Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Understanding the TeV Scale at LHC

Tilman Plehn

University of Edinburgh

LMU München, 1/2008

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Outline

TeV scale in the LHC era

Masses from cascades

Underlying parameters

Spins from cascades

Spins from jets

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & cascades
- Spin & jets

Standard–Model effective theory

Remember the Standard Model

- gauge theory $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive SU(2) gauge bosons [spontaneous symmetry breaking]
- massive Dirac fermions [via Yukawas]
- perturbatively renormalizable Lagrangian [no 1/M terms]
- one missing piece: Higgs [fundamental? minimal? mass?]
- \Rightarrow truly fundamental theory

How complete experimentally?

- dark matter? [solid evidence! for weak-scale new physics?]
- $-~(g-2)_{\mu}$? [possible evidence for weak-scale new physics?]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?]
- matter-antimatter asymmetry? [universe mostly matter]
- gauge-coupling unification? [almost perfect, but proton stable]
- gravity? [mostly negligible but perturbatively non-renormalizable]
- \Rightarrow cut-off scale unavoidable: SM effective theory

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & cascades
- Spin & jets

Standard–Model effective theory

Remember the Standard Model

- gauge theory $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive SU(2) gauge bosons [spontaneous symmetry breaking]
- massive Dirac fermions [via Yukawas]
- perturbatively renormalizable Lagrangian [no 1/M terms]
- one missing piece: Higgs [fundamental? minimal? mass?]
- \Rightarrow truly fundamental theory

Consistency of fundamental theory

problem of light Higgs:

- mass driven to cutoff of effective Standard Model $\delta m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \Lambda^2$
- cancelled by finely tuned counter term? [ugly, unpopular]
- why fundamental Higgs with poor high-energy behavior??
- better new physics at TeV scale: supersymmetry [my favorite] extra dimensions [cool idea] little Higgs [old idea, now working] composite Higgs... [not pretty]
- \Rightarrow TeV-scale: beautiful ideas complicated realistic models

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testable TeV-scale models [e.g. Higgs sector vs. underlying theory?] continuous data-driven hypotheses: masses,... discrete data-driven hypotheses: spins,....
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto (2008)]
- reconstruction of Lagrangian

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & cascades
- Spin & jets

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testable TeV-scale models [e.g. Higgs sector vs. underlying theory?] continuous data-driven hypotheses: masses,... discrete data-driven hypotheses: spins,....
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto (2008)]
- reconstruction of Lagrangian

Special about LHC [NLO rates from Prospino2 (2006)]

- beyond inclusive searches [that was Tevatron] millions of new strongly interacting particles
- ⇒ (1) aim at underlying theory(2) try to survive QCD

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & cascades
- Spin & jets

TeV-scale supersymmetry

Supersymmetry

- give each Standard–Model particle a partner [with different spin, including strong interactions]
- SUSY obviously broken by masses [soft breaking, mechanism unknown]
- assume dark matter, stable lightest partner
- \Rightarrow measure BSM spectrum with missing energy at LHC

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & cascades
- Spin & jets

TeV-scale supersymmetry

Supersymmetry

- give each Standard–Model particle a partner [with different spin, including strong interactions]
- SUSY obviously broken by masses [soft breaking, mechanism unknown]
- assume dark matter, stable lightest partner
- ⇒ measure BSM spectrum with missing energy at LHC

LHC searches: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to *t* and *b*?
 - \rightarrow five Higgs bosons
- SUSY-Higgs alone interesting...
 - ...but not conclusive
 - ...and another talk
 - ... and covered by Georg
- \Rightarrow list of SUSY partners

		spin	d.o.f.	
fermion	f_L, f_B	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	LSP
gauge bosons	W±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- easiest: cascade kinematics [10⁷ · · · 10⁸ events, rates tought because of QCD]

thresholds & edges
$$0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$$

 \Rightarrow new-physics mass spectrum from cascade kinematics

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- easiest: cascade kinematics [10⁷ · · · 10⁸ events, rates tought because of QCD]

• thresholds & edges
$$0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$$

 \Rightarrow new-physics mass spectrum from cascade kinematics

Gluino decay [Gjelsten, Miller, Osland]

- no problem: additional jets [Rainwater, TP, Skands (2004); Michael Krämer,...]
- no problem: off-shell effects [Catpiss: Hagiwara et al.(2006)]
- all decay jets b quarks [otherwise dead by QCD]
- gluino mass to $\sim 1\%$
- \Rightarrow and why physical masses?

