Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

UV Completions of the Standard Model at LHC

Tilman Plehn

University of Edinburgh

Saclay, 3/2008

Tilman Plehn

TeV scale

Masses

Parameters

Spins & iets I

Spins & jets II

Extra dimensions

TeV scale in the LHC era

Decays and masses

Outline

Decays and underlying parameters

Spins and jets I

Spins and jets II

Predictive extra dimensions

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

Standard–Model effective theory

Remember the Standard Model

- gauge theory $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive SU(2) gauge bosons [spontaneous symmetry breaking]
- massive Dirac fermions [via Yukawas]
- perturbatively renormalizable Lagrangian [no 1/M terms]
- one missing piece: Higgs [fundamental? minimal? mass?]
- \Rightarrow truly fundamental theory

How complete experimentally?

- dark matter? [solid evidence! for weak-scale new physics?]
- $-(g-2)_{\mu}$? [possible evidence for weak-scale new physics, review by Dominik]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?]
- matter-antimatter asymmetry? [universe mostly matter]
- gauge-coupling unification? [almost perfect, but proton stable]
- gravity? [mostly negligible but perturbatively non-renormalizable]
- \Rightarrow cut-off scale unavoidable: SM effective theory

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

Standard–Model effective theory

Remember the Standard Model

- gauge theory $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive SU(2) gauge bosons [spontaneous symmetry breaking]
- massive Dirac fermions [via Yukawas]
- perturbatively renormalizable Lagrangian [no 1/M terms]
- one missing piece: Higgs [fundamental? minimal? mass?]
- \Rightarrow truly fundamental theory

How consistent theorically?

- problem of light Higgs:

- cancelled by finely tuned counter term? [ugly, against spirit of symmetries]
- why fundamental Higgs at all, if such poor high-energy behavior?
- tied in with new physics at TeV scale: supersymmetry [my favorite]

extra dimensions [cool idea] little Higgs [old idea, now working] no fundamental Higgs [hard with top mass]

\Rightarrow TeV scale: beautiful ideas — complicated realistic models

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

Effective Standard Model in the LHC era

UV completions from the LHC [Uli Baur's rule: "there is always new physics at higher scales"]

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory in the LHC era

- model-independent analyses not helpful to understand TeV scale
- early data: probably with little information [just a little pheno game]
- understood data: testable TeV-scale models [e.g. Higgs sector vs. underlying theory?]
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian
- \Rightarrow LHC theory without believing any model

Tilman Plehn

TeV scale

Masses

- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

Effective Standard Model in the LHC era

UV completions from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory in the LHC era

- model-independent analyses not helpful to understand TeV scale
- early data: probably with little information [just a little pheno game]
- understood data: testable TeV-scale models [e.g. Higgs sector vs. underlying theory?]
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian
- \Rightarrow LHC theory without believing any model

Role of LHC

- beyond inclusive searches [that was Tevatron] millions of new strongly interacting particles
- ⇒ (1) aim at underlying theory
 (2) try to survive QCD [skipping today]

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

TeV-scale supersymmetry

Supersymmetry

- give each Standard–Model particle a partner [with different spin, including strong interactions]
- symmetry obviously broken by masses [soft breaking, mechanism unknown]
- assume dark matter, stable lightest partner [R parity]
- \Rightarrow measure BSM spectrum with missing energy at LHC

LHC searches: MSSM

- SUSY–Higgs alone interesting...
 ...but not conclusive
 - ...and another talk
- ⇒ list of SUSY partners

		spin	d.o.f.	
fermion	f_L, f_R	1/2	1+1	
\rightarrow sfermion	\tilde{t}_L, \tilde{t}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{0}$	1/2	4 · 2	LSP
gauge bosons	W±	1	2 · 3	
Higgs bosons	H^{\pm}	0	2	
\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets

Spins & jets II

Extra dimensions

Decays and masses

Cascade decays [Atlas-TDR, Cambridge]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy [rates tought because of QCD]
- cascade kinematics [107 · · · 108 events]

 ${}^{;]}_{0 < m_{\mu\mu}^{2} < \frac{m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\ell}}^{2}}{m_{\tilde{\ell}}} \frac{m_{\tilde{\ell}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}}{m_{\tilde{\ell}}}$

\Rightarrow new-physics mass spectrum from cascade kinematics

Tilman Plehn

TeV scale

Masses

- Parameters
- Spins & jets
- Spins & jets II
- Extra dimensions

Decays and masses

Cascade decays [Atlas-TDR, Cambridge]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy [rates tought because of QCD]
- cascade kinematics [10⁷ · · · 10⁸ events]

 ${}^{\rm s]}_{0} < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$

 \Rightarrow new-physics mass spectrum from cascade kinematics

Gluino decay [Gjelsten, Miller, Osland, Raklev]

- no problem: additional jets [Rainwater, TP, Skands; Alwall, Wacker,...]
- no problem: off-shell effects [Catpiss collaboration; Kauer & Rainwater]
- all decay jets b quarks [otherwise dead by QCD]
- limited by jet energy scale
- alternative methods?
- \Rightarrow why physical masses?

