Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

Higgs physics

4MSSM

Talking about Four Generations

Tilman Plehn

Heidelberg University

Single Top Workshop, DESY, 2009

Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

Higgs physics

4MSSM

Outline

Chiral 4th Generation

Electroweak precision data

Flavor constraints

Perturbativity

Direct Searches

Higgs physics

Supersymmetric fourth generation

Tilman Plehn

4th Generation

- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics
- 4MSSM

Chiral 4th Generation

Some questions [Sher; Holdom; Hou;...; Kribs, TP, Spannowsky, Tait]

- simply phenomenological: why three generations? [review: Framton, Hung, Sher]
 - anomaly cancellation?
 light neutrinos and LEP?
 - Majorana neutrinos in neutrinoless double beta decay?
 - electroweak precision data?
 - flavor constraints?
- \Rightarrow none of the constraints convincing ['Why there should not be a fourth generation'; Feyerabend]
 - strongly interacting theory? electroweak baryogenesis? dark matter?
- \Rightarrow at least as interesting as everything else

Tilman Plehn

4th Generation

- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics
- 4MSSM

Chiral 4th Generation

Some questions [Sher; Holdom; Hou;...; Kribs, TP, Spannowsky, Tait]

- simply phenomenological: why three generations? [review: Framton, Hung, Sher]
- anomaly cancellation? light neutrinos and LEP? Majorana neutrinos in neutrinoless double beta decay? electroweak precision data? flavor constraints?
- \Rightarrow none of the constraints convincing ['Why there should not be a fourth generation'; Feyerabend]
 - strongly interacting theory? electroweak baryogenesis? dark matter?
- \Rightarrow at least as interesting as everything else

The model [old story]

- complete additional generation $[Q_4, U_4, D_4, L_4, e_4, \nu_4]$
- masses from Yukawas
- representations as Standard Model: no FCNC
- charged currents: (4 \times 4) fermion-mixing matrices [single-top (D0) $V_{bt} \gtrsim$ 0.68]
- neutrino mass: $\mathcal{L} \sim y_4 \; \tilde{H} \bar{L}_4 \nu_{4R} + M \; \bar{\nu}^c_{4R} \nu_{4R}/2$

Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

Higgs physics

4MSSM

Electroweak precision data

Electroweak precision data [LEPEWWG]

- Particle Data Group:

An extra generation of ordinary fermions is excluded at the 6σ level on the basis of the S parameter alone... [Erler & Langacker]

Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

Higgs physics

4MSSM

Electroweak precision data

Electroweak precision data [LEPEWWG]

- Particle Data Group:

An extra generation of ordinary fermions is excluded at the 6σ level on the basis of the S parameter alone... [Erler & Langacker]

This result assumes that...any new families are degenerate [Erler & Langacker]

Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

Higgs physics

4MSSM

Electroweak precision data

Electroweak precision data [LEPEWWG]

- Particle Data Group:

An extra generation of ordinary fermions is excluded at the 6σ level on the basis of the S parameter alone... [Erler & Langacker]

This result assumes that...any new families are degenerate [Erler & Langacker] Just as our 3rd generation??? [Holdom; Kribs, TP, Spannowsky, Tait]

Tilman Plehn

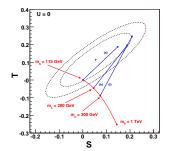
4th Generation

Precision data

- Flavor
- Perturbativity
- Direct Searches
- Higgs physics
- 4MSSM

Electroweak precision data

Electroweak precision data [LEPEWWG]


- Particle Data Group:

An extra generation of ordinary fermions is excluded at the 6σ level on the basis of the S parameter alone... [Erler & Langacker]

This result assumes that...any new families are degenerate [Erler & Langacker] Just as our 3rd generation??? [Holdom; Kribs, TP, Spannowsky, Tait]

- okay, got is, some people prefer a boring Z^\prime but for the purpose of this talk let's be honest and open minded
- for our purpose: leading S and T $~[{\bigtriangleup} u \sim {\tt 0} \ {\tt as in \ SM}]$
- neutrino with Dirac mass $[\Delta S < 0 \text{ for Majorana neutrinos: Kniehl, Kohrs}]$
- fermion doublet: $\Delta S = N_f / (6\pi) (1 2Y \log m_u^2 / m_d^2)$ [Y_ℓ = -1/2; Y_q = 1/6]
- old trick: compensate $\Delta S \sim \Delta T > 0$ [Hill] small $m_H: \Delta T \sim \Delta S \sim 0.2$ large $m_H: \Delta T \sim \Delta S + 0.2 \sim 0.3$

п	ⁿ u ₄	m _{d4}	m _h	ΔS_{tot}	ΔT_{tot}
- 3	310	260	115	0.15	0.19
3	310	260	200	0.19	0.20
3	330	260	300	0.21	0.22
- 4	100	350	115	0.15	0.19
4	400	340	200	0.19	0.20
4	400	325	300	0.21	0.25

Tilman Plehn

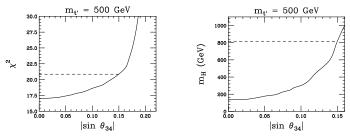
4th Generation

Precision data

Flavor

Perturbativity

Direct Searches


Higgs physics

4MSSM

Flavor constraints

More precision data [Alex?]

