New Physics at the LHC

Tilman Plehn

Universität Heidelberg

Dresden, 4/2009

Outline

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

– Einstein: beam energy to particle mass $E=mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

huge detectors, computers, analysis... → experimental particle physics prejudice, fun and smart comments... → theoretical particle physics

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

– Einstein: beam energy to particle mass $E=mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

life as an experimentalist

life as a theorist

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

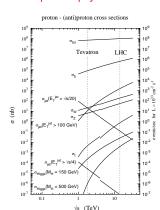
– Einstein: beam energy to particle mass $E=mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

life as an experimentalist

life as a theorist

Tilman Plehn

The LHC


LHC — Large Hadron Collider: starting Summer 20XX

– Einstein: beam energy to particle mass $E=mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

Everything you always wanted to know...

- Atlas/CMS: measure anything flying around
- signal: everything new, exciting and rare background: yesterday's signal
- Standard Model: theory of background QCD: evil background theory trying to kill us
- $N_{\text{events}} = \sigma \cdot \mathcal{L}$ ['cross section times luminosity']
- trigger: soft jets not on tape
- jet: everything except for leptons/photons crucial: what is inside a jet $[q, g, b, \tau \text{ tagged?}]$
- discovery $N_S/\sqrt{N_B} > 5$

Tilman Plehn

Standard–Model effective theory

A brief history of our Standard-Model mess...

- Fermi 1934: theory of weak interactions $[n \to pe^-\bar{\nu}_e]$ $(2 \rightarrow 2)$ transition amplitude $A \propto G_F E^2$ probability/unitarity violation pre-80s effective theory for *E* < 600 GeV
- Yukawa 1935: massive particle exchange four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2/(E^2 - M^2)$ unitarity violation in WW → WW current effective theory for E < 1.2 TeV [LHC energy!!]

LHC Tilman Plehn

Standard–Model effective theory

A brief history of our Standard-Model mess...

- Fermi 1934: theory of weak interactions $[n op pe^{-\bar{\nu}_e}]$ (2 ou 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particle exchange four fermions unitary for $E\gg M$: $\mathcal{A}\propto g^2E^2/(E^2-M^2)$ unitarity violation in $WW\to WW$ current effective theory for E<1.2 TeV [LHC energy!!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV

Standard–Model effective theory

A brief history of our Standard-Model mess...

- Fermi 1934: theory of weak interactions $_{[n \to pe^-\bar{\nu}_e]}$ $(2 \to 2)$ transition amplitude $_{\mathcal{A}} \propto G_F E^2$ probability/unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particle exchange four fermions unitary for $E\gg M$: $\mathcal{A}\propto g^2E^2/(E^2-M^2)$ unitarity violation in $WW\to WW$ current effective theory for $E<1.2~{\rm TeV}$ [LHC energy!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV
- 't Hooft & Veltman 1971: renormalizability beware of 1/M couplings gauge theories without cut-off truly fundamental theory

⇒ 35 years later — no sign of weakness...

Standard–Model effective theory

What is the Standard Model?

- gauge theory with local $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive W,Z bosons [Higgs mechanism]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector
- renormalizability $\mathcal{L} \sim -m_W^2 W_\mu W^\mu m_f \overline{\psi} \psi + g H \overline{\psi} \psi \stackrel{?}{+} rac{g}{M} H W_{\mu
 u} W^{\mu
 u}$
- ⇒ fundamental theory: particle content, interactions, renormalizability

Standard–Model effective theory

What is the Standard Model?

- gauge theory with local $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector
- renormalizability $\mathcal{L}\sim -m_W^2W_\mu W^\mu -m_f\overline{\psi}\psi +gH\overline{\psi}\psi \stackrel{?}{+}rac{g}{M}HW_{\mu
 u}W^{\mu
 u}$
- ⇒ fundamental theory: particle content, interactions, renormalizability

Standard–Model effective theory

What is the Standard Model?

- gauge theory with local $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector

- renormalizability
$$\mathcal{L} \sim -m_W^2 W_\mu W^\mu - m_f \overline{\psi} \psi + g H \overline{\psi} \psi + \frac{g}{M} H W_{\mu\nu} W^{\mu\nu}$$

 \Rightarrow fundamental theory: particle content, interactions, renormalizability

And how complete experimentally?