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Decays and underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian
- measurements: kinematic endpoints, branching ratios, rates [Prospino2] B decays, $(g-2)_{\mu}$, dark matter, e-w precision data...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid/fit: no local/global maximum problem in physics: secondary maxima

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- fully exclusive likelihood map p(d|m) over m [hard part]
- LHC problem: remove directions
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local maxima in p(d|m)
 - (3) Bayesian-frequentist dance to reduce dimensions

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

- Spins & jets II
- Extra dimensions

Decays and underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian
- measurements: kinematic endpoints, branching ratios, rates [Prospino2] B decays, $(g-2)_{\mu}$, dark matter, e-w precision data...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid/fit: no local/global maximum problem in physics: secondary maxima

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- weighted Markov chains: several times faster [similar to: Ferrenberg & Swendsen]

$$P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^{N}1/p}$$

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- ⇒ strong correlations even in MSUGRA

χ^2	<i>m</i> 0	^m 1/2	$\tan \beta$	A ₀	μ	mt
0.3e-04	100.0	250.0	10.0	-99.9	+	171.4
27.42	99.7	251.6	11.7	848.9	+	181.6
54.12	107.2	243.4	13.3	-97.4	-	171.1
70.99	108.5	246.9	13.9	26.4	-	173.6
88.53	107.7	245.9	12.9	802.7	-	182.7

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Underlying parameters

MSSM map at LHC [for details ask Dirk]

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs still the same, but best points degenerate

 \Rightarrow no golden approach to BSM statistics

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Underlying parameters

MSSM map at LHC [for details ask Dirk]

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs still the same, but best points degenerate
- 6e-07 0.006 e.g. 3 neutralinos observed 5e-07 0.005 4e-07 0.004 Bayesian pdf noisy Ň 3e-07 0.003 profile likelihood no pdf 2e-07 0.002 1e-07 0.001 n 200 400 600 800 1000 ٥ 200 400 600 800 1000 M₁ M₁

 \Rightarrow no golden approach to BSM statistics

MSSM map in LHC era [Sfitter+friends]

– LHC: sign(μ) unknown and tan β extraction believe–based

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Underlying parameters

MSSM map at LHC [for details ask Dirk]

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs still the same, but best points degenerate
- 0.006 e.g. 3 neutralinos observed 6e-0 5e-07 0.005 4e-07 0.004 Bayesian pdf noisy 3e-07 Ň 0.003 profile likelihood no pdf 2e-07 0.002 1e-07 0.001 400 600 800 1000 ٥ 200 400 600 800 1000 200 M₁ M₁

 \Rightarrow no golden approach to BSM statistics

MSSM map in LHC era [Sfitter+friends]

- LHC: sign(μ) unknown and tan β extraction believe-based
- - aneta and ${
 m sign}(\mu)$ from $(g-2)_\mu$ or $B_s o\mu\mu$ [Les Houches 2007: Alexander et al]
- $(g-2)_{\mu}$ very promising
- Bs decays killed by non-pert. QCD

	LHC	LHC $\otimes (g$	- 2)	SPS1a
tan β	10.0± 4.5	10.3 \pm	2.0	10.0
M ₁	102.1 ± 7.8	$102.7\pm$	5.9	103.1
M2	193.3± 7.8	$193.2 \pm$	5.8	192.9
Ma	577.2±14.5	$578.2 \pm$	12.1	577.9
Μ _{μ̃}	193.2 \pm 8.8	194.0 \pm	6.8	194.4
M _µ	135.0 \pm 8.3	$135.6\pm$	6.3	135.8
M _ã ,	524.6 ± 14.5	$525.5\pm$	10.6	526.6
Map	507.3 ± 17.5	$507.6\pm$	15.8	508.1
μ^{n}	350.5 ± 14.5	$352.5\pm$	10.8	353.7

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Underlying parameters

MSSM map at LHC [for details ask Dirk]

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs still the same, but best points degenerate
- \Rightarrow no golden approach to BSM statistics

