Quantum Gravity at LHC Scales

Tilman Plehn

University of Edinburgh

Sussex, 9/2008
Outline

Standard–Model effective theory

Hadron colliders — the big guys

Large extra dimensions

Effective KK theory

String theory completion

Fixed-point completion

Warped extra dimensions

Fixed-point completion
Standard–Model effective theory

Data vs renormalizable Standard Model

- dark matter? [only solid evidence for new physics, weak–scale?]
- \((g - 2)_\mu\)? [loop effects around weak scale?]
- flavor physics? [new operators above \(10^4\) GeV?]
- neutrino masses? [see-saw at \(10^{11}\) GeV?]
- gauge–coupling unification? [something happening above \(10^{16}\) GeV?]
- gravity? [mostly negligible below \(10^{19}\) GeV]

⇒ obviously effective theory, cutoff negotiable

Problem with fundamental Higgs

- mass driven to cutoff: \(\delta m^2_H/m^2_H \propto g^2(2m^2_W + m^2_Z + m^2_H - 4m^2_t)\ \Lambda^2\)
- easy solution: tune counter term
- whole idea of gauge theories betrayed, evil
- or new physics at TeV scale: supersymmetry
 extra dimensions
 little Higgs, Higgsless, composite Higgs...
 typically cancellation by new states or discussing away high scale
- beautiful concepts, challenged at TeV scale

⇒ whatever is there - LHC’s job to sort it out
Collider searches

Real-particle production

– produce searched–for particle
– observe decay [before hadronization]
– reconstruct decay products [or missing energy]
– measure mass, spin, branching ratios
⇒ high-energy colliders

Virtual-particle effects

– produce and measure something known [like $pp \rightarrow \ell^+ \ell^-$]
– compare to Standard Model predictions
– trust in quantum theory and error estimates
– study deviations
⇒ high-precision colliders

Rare effect or rare decays [B physics, EDMs]

– produce something known [like B_s,...]
– find effect forbidden in Standard Model
⇒ well-chosen experiment, not multi-purpose
Collider searches

Everything you always wanted to know about LHC...

- signal: everything new, exciting and rare
- background: yesterday’s signal
- Standard Model: theory of background
- QCD: evil background theory trying to kill us
- trigger: no leptons/photons — not on tape

\[N_{\text{events}} = \sigma \cdot L \cdot \epsilon \]

⇒ discovery statistical \(N_S / \sqrt{N_B} > 5 \)
Collider searches

Everything you always wanted to know about LHC...

- signal: everything new, exciting and rare
- background: yesterday’s signal
- Standard Model: theory of background
- QCD: evil background theory trying to kill us
- trigger: no leptons/photons — not on tape
- \(N_{\text{events}} = \sigma \cdot L \cdot \epsilon \)

\[\Rightarrow \text{discovery statistical } N_S / \sqrt{N_B} > 5 \]

Computing stuff for hadron colliders

- protons to first approximation valence quarks

\[\sigma_{AB} = \sum_{a,b} \int_0^1 dx_a dx_b \ f_{a/A}(x_a) f_{b/B}(x_b) \ \hat{\sigma}_{ab} \]

(1) parton density \(f_{a/A}(x_a) \):
probability to find \(a \) with momentum fraction \(x_a \) in \(A \)

(2) partonic cross section \(\hat{\sigma}_{ab} \):
- perturbative in QCD [‘hard process’]
- integration over partonic energy scale

\[\Rightarrow \text{energetic valence quarks ahead of many gluons} \]
Large extra dimensions

Remember the hierarchy problem

- fundamental scalars bad with high scale present
- weakness of gravity means large Planck scale $G_N = \frac{1}{(16\pi M_{\text{Planck}})^2}$

⇒ solution: another reason why we see huge non-fundamental M_{Planck}

Large extra dimensions (ADD) [Antoniadis, Arkani-Hamed, Dimopoulos, Dvali]