- dark matter? [solid evidence for low–scale new physics!?]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?]
- matter–antimatter asymmetry? [universe mostly matter?]
- gauge coupling unification real?
- gravity missing? [mostly negligible but definitely unrenormalizaby]
- ⇒ physical cut-off unavoidable, size negotiable, renormalizability desirable
- ⇒ who the hell cares???

Standard-Model effective theory

Theorists care!!

– Heisenberg: compute quantum corrections to Higgs mass... $[\Delta t \, \Delta E < 1]$

New Physics at the Standard-Model effective theory

Theorists care!!

- Heisenberg: compute quantum corrections to Higgs mass...
 - ...and watch the field-theory desaster unfold

$$m_H^2 \longrightarrow m_H^2 - \frac{g^2}{(4\pi)^2} \frac{3}{2} \frac{\Lambda^2}{m_W^2} \left[m_H^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right] + \cdots$$

- Higgs mass pulled to physical cut-off Λ [where Higgs at Λ is not a Higgs]
- ⇒ hierarchy problem Higgs without stabilization incomplete

Tilman Plehn

Standard–Model effective theory

Theorists care!!

- Heisenberg: compute quantum corrections to Higgs mass... ...and watch the field-theory desaster unfold

$$m_H^2 \longrightarrow m_H^2 - \frac{g^2}{(4\pi)^2} \frac{3}{2} \frac{\Lambda^2}{m_W^2} \left[m_H^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right] + \cdots$$

- Higgs mass pulled to physical cut-off Λ [where Higgs at Λ is not a Higgs]
- ⇒ hierarchy problem Higgs without stabilization incomplete

Starting from data which...

- ...indicates a light Higgs [e-w precision data]
- ...indicates higher-scale physics
- easy solution: counter term but gauge theories don't do tuning
- or new physics at TeV scale: supersymmetry extra dimensions

little Higgs

composite Higgs, TopColor [wish they were gone...]

YourFavoriteNewPhysics...

- ⇒ typically cancellation by new particles or discussing away high scale
- ⇒ beautiful concepts, but problematic in reality
- ⇒ TeV-scale models in baroque state

Standard-Model effective theory

Theorists care!!

- Heisenberg: compute quantum corrections to Higgs mass...
 - ...and watch the field-theory desaster unfold

$$m_H^2 \longrightarrow m_H^2 - \frac{g^2}{(4\pi)^2} \frac{3}{2} \frac{\Lambda^2}{m_W^2} \left[m_H^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right] + \cdots$$

- Higgs mass pulled to physical cut-off Λ $\,$ [where Higgs at Λ is not a Higgs]
- ⇒ hierarchy problem Higgs without stabilization incomplete

Expectations from the LHC

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark–matter candidate?

Example: TeV-scale supersymmetry

Supersymmetry

- partner for each Standard–Model particle
- SUSY obviously broken by masses, mechanism unknown
- not an LHC paradigm: maximally blind mediation <code>[MSUGRA, CMSSM]</code> scalars m_0 fermions $m_{1/2}$ tri-scalar A_0 Higgs sector $\mathrm{sign}(\mu)$, $\tan\beta$
- assume dark matter, stable lightest partner
- \Rightarrow measure BSM spectrum with missing energy at LHC

Example: TeV-scale supersymmetry

H H W

Supersymmetry

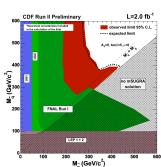
- partner for each Standard–Model particle
- SUSY obviously broken by masses, mechanism unknown
- not an LHC paradigm: maximally blind mediation [MSUGRA, CMSSM] scalars m_0 fermions $m_{1/2}$ tri-scalar A_0 Higgs sector $\mathrm{sign}(\mu)$, $\tan\beta$
- assume dark matter, stable lightest partner
- \Rightarrow measure BSM spectrum with missing energy at LHC

LHC searches: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to t and b?
 - → five Higgs bosons
- SUSY–Higgs alone interesting
- ⇒ would be another talk...
- ⇒ list of SUSY partners

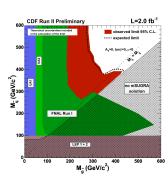
		spin	d.o.f.	
fermion	f _L , f _R	1/2	1+1	
→ sfermion	\tilde{t}_L, \tilde{t}_B	0	1+1	
gluon	G_{μ}	1	n-2	
→ gluino	g '	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h^0 , H^0 , A^0	0	3	
→ neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	LSP
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
→ charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