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas (2007)]

- parameters: weak-scale Lagrangian
- measurements: better edges than masses, branching fractions, rates,... [Prospino2] flavor, dark matter, electroweak constraints,...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: no local maximum! problem in fit: no global maximum! problem in physics: secondary maxima!

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- fully exclusive likelihood map p(d|m) over m [hard part]
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local maxima in p(d|m)
 - (3) Bayesian–frequentist dance to reduce dimensions

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas (2007)]

- parameters: weak-scale Lagrangian
- measurements: better edges than masses, branching fractions, rates,... [Prospino2] flavor, dark matter, electroweak constraints,...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: no local maximum! problem in fit: no global maximum! problem in physics: secondary maxima!

MSUGRA as of today [Allanach, Cranmer, Lester, Weber]

- 'Which is the most likely parameter point?'
- 'How does dark matter annihilate/couple?'

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]

$$P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^{N}1/p}$$

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- ⇒ strong correlations even in MSUGRA

Underlying parameters

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]

$$P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^N 1/p}$$

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- ⇒ strong correlations even in MSUGRA

MSSM map from LHC

Underlying parameters

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs still the same, but best points degenerate
- e.g. three neutralinos observed [left: Bayesian right: likelihood]

Bayesian pdf noisy profile likelihood no pdf

 \Rightarrow no golden approach to BSM statistics

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Underlying parameters

Why theorists involved?

- way to learn statistics
- non-negligible theory errors
- model-dependent LHC link with other TeV-scale observations
- test of fundamental concepts

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Underlying parameters

Why theorists involved?

- way to learn statistics
- non-negligible theory errors
- model-dependent LHC link with other TeV-scale observations
- test of fundamental concepts

MSSM parameters beyond LHC [Sfitter+friends (2008)]

- remember: unknown sign(μ) and believe–based tan β extraction

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Underlying parameters

Why theorists involved?

- way to learn statistics
- non-negligible theory errors
- model-dependent LHC link with other TeV-scale observations
- test of fundamental concepts

MSSM parameters beyond LHC [Sfitter+friends (2008)]

- remember: unknown sign(μ) and believe–based tan β extraction
- tan β and sign(μ) from $(g-2)_{\mu}$
- effect of (g 2) strongly correlated

	LHC	LHC \otimes (g	1 – 2)	SPS1a
tan β	10.0± 4.5	10.3±	2.0	10.0
M1	102.1 ± 7.8	$102.7\pm$	5.9	103.1
M ₂	193.3± 7.8	$193.2\pm$	5.8	192.9
M3	577.2±14.5	$578.2 \pm$	12.1	577.9
M _{μ̃}	$193.2\pm$ 8.8	194.0 \pm	6.8	194.4
M _µ	135.0 \pm 8.3	$135.6\pm$	6.3	135.8
M _ã	524.6 ± 14.5	$525.5\pm$	10.6	526.6
Mãp	507.3 ± 17.5	$507.6\pm$	15.8	508.1
μ	350.5 ± 14.5	$352.5\pm$	10.8	353.7

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Underlying parameters

Why theorists involved?

- way to learn statistics
- non-negligible theory errors
- model-dependent LHC link with other TeV-scale observations
- test of fundamental concepts

MSSM parameters beyond LHC [Sfitter+friends (2008)]

- remember: unknown sign(μ) and believe-based tan β extraction
- $\tan\beta$ and $\operatorname{sign}(\mu)$ from $(g-2)_{\mu}$
- effect of (g 2) strongly correlated

Fundamental theory [SFitter + Kneur]

- SUSY breaking?
- unification, GUT?
- scale-invariant sum rules? [Cohen, Schmalz]
- new & crucial: renormalization group bottom-up
- \Rightarrow solidly inference from weak scale

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Remember gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events

Spins from cascades

- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Remember gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events

Spins from cascades

- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP (2006)]

- start with mass-measurement cascade
- now: physics between the endpoints
- model-independent analysis pointless [Barr, Lester, Smillie, Webber]