- Einstein–Hilbert action for low fundamental Planck scale

$$S = -\frac{1}{2} \int d^4x \sqrt{|g|} M_D^2 R \rightarrow - \frac{1}{2} \int d^{4+n} \sqrt{|g|} M_D^{2+n} R$$

$$= - \frac{1}{2} (2\pi r)^n \int d^4x \sqrt{|g|} M_D^{2+n} R$$

$$\equiv - \frac{1}{2} \int d^4x \sqrt{|g|} M_{\text{Planck}}^2 R$$

⇒ express M_{Planck} in terms of fundamental M_D

$$M_{\text{Planck}} = M_D (2\pi r M_D)^{n/2}$$

Numbers to make it work

- free parameter $r M_D \gg 1$
- constraints from gravity tests above $\mathcal{O}(\text{mm})$

⇒ signatures of strong gravity in extra dimension?

<table>
<thead>
<tr>
<th>n</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^{12} m</td>
</tr>
<tr>
<td>2</td>
<td>10^{-3} m</td>
</tr>
<tr>
<td>3</td>
<td>10^{-8} m</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>10^{-11} m</td>
</tr>
</tbody>
</table>
Effective KK theory

Toy model: only gravitons in extra dimensions

- expand the metric \([\text{graviton field } h]\)
 \[
 ds^2 = g_{MN}^{(4+n)} dx^M dx^N = \left(\eta_{MN} + \frac{1}{M_D^{n/2+1}} h_{MN} \right) dx^M dx^N
 \]

- matter in Einstein’s equation \([\text{no cosmological constant}]\)
 \[
 R_{AB} - \frac{1}{2+n} g_{AB} R = - \frac{1}{M_D^{2+n}} \left(\begin{array}{cc} T_{\mu \nu}(x) \delta^{(n)}(y) & 0 \\ 0 & 0 \end{array} \right)
 \]

- Fourier transformation of extra dimensions \([\text{KK excitations for periodic boundary conditions}]\)
 \[
 h_{AB}(x; y) = \sum_{m_1=-\infty}^{\infty} \cdots \sum_{m_j=-\infty}^{\infty} \frac{h^{(m)}_{AB}(x)}{\sqrt{(2\pi r)^n}} e^{i \frac{m_j y_j}{r}}
 \]

- universal interactions of KK gravitons \([h_{AB} \rightarrow G_{\mu \nu}, \text{QCD massless}]\)
 \[
 \left(\Box + m_k^2 \right) G^{(k)}_{\mu \nu} = \frac{1}{M_{\text{Planck}}} \left[-T_{\mu \nu} + \left(\frac{\partial_\mu \partial_\nu}{\hat{m}^2} + \eta_{\mu \nu} \right) \frac{T^\lambda_{\lambda}}{3} \right] = -\frac{T_{\mu \nu}}{M_{\text{Planck}}}
 \]

- tiny KK mass splitting \([M_D = 1 \, \text{TeV}]\)
 \[
 \delta m \sim \frac{1}{r} = 2\pi M_D \left(\frac{M_D}{M_{\text{Planck}}} \right)^{2/n} = \left\{ \begin{array}{ll}
 0.003 \, \text{eV} & (n = 2) \\
 0.1 \, \text{MeV} & (n = 4) \\
 0.05 \, \text{GeV} & (n = 6)
 \end{array} \right.
 \]

\Rightarrow \text{continuum of weakly interacting gravitons at the LHC}
Large extra dimensions

Effective KK theory [Giudice, Rattazzi, Wells; Han, Lykken, Zhang;...]

- real radiation of continuous KK tower \[\frac{d\sigma}{dk} = \frac{1}{r}; (d\sigma) \propto \frac{1}{M^2_{\text{Planck}}} \]
 \[
 (d\sigma) \to \int dm (d\sigma) S_{n-1} m^{n-1} r^n = \int dm (d\sigma) \frac{S_{n-1} m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{\text{Planck}}}{M_D} \right)^2
 \]
- higher-dimensional operator from virtual graviton exchange \[s\text{-channel in DY} \]
 \[
 A = \frac{1}{M_{\text{Planck}}^2} \frac{1}{s - m_{\text{KK}}^2} \to \frac{S_{n-1}}{2} \frac{\Lambda^{n-2}}{M_D^{n+2}}
 \]
- \(1/M_D^2\) interactions for KK tower
 \[
 \Rightarrow \text{like any effective theory valid for } E < M_D
 \]

Real emission \(pp \to G_{KK} + \text{jets}\) [Giudice, Rattazzi, Wells; Vacavant, Hichliffe;...]