Supersymmetric signatures


New physics at the LHC

- (1) discovery signals for new physics
- (2) measurements spectrum, quantum numbers
- (3) parameters TeV-scale Lagrangian, underlying theory
- \Rightarrow approach independent of new physics model

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- rates not good in $\alpha_s/(4\pi) \sim 0.01$ (collinear) jets everywhere good LHC observables needed
- ⇒ aim at underlying theory

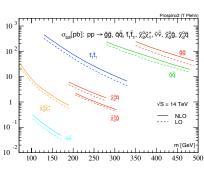

Supersymmetric signatures

New physics at the LHC

- (1) discovery signals for new physics
- (2) measurements spectrum, quantum numbers
- (3) parameters TeV-scale Lagrangian, underlying theory
- \Rightarrow approach independent of new physics model

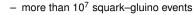
Special about LHC, except bigger than Tevatron

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- rates not good in $\alpha_s/(4\pi) \sim 0.01$ (collinear) jets everywhere good LHC observables needed
- ⇒ aim at underlying theory


Supersymmetric signatures

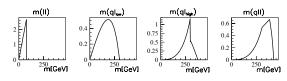
New physics at the LHC

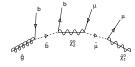
- (1) discovery signals for new physics
- (2) measurements spectrum, quantum numbers
- (3) parameters TeV-scale Lagrangian, underlying theory
- \Rightarrow approach independent of new physics model


Special about LHC, except bigger than Tevatron

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- rates not good in $\alpha_s/(4\pi) \sim$ 0.01 (collinear) jets everywhere good LHC observables needed
- ⇒ aim at underlying theory

New physics measurements

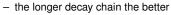

Spectra from cascade decays



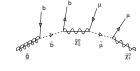
- thresholds & edges

$$\begin{split} m_{ij}^2 &= E_i E_j - |\vec{p_i}| |\vec{p_j}| \cos \theta_{ij} \\ 0 &< m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\mu}}^2}{m_{\tilde{\mu}}} \; \frac{m_{\tilde{\mu}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\mu}}} \end{split}$$

- the longer decay chain the better
- ⇒ new-physics mass spectrum from cascade decays


New physics measurements

Spectra from cascade decays

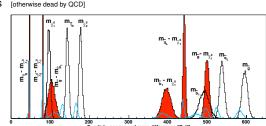

- more than 10⁷ squark-gluino events
- thresholds & edges

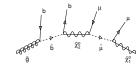
$$m_{ij}^2 = E_i E_j - |\vec{p_i}| |\vec{p_j}| \cos \theta_{ij}$$

$$0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2}^2 - m_{\tilde{\mu}}^2}{m_{\tilde{\mu}}} \frac{m_{\tilde{\mu}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\mu}}}$$

New physics measurements

Spectra from cascade decays

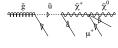

- more than 10⁷ squark-gluino events
- thresholds & edges

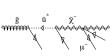

$$\begin{split} m_{ij}^2 &= E_i E_j - |\vec{p_i}| |\vec{p_j}| \cos \theta_{ij} \\ 0 &< m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\mu}}^2}{m_{\tilde{\mu}}} \; \frac{m_{\tilde{\mu}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\mu}}} \end{split}$$

- the longer decay chain the better
- ⇒ new-physics mass spectrum from cascade decays

Cascade masses from kinematics

- all decay jets b quarks [otherwise dead by QCD]
- gluino mass to \sim 1%
- \Rightarrow what's more in m_{ij} ?





New physics measurements

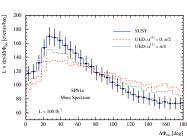
When do I believe it's SUSY-QCD?

- gluinos: strongly interacting Majorana fermions
 Majorana = its own antiparticle
- first jet in gluino decay: q or \bar{q}
- $-\,$ final–state leptons with charges 50%-50%
- \Rightarrow gluino = like-sign dileptons in SUSY-like events

New physics measurements

When do I believe it's SUSY-QCD?

