

Extra dimensio

Final goal

New physics in LHC era

TeV-scale physics understood

- find Higgs sector
- confirm BSM physics
- solve hierarchy problem
- explain dark matter
- test testable hypotheses
- determine fundamental theory
- never fly through Heathrow
- LHC more than discovery machine
- LHC physics is fun physics, even on Saturday afternoon!

Understanding the TeV Scale at the LHC Tilman Plehn

New Physics

WBF & unitarity

Giuirios

Extra dimensions

Final goal