- recoil against hard jet \[E_j \sim M_D \]
 background: radiation of \(Z \to \nu\bar{\nu}\)
- \(M = 0\) for \(E_{\text{parton}} > \Lambda_{\text{cutoff}}\)
 \(M = 0\) automatically for \(m_{KK} > E_{\text{parton}}\)
- effective cutoff: steep gluon density
- little UV sensitivity for \(\Lambda_{\text{cutoff}} \to \infty\)
 \[
 \Rightarrow \text{explicit cutoff not crucial}
 \]
Large extra dimensions

Effective KK theory [Giudice, Rattazzi, Wells; Han, Lykken, Zhang;...]

- real radiation of continuous KK tower \([dm/d|k| = 1/r; (d\sigma) \propto 1/M_{Planck}^2]\)

\[(d\sigma) \rightarrow \int dm (d\sigma) S_{n-1} m^{n-1} r^n = \int dm (d\sigma) \frac{S_{n-1} m^{n-1}}{(2\pi M_D)^n} \left(\frac{M_{Planck}}{M_D} \right)^2\]

- higher-dimensional operator from virtual graviton exchange [s-channel in DY]

\[A = \frac{1}{M_{Planck}^2} \frac{1}{s - m_{KK}^2} \rightarrow \frac{S_{n-1}}{2} \frac{\Lambda^{n-2}}{M_{D}^{n+2}}\]

- \(1/M_D^2\) interactions for KK tower

\[\Rightarrow\] like any effective theory valid for \(E < M_D\)

Real emission \(pp \rightarrow G_{KK}+\text{jets}\) [Giudice, Rattazzi, Wells; Vacavant, Hichliffe;...]

- recoil against hard jet \([E_j \sim M_D]\)

background: radiation of \(Z \rightarrow \nu \bar{\nu}\)

- \(\mathcal{M} = 0\) for \(E_{\text{parton}} > \Lambda_{\text{cutoff}}\)

\(\mathcal{M} = 0\) automatically for \(m_{KK} > E_{\text{parton}}\)

- effective cutoff: steep gluon density

- little UV sensitivity for \(\Lambda_{\text{cutoff}} \rightarrow \infty\)

\[\Rightarrow\] explicit cutoff not crucial
Virtual gravitons at LHC

Effective theory of virtual gravitons [Giudice & Strumia; Giudice, Strumia, TP; Kachelries & Plümacher,...]

− virtual graviton in s channel $pp \rightarrow \mu^+ \mu^-$ [$q\bar{q}$ and gg initial states]
− reconstructed $m_{\mu\mu}$ for photon, Z, graviton
− loop-induced D6 operator [axial vector–axial vector]
 \[\mathcal{O} = \frac{1}{16} \frac{1}{M_D^2} \pi^{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{2n+2} \]
− tree-induced D8 operator [leading constant in $\sqrt{s}/\Lambda_{\text{cutoff}}$]
 \[S = \frac{S_{n-1}}{M_D^{2+n}} \int dm \frac{m^{n-1}}{s + m^2} = \left\{ \begin{array}{l} \frac{4\pi}{M_D^4} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} \end{array} \right. \]
 (effective scale)
 (NDA)
 (cutoff Θ)

![Graph of M_{eff} vs. Λ_{eff} for $5\sigma: pp \rightarrow l^+l^-$ (D8)]

S_{n-1}: $pp \rightarrow l^+l^-$ (D8)

- 100 fb^{-1}
- 10 fb^{-1}
Virtual gravitons at LHC

Effective theory of virtual gravitons [Giudice & Strumia; Giudice, Strumia, TP; Kachelries & Plümacher,...]