- proper ew precision fit: $|\sin \theta_{34}| < 0.11$ for $m_H \lesssim 280 \text{ GeV}$ [Chanowitz]

- just had flavored coffee with Frau Prof Hiller $B_s \rightarrow \ell^+ \ell^-$ allowed in m_{u_4} -sin θ_{34} plane for small θ_{34}

- all allowed region

$$\begin{split} m_{\ell_4}, m_{\nu_4} \gtrsim 100 \; \text{GeV} & m_{\ell_4} - m_{\nu_4} \simeq 30 - 60 \; \text{GeV} \\ m_{u_4}, m_{d_4} \gtrsim 260 \; \text{GeV} & m_{u_4} - m_{d_4} \simeq \left(1 + \frac{1}{5} \ln \frac{m_{\mathcal{H}}}{115 \; \text{GeV}}\right) \times 50 \; \text{GeV} \\ |V_{ud_4}|, |V_{cd_4}|, |V_{u_4d}| \lesssim 0.04 \cdots \\ |U_{e4}|, |U_{\mu 4}| \lesssim 0.01 \cdots \end{split}$$

- small but finite θ₃₄ reasonable [CKMFitter? Heiko?]

Tilman Plehn

4th Generation

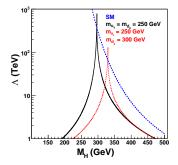
Precision data

Flavor

Perturbativity

Direct Searches Higgs physics

4MSSM


Perturbativity

Perturbative validity [review: Sher]

- Higgs mass and potential [dominant RGE effect in SM]:

$$m_{H}^{2} = \lambda v^{2} \qquad 16\pi^{2} \frac{d\lambda}{d \log \mu} \sim 12\lambda^{2} + 4\sum_{f} N_{c}^{2} \left(\lambda y_{f}^{2} - y_{f}^{4}\right) + \cdots$$

- stability bound (m_H^{min}) vs Landau pole or triviality bound (m_H^{max})
- valid to scales comparable to Little Higgs
- different for 4MSSM [later]

Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

4MSSM

Perturbativity

Perturbative validity [review: Sher]

- Higgs mass and potential [dominant RGE effect in SM]:

$$m_{H}^{2} = \lambda v^{2}$$
 $16\pi^{2} \frac{d\lambda}{d\log\mu} \sim 12\lambda^{2} + 4\sum_{t} N_{c}^{2} \left(\lambda y_{t}^{2} - y_{t}^{4}\right) + \cdots$

- stability bound (m_H^{min}) vs Landau pole or triviality bound (m_H^{max})
- valid to scales comparable to Little Higgs
- different for 4MSSM [later]

Turn this into virtue [Hill...; Holdom]

- coupling to weak Goldstone modes strong $[m_{q_4}\gtrsim 550~{\rm GeV}~{\rm and}~\Lambda\gtrsim 1~{\rm TeV}]$
- condensates $\langle \bar{u}_4 u_4 \rangle = \langle \bar{d}_4 d_4 \rangle \neq 0$ [while $\langle \bar{t}t \rangle = \langle \bar{b}b \rangle = 0$]
- bottom-up: invoke series of U(1) symmetries for

 $\begin{array}{ll} (\bar{q}_{4L}d_{4R}) \cdot (\bar{q}_{3L}t_R) & \rightarrow (\bar{d}_{4L}d_{4R}) \, (\bar{t}_L t_R) & \rightarrow m_t \, (\bar{t}_L t_R) \\ (\bar{q}_{4L}u_{4R}) \cdot (\bar{q}_{3L}b_R) & \rightarrow (\bar{u}_{4L}u_{4R}) \, (\bar{b}_L b_R) \rightarrow m_b \, (\bar{b}_L b_R) \end{array}$

- improved compared to technicolored boson exchange: no contribution to Zbb vertex a la $(\bar{T}_L T_R) (\bar{t}_R t_L) \sim (\bar{q}_L \gamma_\mu T_L) (\bar{T}_L \gamma^\mu b_L)$ similarly, no large u_4 - d_4 mass splitting contributing to T
- computable as weakly interacting RS model [Burdman & De Rold]
- ⇒ simple theory without Higgs

Tilman Plehn

4th Generation

- Precision data
- Flavor
- Perturbativity

Direct Searches

Higgs physics

Direct searches

Direct searches [Holdom,...]