MSSM map in LHC era [Sfitter+friends]

- LHC: sign(μ) unknown and tan β extraction believe-based
- $-\, aneta$ and ${
 m sign}(\mu)$ from $(g-2)_\mu$ or $B_s o \mu\mu$ [Les Houches 2007: Alexander et al]
- $(g-2)_{\mu}$ very promising
- Bs decays killed by non-pert. QCD

Fundamental theory [SFitter + Kneur]

- SUSY breaking?
- unification, GUT?
- scale-invariant sum rules? [Cohen, Schmalz]
- new & crucial: renormalization group bottom-up
- \Rightarrow LHC sensitive to UV models

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Spins from cascades

Supersymmetry at Tevatron/LHC: Majorana gluinos [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- \Rightarrow gluino = like-sign dileptons in SUSY sample

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Spins from cascades

Supersymmetry at Tevatron/LHC: Majorana gluinos [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP]

- start with mass-measurement cascade
- now: physics between the endpoints
- model-independent analysis difficult [Barr, Lester, Smillie, Webber]

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Spins from cascades

Supersymmetry at Tevatron/LHC: Majorana gluinos [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow \widetilde{q}\widetilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP]

- start with mass-measurement cascade
- now: physics between the endpoints
- model-independent analysis difficult [Barr, Lester, Smillie, Webber]
- UV-completion hypotheses tests instead
- 'gluino' a boson: universal extraD
- compare SUSY vs. KK g, b, Z, ℓ, γ
- simple distributions $\Delta \phi_{bb}$ [3-body decays: Csaki,...]
- \Rightarrow gluino = fermion with like-sign dileptons

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Spins from cascades

Supersymmetry at Tevatron/LHC: Majorana gluinos [Barger,...; Barnett,...; Baer,...]

- LHC: first jet (q or \bar{q}) fixes lepton charge
- same-sign dileptons in 1/2 of events
- similar: *t*-channel gluino in $pp
 ightarrow ilde{q} ilde{q}$
- ⇒ gluino = like-sign dileptons in SUSY sample

Loop hole: gluino is Majorana if fermion [Alves, Eboli, TP]

- start with mass-measurement cascade
- now: physics between the endpoints
- model-independent analysis difficult [Barr, Lester, Smillie, Webber]
- UV-completion hypotheses tests instead
- 'gluino' a boson: universal extraD
- compare SUSY vs. KK g, b, Z, ℓ , γ
- simple distributions $\Delta \phi_{bb}$ [3-body decays: Csaki,...]
- \Rightarrow gluino = fermion with like-sign dileptons
 - sensitive to model's details
- \Rightarrow LHC requiring testable TeV-scale models

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Spins from forward jets

Beyond cascades: spin of LSP [Alwall, TP, Rainwater]

- hypotheses: like-sign charginos (Majorana neutralino) like-sign scalars (stable scalars) like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used, jet correlations the key

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I

Spins & jets II

Extra dimensions

Spins from forward jets

Beyond cascades: spin of LSP [Alwall, TP, Rainwater]

- hypotheses: like-sign charginos (Majorana neutralino) like-sign scalars (stable scalars) like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used, jet correlations the key

Like-sign scalars instead of fermions

- charged Higgs in 2HDM [neutral Higgs: TP, Rainwater, Zeppenfeld; Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2}$$

 \Rightarrow scalars with softer $p_{T,i}$

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

Spins from forward jets

Beyond cascades: spin of LSP [Alwall, TP, Rainwater]

- hypotheses: like-sign charginos (Majorana neutralino) like-sign scalars (stable scalars) like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used, jet correlations the key

Like-sign scalars instead of fermions

- charged Higgs in 2HDM [neutral Higgs: TP, Rainwater, Zeppenfeld; Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$
 $P_L(x, p_T) \sim \frac{(1 - x)^2}{x} \frac{m_W^2}{p_T^4}$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors instead of fermions

- little-Higgs inspired [7-type parity]
- start with copy of SM, heavy W', Z', H', f'
 [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II
- Extra dimensions

Spins from forward jets

Beyond cascades: spin of LSP [Alwall, TP, Rainwater]

- hypotheses: like-sign charginos (Majorana neutralino) like-sign scalars (stable scalars) like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used, jet correlations the key

Like-sign scalars instead of fermions

- charged Higgs in 2HDM [neutral Higgs: TP, Rainwater, Zeppenfeld; Buszello, Marquard, v.d.Bij]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$
 $P_L(x, p_T) \sim \frac{(1 - x)^2}{x} \frac{m_W^2}{p_T^4}$