- virtual graviton in s channel \(pp \rightarrow \mu^+ \mu^- \) [q̄q and gg initial states]
- reconstructed \(m_{\mu\mu} \) for photon, \(Z \), graviton
- loop-induced D6 operator [axial vector–axial vector]
 \[\mathcal{O} = \frac{1}{16} \frac{1}{M_D^2} \frac{\pi^{n-2}}{\Gamma^2(n/2)} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{2n+2} \]
- tree-induced D8 operator [leading constant in \(\sqrt{s}/\Lambda_{\text{cutoff}} \)]
 \[S = \frac{S_{n-1}}{M_D^{2+n}} \int dm \frac{m^{n-1}}{s + m^2} = \begin{cases} \frac{4\pi}{M_D^4} \frac{S_{n-1}}{M_D^{2+n}} \frac{1}{2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(effective scale)} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(NDA)} \\ \frac{S_{n-1}}{M_D^4} \frac{1}{n-2} \left(\frac{\Lambda_{\text{cutoff}}}{M_D} \right)^{n-2} & \text{(cutoff } \Theta) \end{cases} \]
- two-dimensional integration over \((m, s)\)
 - cutoff requiring \(m \lesssim M_D \)
 - additional cutoff for \(\sqrt{s} \lesssim M_D \)
- rates scaling \(M_D^{\max} \sim \Lambda_{\text{cutoff}}^{(n-2)/(n+2)} \)
 \(\Rightarrow \) breakdown of effective theory
String theory completion

String theory as UV completion \[\text{[e.g. Cullen, Perelstein, Peskin; Antoniadis, Benakli, Laugier...]}\]

- ‘In particular, the only known framework that allows for a self-consistent description of quantum gravity is string theory’
- Regge excitations of Standard Model \[\text{[Burikham, Figy, Han]}\]
- compute different helicity contributions, like

\[
\mathcal{A}(e^+_Le^-_R \rightarrow \gamma_L\gamma_R) = -2e^2 \sqrt{\frac{u}{t}} \left(\frac{u}{s} + \frac{t}{s} - 1 \right) = 2e^2 \sqrt{\frac{u}{t}} \\
= -2e^2 \sqrt{\frac{u}{t}} \left(\frac{u}{s} S(s, t) + \frac{t}{s} S(s, u) - S(t, u) \right)
\]

- with Veneziano form factor

\[
S(s, t) = \frac{\Gamma(1 - \alpha's) \Gamma(1 - \alpha't)}{\Gamma(1 - \alpha'(s + t))} = \frac{\Gamma(1 - s/M_S^2) \Gamma(1 - t/M_S^2)}{\Gamma(1 - (s + t)/M_S^2)}
\]

\[
= 1 - \frac{\pi^2}{6} \frac{st}{M_S^4} + \mathcal{O}(M_S^{-6})
\]

- dominant over KK because \(M_{\text{eff}} \gg M_S\)
- closed-string gravitons suppressed
- effective operator below string scale
- string resonances: \(\sqrt{nM_S}\)
Fixed-point completion

Modified graviton propagator [Reuter; Fischer & Litim]

- effective action: \[\Gamma_k = \frac{1}{16\pi G_k} \int d^{4+n}x \sqrt{g} \left[-R(g) + \cdots \right] \]
- gravity weak enough at high energies?
- IR — no running; \(M_D \) regime — strong effects; UV — fixed point

- iterative approach: start with anomalous dimension of graviton

\[
P(s, m) = \begin{cases}
\frac{1}{s + m^2} & \sqrt{s}, m < k_{\text{trans}} \\
\frac{M_D^{n+2}}{(s + m^2)^{n/2+2}} & \sqrt{s}, m > k_{\text{trans}}
\end{cases}
\]

- IR and UV contributions to D8 operator [leading in \(\sqrt{s}/m \), matched to \(1/s^2 \)]

\[
S^{(\text{FP})} = \frac{S_{n-1}}{M_D^4} \left(\frac{k_{\text{trans}}}{M_D} \right)^{n-2} \frac{n-1}{n-2} = (1 + (n-2)) S^{(\Theta)}
\]