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Remember gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events

Spins from cascades

- similar: *t*-channel gluino in $pp
 ightarrow ilde{q} ilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP (2006)]

- start with mass-measurement cascade
- now: physics between the endpoints
- model-independent analysis pointless [Barr, Lester, Smillie, Webber]
- 'gluino' a boson: universal extraD
 [spectrum, cross sections, higher KK states ignore]
- compare SUSY vs. KK g, b, Z, ℓ , γ
- simple distributions $\Delta \phi_{bb}$ [3-body decays: Csaki,...]
- ⇒ gluino = fermion with like-sign dileptons

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Remember gluinos: strongly interacting Majorana fermions [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events

Spins from cascades

- similar: *t*-channel gluino in $pp
 ightarrow ilde{q} ilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP (2006)]

- start with mass-measurement cascade
- now: physics between the endpoints
- model-independent analysis pointless [Barr, Lester, Smillie, Webber]
- 'gluino' a boson: universal extraD
 [spectrum, cross sections, higher KK states ignore]
- compare SUSY vs. KK g, b, Z, ℓ , γ
- simple distributions $\Delta \phi_{bb}$ [3-body decays: Csaki,...]
- ⇒ gluino = fermion with like-sign dileptons
- sensitive to model's details
- \Rightarrow LHC only as good as understood hypotheses

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Illustrating hypotheses tests: spin of LSP [Alwall, TP, Rainwater(2007)]

- Majorana LSP with like-sign charginos?

Spins from jets

- hypotheses: like-sign charginos (SUSY) like-sign scalars (stable scalars) like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used!

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

Weak boson fusion and unitarity

Like-sign scalars instead of fermions

- charged Higgs in 2HDM
- $-H^+H^-$ same as simple heavy H^0 [TP, Rainwater, Zeppenfeld (2001); Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2}$$

 \Rightarrow scalars with softer $p_{T,j}$

Tilman Plehn

- TeV scale
- Masses
- Parameters
- Spins & cascades
- Spin & jets

Weak boson fusion and unitarity

Like-sign scalars instead of fermions

- charged Higgs in 2HDM
- $-H^+H^-$ same as simple heavy H^0 [TP, Rainwater, Zeppenfeld (2001); Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$
 $P_L(x, p_T) \sim \frac{(1 - x)^2}{x} \frac{m_W^2}{p_T^4}$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors instead of fermions

- little–Higgs inspired
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{ii}$

Tilman Plehn

- Spin & jets

Weak boson fusion and unitarity

Like-sign scalars instead of fermions

- charged Higgs in 2HDM
- H⁺H⁻ same as simple heavy H⁰ [TP, Rainwater, Zeppenfeld (2001); Buszello, Marguard, v.d.Bij]
- W radiated off guarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim \frac{1+(1-x)^2}{2x} \frac{1}{p_T^2}$$
 $P_L(x,p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$

 \Rightarrow scalars with softer p_{T_i}

Like-sign vectors instead of fermions

- little–Higgs inspired
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{ii}$

Heavy fermions in little-Higgs models

- eavy fermions in little-Higgs models
- huge effects on distributions [strongly interacting Ws
- \Rightarrow LHC needs testable models

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets

New physics at the LHC

Physics in the LHC era

- understand e-w symmetry breaking
- confirm new physics [dark matter]
- complete Standard Model

Tilman Plehn

- TeV scale
- Masses
- Parameters
- Spins & cascades
- Spin & jets

New physics at the LHC

Physics in the LHC era

- understand e-w symmetry breaking
- confirm new physics [dark matter]
- complete Standard Model

LHC physics is fun physics!

- look for solid new-physics signals
- measure weak-scale Lagrangian
- determine fundamental physics
- construct testable new-physics hypotheses [SUSY just one example]

e.g. four generations [Kribs, TP, Spannowsky, Tait (2007)] e.g. large extra dimensions [TP, Litim (2007)] e.g. stable gluinos [Kilian, TP, Richardson, Schmidt (2005)]

- implement into realistic simulations [Madevent (2007)]
- avoid getting killed by QCD
- \Rightarrow LHC more than a discovery machine!

Tilman Plehn

TeV scale

Masses

Parameters

Spins & cascades

Spin & jets