 $\overline{\boldsymbol{\varsigma}}_{W^{*}}$

χĭ

w

 \Rightarrow scalars with softer $p_{T,j}$

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Predictive extra dimensions

Elegant solution to hierarchy problem [Antoniadis, Arkani-Hamed, Dimopoulos, Dvali]

- highest scale: Planck scale $G_N \sim 1/M_{\rm Planck}^2$ [M_{Planck} ~ 10¹⁹ GeV]
- Einstein-Hilbert action in 4 + n dimensions [on torus periodic boundaries]

$$\int d^4x \sqrt{|g|} \frac{M_{\text{Planck}}^2}{R} \longrightarrow \int d^{4+n}x \sqrt{|g|} \frac{M_D^{2+n}R}{M_D} = (2\pi r)^n \int d^4x \sqrt{|g|} \frac{M_D^{2+n}R}{M_D}$$

$$M_{\text{Planck}} = M_D (2\pi r M_D)^{n/2} \gg M_D \sim 1 \text{ TeV}$$

- to get numbers right: $r = 10^{12}, 10^{-3}, ...10^{-11}$ m for n = 1, 2, ...6
- ⇒ fundamental Planck scale at TeV

Kaluza-Klein gravitons [Giudice, Ratazzi, Wells]

- periodic boundaries: Fourier-transform in extra dimensions [QCD massless]

$$(\Box + m_k^2) \ G_{\mu\nu}^{(k)} = -\frac{T_{\mu\nu}}{M_{\text{Planck}}} \qquad \delta m \sim \frac{1}{r} = 2\pi M_D \left(\frac{M_D}{M_{\text{Planck}}}\right)^{2/n} \lesssim 0.05 \text{ GeV}$$

- KK tower of single gravitons, each coupled as $1/M_{\rm Planck}$
- IR spectrum: constraints from supernova cooling
- UV spectrum: LHC effects at TeV scale [Giudice, Strumia, TP; cosmic rays]

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets

Spins & jets II

Extra dimensions

Predictive extra dimensions

Hope for collider searches [Giudice, Rattazzi, Wells; Han, Lykken, Zhang]

- real radiation of continuous KK tower

$$\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \; S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \; \frac{S_{n-1} \; m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{\text{Planck}}}{M_D}\right)^2$$

- higher-dimensional operator from virtual gravitons [UV dominated]

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_D^4} \left(\frac{\Lambda}{M_D}\right)^{n-2}$$

- KK tower coupling with 1/M_D at LHC
- LHC rates cut-off dependent
- \Rightarrow KK effective theory poor at LHC, UV completion needed

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Predictive extra dimensions

Renormalization flow of gravity [Reuter; Litim; Wetterich;...]

- Einstein–Hilbert action with running $G(\mu)$ and $\Lambda(\mu)$
- dimensionless coupling $g(\mu) = G(\mu) \, \mu^{2+n} = G_0 \, Z_G^{-1}(\mu) \, \mu^{2+n}$
- attractive finite UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_{G} \propto g$]

 $\mu \frac{\partial}{\partial \mu} g_*(\mu) = (2 + n + \eta(g_*)) \ g_*(\mu) = 0 \quad \text{ for } \quad g_* \neq 0 \quad \eta(g_*) = -2 - n$

- gravity asymptotically free in UV $G(\mu) \sim g_* \mu^{-(2+n)}$
- \Rightarrow coupling weak enough for finite LHC predictions?

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Predictive extra dimensions

Renormalization flow of gravity [Reuter; Litim; Wetterich;...]

- Einstein–Hilbert action with running $G(\mu)$ and $\Lambda(\mu)$
- dimensionless coupling $g(\mu) = G(\mu) \, \mu^{2+n} = G_0 \, Z_G^{-1}(\mu) \, \mu^{2+n}$
- attractive finite UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_{G} \propto g$]

 $\mu \frac{\partial}{\partial \mu} g_*(\mu) = (2 + n + \eta(g_*)) \ g_*(\mu) = 0 \quad \text{ for } \quad g_* \neq 0 \quad \eta(g_*) = -2 - n$

- gravity asymptotically free in UV $G(\mu) \sim g_* \mu^{-(2+n)}$
- \Rightarrow coupling weak enough for finite LHC predictions?