- needed and not needed:
 1. transition scale \(k_{\text{trans}} \sim M_D \) [anomalous dimension modeled]
 2. no artificial \(\Lambda_{\text{cutoff}} \) for \(m \) integration
 3. matching/cutoff for \(s \) integration

\[\Rightarrow \text{UV fixed point indeed solution to our problems} \]
Fixed-point completion

test with artificial Λ_{cutoff} setting $M_{KK} = 0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n
Fixed-point completion

test with artificial Λ_{cutoff} setting $M_{KK} = 0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n

Shape of graviton kernel

- shift to larger $m_{\ell\ell}$ [shown $n = 3$]

 small $m_{\ell\ell}$: factor $S \propto (n - 1)$
 large $m_{\ell\ell}$: factor $S^2 \propto (n - 1)^2$

- UV contribution predicted and not negligible
Fixed-point completion

test with artificial Λ_{cutoff} setting $M_{\text{KK}} = 0$

- perfect decoupling, as expected [similar to real emission]
- mild effects for $k_{\text{trans}} = M_D \pm 10\%$ [more details to be studied]
- reach largely independent of n

Shape of graviton kernel

- shift to larger $m_{\ell\ell}$ [shown $n = 3$]
 small $m_{\ell\ell}$: factor $S \propto (n-1)$
 large $m_{\ell\ell}$: factor $S^2 \propto (n-1)^2$
- UV contribution predicted and not negligible

predicted LHC rates

- $S^{(\text{FP})}$: UV regime in addition to $S^{(\Theta)} \equiv S^{\text{IR}}$

<table>
<thead>
<tr>
<th>σ [fb]</th>
<th>$n = 3$</th>
<th>$n = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_D</td>
<td>2 TeV</td>
<td>5 TeV</td>
</tr>
<tr>
<td>$S^{(\text{NDA})}$</td>
<td>43.6</td>
<td>0.18</td>
</tr>
<tr>
<td>$S^{(\Theta)}$</td>
<td>173</td>
<td>0.72</td>
</tr>
<tr>
<td>$S^{(\text{FP})}$</td>
<td>408</td>
<td>1.24</td>
</tr>
</tbody>
</table>

⇒ proof of concept quantitatively very promising
Fixed point

Alternative: start with form factor [Hewett & Rizzo]

- dress s-channel coupling with form factor

\[
\frac{1}{M_D^{2+n}} \rightarrow \frac{1}{M_D^{2+n}} F(s) = \frac{1}{M_D^{2+n}} \left(1 + \left(\frac{\sqrt{s}}{tM_D} \right)^{2+n} \right)^{-1}
\]

- avoids matching of s integration (unitarity)

\[
\frac{1}{M_D^{2+n}} F(s) \sim \frac{1}{M_D^{2+n}} \left(\frac{tM_D}{\sqrt{s}} \right)^{2+n} \sim \frac{1}{s^{1+n/2}}
\]

- improvement of s integration/matching
- still cutoff in KK-mass integration
Fixed point

Alternative: start with form factor [Hewett & Rizzo]

- dress s-channel coupling with form factor

$$\frac{1}{M_{D+n}^{2+n}} \longrightarrow \frac{1}{M_{D+n}^{2+n}} F(s) = \frac{1}{M_{D+n}^{2+n}} \left(1 + \left(\frac{\sqrt{s}}{tM_D} \right)^{2+n} \right)^{-1}$$

- avoids matching of s integration (unitarity)

$$\frac{1}{M_{D+n}^{2+n}} F(s) \sim \frac{1}{M_{D+n}^{2+n}} \left(\frac{tM_D}{\sqrt{s}} \right)^{2+n} \sim \frac{1}{s^{1+n/2}}$$

- improvement of s integration/matching
- still cutoff in KK-mass integration
- also applicable to graviton emission [less impressive effect]

\Rightarrow both, KK and energy integrations understood for fixed point
Warped extra dimensions

Another Solution to hierarchy problem

- one extra dimension, not flat

 \[ds^2 = e^{-2k|y|} \eta_{\mu\nu} dx^\mu dx^\nu - dy^2 \quad \Leftrightarrow \quad g_{AB} = \begin{pmatrix} e^{-2k|y|} \eta_{\mu\nu} & 0 \\ 0 & \eta_{jk} \end{pmatrix} \]