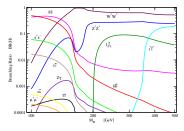
- assume $m_{u_4} \gtrsim m_{d_4} + 50~{
 m GeV}~{
 m [precision constraints]}$
- tree level via CKM: $d_4 \rightarrow tW$ pair production $d_4 \bar{d}_4 \rightarrow b\bar{b}WWWW$
- loop-induced $d_4 \rightarrow bZ$ [CDF $m_U \gtrsim$ 270 GeV]
- tree level via CKM: $u_4 \rightarrow bW$ [CDF $m_u > 260 \text{ GeV}$] pair production $u_4 \bar{u}_4 \rightarrow b\bar{b}WW$
- small mixing: $u_4 \rightarrow d_4 W$ pair production $u_4 \bar{u}_4 \rightarrow b \bar{b} WWWWW$
- single production better? [Fabio's talk] the more Ws the better...
- bread-and-butter leptons plus missing energy
- ⇒ (Majorana) neutrinos more interesting?

Tilman Plehn

4th Generation

- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics

4MSSM


Higgs physics

Dimension-5 Higgs couplings [e.g. SFitter-Higgs; got a hacked HDecay]

- loop effects of new particles [Arik, Arik, Cetin, Conca, Mailov, Sultansoy; Kribs, TP, Spannowsky, Tait]

$$\begin{split} \Gamma_{H \to \gamma \gamma} &= \frac{G_{\mu} \alpha^2 m_H^3}{128 \sqrt{2} \pi^3} \left| \sum_f N_c Q_f^2 A_f(\tau_f) + A_W(\tau_W) \right|^2 \\ \Gamma_{H \to gg} &= \frac{G_{\mu} \alpha_s^2 m_H^3}{36 \sqrt{2} \pi^3} \left| \frac{3}{4} \sum_f A_f(\tau_f) \right|^2 \quad \text{with} \quad \tau_i = \frac{m_H^2}{4 m_i^2} \\ A_f(\tau) &= \frac{2}{\tau^2} \left[\tau + (\tau - 1) f(\tau) \right] \\ A_W(\tau) &= -\frac{1}{\tau^2} \left[2\tau^2 + 3\tau + 3(2\tau - 1) f(\tau) \right] \quad \text{with} \quad f(\tau \to 0) \to \tau \end{split}$$

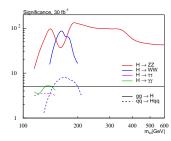
 $\begin{array}{ll} \text{(1) increase } g_{ggH} \rightarrow 3 \times g_{ggH} \\ \text{decrease } g_{\gamma\gamma H} \rightarrow 1/3 \times g_{\gamma\gamma H} \\ \text{light-Higgs BRs suppressed by } H \rightarrow \text{jets} \end{array}$

Tilman Plehn

4th Generation

- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics

4MSSM


Higgs physics

Dimension-5 Higgs couplings [e.g. SFitter-Higgs; got a hacked HDecay]

- loop effects of new particles [Arik, Arik, Cetin, Conca, Mailov, Sultansoy; Kribs, TP, Spannowsky, Tait]

$$\begin{split} \Gamma_{H \to \gamma \gamma} &= \frac{G_{\mu} \alpha^2 m_{H}^3}{128 \sqrt{2} \pi^3} \left| \sum_{f} N_c Q_f^2 A_f(\tau_f) + A_W(\tau_W) \right|^2 \\ \Gamma_{H \to gg} &= \frac{G_{\mu} \alpha_s^2 m_{H}^3}{36 \sqrt{2} \pi^3} \left| \frac{3}{4} \sum_{f} A_f(\tau_f) \right|^2 \quad \text{with} \quad \tau_i = \frac{m_{H}^2}{4 m_i^2} \\ A_f(\tau) &= \frac{2}{\tau^2} \left[\tau + (\tau - 1) f(\tau) \right] \\ A_W(\tau) &= -\frac{1}{\tau^2} \left[2\tau^2 + 3\tau + 3(2\tau - 1) f(\tau) \right] \quad \text{with} \quad f(\tau \to 0) \to \tau \end{split}$$

- $\begin{array}{ll} \text{(1) increase } g_{ggH} \to 3 \times g_{ggH} \\ \text{decrease } g_{\gamma\gamma H} \to 1/3 \times g_{\gamma\gamma H} \\ \text{light-Higgs BRs suppressed by } H \to \text{jets} \end{array}$
- (2) factor 9 enhancement of $gg \rightarrow H$ [Tevatron!?] $\sigma_{gg} BR_{\gamma\gamma} \rightarrow \sigma_{gg} BR_{\gamma\gamma}$ $\sigma_{gg} BR_{ZZ} \rightarrow (5 \cdots 8) \sigma_{gg} BR_{ZZ}$