UV-safe gravity [Weinberg (1979)]

- gravity non-fundamental effective theory $G \propto 1/M_D^{2+n}$?
- 't Hooft's perturbative renormalizability: finite number of counter terms
- Wilson's renormalizability: no unphysical UV divergences
- consistent theory beyond perturbation theory [no ghosts: Weinberg & Gomez]
- fixed point likely to $\sqrt{|g|} R^8$ and including matter [no proof; not perturbative series]
- great idea for gravity great for LHC

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets

Spins & jets I

Extra dimensions

Predictive extra dimensions

UV-completed graviton production [Litim & TP]

$$- \text{ form factor for } G(\mu) \quad {}_{\text{[Hewett & Rizzo]} 1 \atop \overline{M_D^{2+n}}} \longrightarrow \frac{1}{M_D^{2+n}} \left[1 + \left(\frac{\sqrt{s}}{aM_D} \right)^{2+n} \right]^{-1}$$

- alternative: changing anomalous dimension of graviton [QCD inspired] $P(s,m) = \frac{1}{1 \longrightarrow \frac{M_D^{n+2}}{(1-s)^{n+2}}} \text{ around } m \sim M_D$

$$P(s,m) = \frac{1}{s+m^2} \longrightarrow \frac{m_D}{(s+m^2)^{n/2+2}}$$
 around $m \sim M_0$

integration kernel after integration over m_{KK}

$$\frac{1}{M_D^{2+n}} \int_0^\infty \frac{dm}{m^{n-1}} P(s,m) = \frac{1}{n-2} \frac{1}{M_D^4} \left(\frac{aM_D}{M_D}\right)^{n-2} \left[1 + \frac{n-2}{4}\right] \left[1 + \mathcal{O}\left(\frac{s}{M_D^2}\right)\right]$$

 $-\sqrt{s} > M_D$: kernel only function of \sqrt{s} [matching at M_D ?, black-hole solutions?]

 \Rightarrow UV–safe gravity safe at LHC

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

Predictive extra dimensions

UV-completed graviton production [Litim & TP]

$$- \text{ form factor for } G(\mu) \quad {}_{[\text{Hewett & Rizzo]} 1 \atop M_D^{2+n}} \longrightarrow \frac{1}{M_D^{2+n}} \left[1 + \left(\frac{\sqrt{s}}{aM_D} \right)^{2+n} \right]^{-1}$$

- alternative: changing anomalous dimension of graviton [QCD inspired] $P(s,m) = \frac{1}{s+m^2} \longrightarrow \frac{M_D^{n+2}}{(s+m^2)^{n/2+2}} \text{ around } m \sim M_D$

- integration kernel after integration over mKK

$$\frac{1}{M_D^{2+n}} \int_0^\infty \frac{dm}{m^{n-1}} P(s,m) = \frac{1}{n-2} \frac{1}{M_D^4} \left(\frac{aM_D}{M_D} \right)^{n-2} \left[1 + \frac{n-2}{4} \right] \left[1 + \mathcal{O}\left(\frac{s}{M_D^2} \right) \right]$$

 $-\sqrt{s} > M_D$: kernel only function of \sqrt{s} [matching at M_D ?, black-hole solutions?]

 \Rightarrow UV–safe gravity safe at LHC

String theory as UV completion [e.g. Cullen, Perelstein, Peskin]

$$- \frac{\operatorname{Veneziano form factor}}{\Gamma(1 - \alpha's) \Gamma(1 - \alpha't)} = \frac{\Gamma(1 - s/M_{S}^{2}) \Gamma(1 - t/M_{S}^{2})}{\Gamma(1 - (s + t)/M_{S}^{2})} = 1 - \frac{\pi^{2}}{6} \frac{st}{M_{S}^{4}} + \mathcal{O}\left(M_{S}^{-6}\right)$$

– string resonances in UV: $\sqrt{n} M_S$

⇒ quantum gravity testable at LHC

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions

New physics at the LHC

Physics in the LHC era

- understand e-w symmetry breaking
- confirm new physics [dark matter]
- complete Standard Model

Tilman Plehn

TeV scale

- Masses
- Parameters
- Spins & jets I
- Spins & jets II

Extra dimensions

New physics at the LHC

Physics in the LHC era

- understand e-w symmetry breaking
- confirm new physics [dark matter]
- complete Standard Model

LHC physics is fun physics!

- look for solid new-physics signals
- measure weak-scale Lagrangian
- determine fundamental physics
- construct testable new-physics hypotheses
- implement into realistic simulations
- avoid getting killed by QCD
- ⇒ LHC + testable TeV-scale models: more than discovery machine!

Tilman Plehn

TeV scale

Masses

Parameters

Spins & jets I

Spins & jets II

Extra dimensions