- integration measure in our usual Lagrangian
 \[d^4\tilde{x} \ e^{-4kb} \]
 \[\tilde{g}_{\mu\nu} = \eta_{\mu\nu} \]

- write effective 4D theory on TeV brane scaling all fields
 \[\tilde{H} = e^{-kb} H \quad \text{scalars} \]
 \[\tilde{A}_\mu = e^{-kb} A_\mu \quad \text{or} \quad \tilde{D}_\mu = e^{-kb} D_\mu \]
 \[\tilde{\psi} = e^{-3kb/2} \psi \quad \text{fermions} \]
 \[\tilde{m} = e^{-kb} m \quad \text{masses} \]
 \[\tilde{v} = e^{-kb} v \]
 \[\tilde{y} = y \quad \text{Yukawas} \]

- assume \(kb \sim 35 \) and large fundamental scales
 \[M_D \sim M_{\text{Planck}} \sim k \]

\[\Rightarrow \quad \text{all scales on TeV brane lowered} \]

\[\tilde{v} \sim e^{-kb} M_{\text{Planck}} \lesssim 1 \text{ TeV} \]
Warped extra dimensions

Gravitons in one warped extra dimension

- re-write the metric including 4D graviton

\[ds^2 = \frac{1}{(1 + kz)^2} \left(\eta_{\mu\nu} + h_{\mu\nu}(x, z) \, dx^\mu \, dx^\nu - dz^2 \right) \]

- solve Einstein’s equations separating variables \(\tilde{h}_{\mu\nu}(x, z) = \hat{h}_{\mu\nu}(x) \Phi(z) \)

\[\partial_\mu \partial^\mu \hat{h}_{\mu\nu} = m^2 \hat{h}_{\mu\nu} \]

\[-\partial_z^2 \Phi + \frac{15}{4} \frac{k^2}{(kz + 1)^2} \Phi = m^2 \Phi \]

- masses given by roots of Bessel functions \(J_1(x_j) = 0 \)

\[m_j = x_j \, k \, e^{-kb} \sim \text{TeV} \quad x_j = 3.8, 7.0, 10.2, 16.5, \ldots \]

- weak zero mode from wave-function overlap in \(z \) [approximately, neglect Bessel functions]

\[\Phi(z) \bigg|_{\text{TeV}} \sim \sqrt{kz + 1} \bigg|_{\text{Planck}} \sim \frac{1}{\sqrt{eky} \bigg|_{\text{TeV}}} \sim \frac{1}{e^{kb/2}} \ll 1 \]

- roughly universal couplings for higher modes

\[\mathcal{L} \sim \frac{1}{M_{\text{Planck}}} \, T^{\mu\nu} h^{(0)}_{\mu\nu} + \frac{1}{M_{\text{Planck}} \, e^{-kb}} \, T^{\mu\nu} \sum h^{(m)}_{\mu\nu} \]

\[\Rightarrow \, Z' \text{ decays to leptons etc revisited...} \]
Fixed point completion

Screened coupling again [Hewett & Rizzo]

- mass and energy integrations not problematic
- UV problem with widths of KK resonances
 \[\frac{\Gamma_j}{m_j} \propto x_j^2 \]

- form factor on mass pole implies constant widths
 \[F^{-1} = 1 + \left(\frac{m_j}{t M_D e^{-k b}} \right)^3 \]
 implies
 \[\Gamma_j \propto k e^{-k b} t^3 \]

- resonance structure also for high excitations at LHC

⇒ RS models with fixed point well behaved in UV
Outlook

KK Gravitons at LHC

- searches as part of puzzle of electroweak symmetry breaking
- effective field theory:
 - real emission accidentally well defined
 - virtual–graviton predictions cutoff dependent
- string theory:
 - solution not clear, but gravitons sub-leading anyhow
- fixed-point picture:
 - gravity weak at large scales [asymptotic safety]
 - effect on KK mass: graviton anomalous dimension
 - effect on energy: coupling form factor

⇒ UV-complete ADD/RS models possible for LHC
Quantum Gravity at LHC Scales

Tilman Plehn

LHC basics
Collider searches
Large dimensions
Effective theory
String theory
Fixed point
Warped dimensions
Fixed point