Tilman Plehn

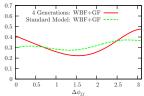
4th Generation

- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics

4MSSM

Higgs physics

Dimension-5 Higgs couplings [e.g. SFitter-Higgs; got a hacked HDecay]


- loop effects of new particles [Arik, Arik, Cetin, Conca, Mailov, Sultansoy; Kribs, TP, Spannowsky, Tait]

$$\begin{split} \Gamma_{H \to \gamma\gamma} &= \frac{G_{\mu} \alpha^2 m_H^3}{128 \sqrt{2} \pi^3} \left| \sum_f N_c Q_f^2 A_f(\tau_f) + A_W(\tau_W) \right|^2 \\ \Gamma_{H \to gg} &= \frac{G_{\mu} \alpha_s^2 m_H^3}{36 \sqrt{2} \pi^3} \left| \frac{3}{4} \sum_f A_f(\tau_f) \right|^2 \quad \text{with} \quad \tau_i = \frac{m_H^2}{4m_i^2} \\ A_f(\tau) &= \frac{2}{\tau^2} \left[\tau + (\tau - 1) f(\tau) \right] \\ A_W(\tau) &= -\frac{1}{\tau^2} \left[2\tau^2 + 3\tau + 3(2\tau - 1) f(\tau) \right] \quad \text{with} \quad f(\tau \to 0) \to \tau \end{split}$$

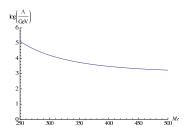
- (1) increase $g_{ggH} \rightarrow 3 \times g_{ggH}$ decrease $g_{\gamma\gamma H} \rightarrow 1/3 \times g_{\gamma\gamma H}$ light–Higgs BRs suppressed by $H \rightarrow$ jets
- (2) factor 9 enhancement of $gg \rightarrow H$ [Tevatron!?] $\sigma_{gg} BR_{\gamma\gamma} \rightarrow \sigma_{gg} BR_{\gamma\gamma}$ $\sigma_{gg} BR_{ZZ} \rightarrow (5 \cdots 8) \sigma_{gg} BR_{ZZ}$

(3) misleading WBF correlations [TP, Rainwater, Zeppenfeld]

- (4) Higgs pair production the winner [Baur, TP, Rainwater]
- \Rightarrow if nothing else what a great straw man!

Tilman Plehn

4th Generation


- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics

4MSSM

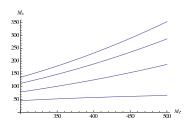
Supersymmetric fourth generation

Motivated by baryogenesis and little hierarchy [Fok, Kribs]

- cutoff dominantly from y_f Landau pole preferable: tan $\beta = 1$, $X_{b,t,d_4,u_4} \rightarrow 0$

Tilman Plehn

4th Generation


- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics

4MSSM

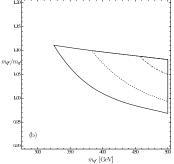
Supersymmetric fourth generation

Motivated by baryogenesis and little hierarchy [Fok, Kribs]

- cutoff dominantly from y_f Landau pole preferable: tan $\beta = 1$, $X_{b,t,d_4,u_4} \rightarrow 0$
- Higgs mass all generated by heavy loops [shown pole masses] $H \rightarrow WW$ discovery channel for 4MSSM light charged Higgs possible [m_A small] [Litsey & Sher]

Tilman Plehn

- 4th Generation
- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics


4MSSM

Supersymmetric fourth generation

Motivated by baryogenesis and little hierarchy [Fok, Kribs]

- cutoff dominantly from y_f Landau pole preferable: tan $\beta = 1, X_{b,t,d_4,u_4} \rightarrow 0$
- Higgs mass all generated by heavy loops [shown pole masses] $H \rightarrow WW$ discovery channel for 4MSSM light charged Higgs possible [$m_A \text{ small}$] [Litsey & Sher]
- electroweak baryogenesis [strongly first order] net zero-temperature effects zero in SUSY limit finite-temperature effects only helpful from bosons finite-temperature W, Z too small for $m_H \lesssim m_W$ [Hebecker; Laine & Rummukainen] sufficient from \tilde{u}_4 and \tilde{d}_4 [2 × 2 × 3 d.o.f] mass range 1 $\lesssim m_{\tilde{q}_4}/m_{q_4} \lesssim 1.1$ preferred

 \Rightarrow for once an actual motivation?

Tilman Plehn

- 4th Generation
- Precision data
- Flavor
- Perturbativity
- Direct Searches
- Higgs physics

4MSSM

A fourth generation at the LHC

- it's fun
- it's not ruled out
- it has many interesting faces

Tilman Plehn

4th Generation

Precision data

Flavor

Perturbativity

Direct Searches

Higgs physics

4MSSM