- gluinos: strongly interacting Majorana fermions
 Majorana = its own antiparticle
- first jet in gluino decay: q or \bar{q}
- final–state leptons with charges 50% 50%
- ⇒ gluino = like-sign dileptons in SUSY-like events



All new physics is hypothesis testing

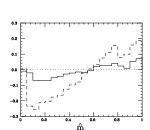
- loop hole: 'gluino is Majorana if it is a fermion'
- assume gluino cascade observed
- $\,-\,$ straw-man model where 'gluino' is a boson: universal extra dimensions

[spectra degenerate — ignore; cross section larger — ignore]

New physics measurements

When do I believe it's SUSY-QCD?

- gluinos: strongly interacting Majorana fermions Majorana = its own antiparticle
- first jet in gluino decay: q or \bar{q}
- final-state leptons with charges 50% 50%
- ⇒ gluino = like-sign dileptons in SUSY-like events

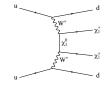


Asymmetries

- shorter sqark decay chain
- shape between endpoints: $\hat{m} = m_{q\mu}/m_{q\mu}^{\text{max}} \sim \sin \theta/2$
- dominant $pp \rightarrow \tilde{q}\tilde{g}$ with $\tilde{q}: \tilde{q}^* \sim 2:1$
- production asymmetry with reduced errors

$$\mathcal{A}(m_{\mu j}) = \frac{\sigma(j\mu^+) - \sigma(j\mu^-)}{\sigma(j\mu^+) + \sigma(j\mu^-)}$$

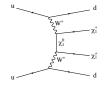
- kind of similar for gluino decay
- ⇒ gluino = fermion with like-sign dileptons



Weak boson fusion

Illustrating useful jets: spin of LSP

- Majorana LSP with like-sign charginos?
- hypotheses: like-sign charginos (SUSY)
 like-sign scalars (scalar dark matter)
 like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used
- want to bet we can tell them apart just using the jets?

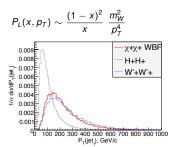


LHC Tilman Plehn

Weak boson fusion

Illustrating useful jets: spin of LSP

- Majorana LSP with like-sign charginos?
- hypotheses: like-sign charginos (SUSY)
 like-sign scalars (scalar dark matter)
 like-sign vector bosons (little-Higgs inspired)
- chargino decay/kinematics not used
- want to bet we can tell them apart just using the jets?


Weak boson fusion

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- $-H^+H^-$ same as simple H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

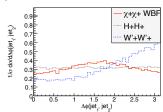
 \Rightarrow scalars with softer $p_{T,j}$

Tilman Plehn

Weak boson fusion

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- − H⁺H[−] same as simple H⁰
- W radiated off quarks [Goldstone coupling to Higgs]


$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

 $P_L(x, p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors or fermions?

- little-Higgs inspired
- start with copy of SM, heavy W', Z', f'
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Tilman Plehn

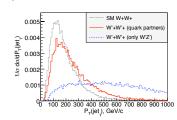
Weak boson fusion

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- $-H^+H^-$ same as simple H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2}$$

$$P_L(x, p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$$


 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors or fermions?

- little-Higgs inspired
- start with copy of SM, heavy W', Z', f'
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{ii}$

Or else...

- nightmare: strongly interacting WW

Fundamental parameters

From kinematics to weak-scale parameters

- parameters: weak-scale Lagrangian
- measurements: better edges than masses,
 branching fractions, rates,...
 flavor, dark matter, electroweak constraints,...
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

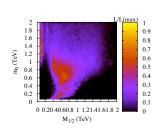
Probability maps of new physics

- want probability of model being true p(m|d) have exclusive likelihood map p(d|m) over m
- Bayesian: $p(m|d) \sim p(d|m) \ p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_{m} p(d|m)$ [flavor]
- getting rid of parameters: integration vs projection
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local best-fitting points
 - (3) predict additional observables

Markov chains

Define set of representative points in new-physics space

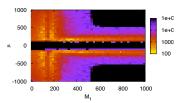
- measure of 'representative': likely to agree with data [Markov chain]
- evaluate any function over chain
- (1) probability to agree with data
- (2) Higgs mass from LEP and DM relic density LHC rates from LEP and DM relic density dark matter detection from LEP and/or LHC dates of birth of people on shift...
- \Rightarrow anything goes


Markov chains

Define set of representative points in new-physics space

- measure of 'representative': likely to agree with data [Markov chain]
- evaluate any function over chain
- (1) probability to agree with data
- (2) Higgs mass from LEP and DM relic density LHC rates from LEP and DM relic density dark matter detection from LEP and/or LHC dates of birth of people on shift...
- ⇒ anything goes

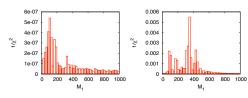
Bayesian probabilities vs profile likelihood


- 'Which is the most likely parameter point?'
- 'How does dark matter annihilate/couple?'

Fundamental parameters

MSSM map for LHC

- four neutralinos with (diagonal) mass parameters $\textit{M}_1, \textit{M}_2, \mu$
- three of four mass-eigenstate neutralinos observed
- alternative solutions in parameter space



Tilman Plehn

Fundamental parameters

MSSM map for LHC

- four neutralinos with (diagonal) mass parameters $\emph{M}_1, \emph{M}_2, \mu$
- three of four mass-eigenstate neutralinos observed
- alternative solutions in parameter space

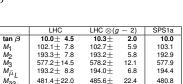
- quality of fit not useful: all the same...

		μ.	< 0			μ :	> 0	
M ₁	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M_2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ^{-}	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
$tan \beta$	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
М3	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
$M_{\tilde{\mu}_L}$	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8
$M_{\tilde{\mu}_R}$	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9
m _A	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1
m_t	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

⇒ let's try to not miss too many particles...

Beyond the LHC

Why theorists involved?


- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

– remember: unknown sign(μ), believe—based $\tan \beta$ from m_h

 $M_{\tilde{b}_R}$

- (1) maybe it's new physics: $(g-2)_{\mu} \sim an eta$
 - strongly correlated and promising

499.2+

 $352.5 \pm$

19.3

10.8

502.9

353.7

501.7 ± 17.9

350.5±14.5

Tilman Plehn

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe—based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim \tan \beta$
 - strongly correlated and promising

	LHC	LHC ⊗(g	- 2)	SPS1a
tan $oldsymbol{eta}$	10.0± 4.5	10.3±	2.0	10.0
M ₁	102.1 ± 7.8	102.7±	5.9	103.1
M ₂	193.3± 7.8	193.2±	5.8	192.9
M ₂	577.2±14.5	578.2±	12.1	577.9
$M_{\tilde{\mu}_L}$	193.2± 8.8	194.0 \pm	6.8	194.4
M _{q̃3} L	481.4±22.0	$485.6 \pm$	22.4	480.8
M _D	501.7±17.9	499.2±	19.3	502.9
μ^{-H}	350.5±14.5	352.5±	10.8	353.7

Tilman Plehn

Beyond the LHC

Why theorists involved?

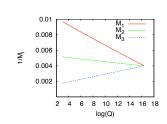
- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe—based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim \tan \beta$
- strongly correlated and promising
- (2) maybe we will see BR($B_s \rightarrow \mu\mu$) $\sim \tan^6 \beta$
 - stop-chargino sector missing
 - prediction of f_{B_s} missing

Beyond the LHC

Why theorists involved?


- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe—based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim \tan \beta$
 - strongly correlated and promising
- (2) maybe we will see BR($B_s \rightarrow \mu\mu$) $\sim \tan^6 \beta$
 - stop-chargino sector missing
 - prediction of f_{Bs} missing

Renormalization group analysis

- SUSY breaking, unification, GUT?
- scale-invariant sum rules?

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe—based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim \tan \beta$
 - strongly correlated and promising
- (2) maybe we will see BR($B_s \rightarrow \mu\mu$) $\sim \tan^6 \beta$
 - stop-chargino sector missing
 - prediction of f_{Bc} missing

Renormalization group analysis

- SUSY breaking, unification, GUT?
- scale-invariant sum rules?
- ⇒ fundamental theory at all scales happy neighbors!

New physics at the LHC

Need for new physics

- there is physics beyond Standard Model
- Higgs and new physics the same question
- LHC should find and study it

Supersymmetry one well-studied example

- solves the hierarchy problem
- easily explains dark matter
- cascade decays rule
- LHC to determine underlying model

LHC not only the biggest, but also the coolest machine!

