Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

Weak boson fusion

Parameters

New Physics at the LHC

Tilman Plehn

Universität Heidelberg

KIT, 2/2009

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

Weak boson fusion

Parameters

The LHC

Outline

Standard–Model effective theory

Example: TeV-scale supersymmetry

New physics measurements

Weak boson fusion

Fundamental parameters

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

Weak boson fusion

Parameters

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

Tilman Plehn

The LHC

- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

- Einstein: beam energy to particle mass $E = mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

 huge detectors, computers, analysis... → experimental particle physics prejudice, fun and smart comments... → theoretical particle physics

Tilman Plehn

The LHC

- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

- Einstein: beam energy to particle mass $E = mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

 huge detectors, computers, analysis... → experimental particle physics prejudice, fun and smart comments... → theoretical particle physics

life as an experimentalist

life as a theorist

Tilman Plehn

The LHC

- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

The LHC

LHC — Large Hadron Collider: starting Summer 20XX

- Einstein: beam energy to particle mass $E = mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

 huge detectors, computers, analysis... → experimental particle physics prejudice, fun and smart comments... → theoretical particle physics

life as an experimentalist

life as a theorist

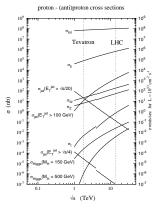
Tilman Plehn

The LHC

- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

The LHC

LHC — Large Hadron Collider: starting Summer 20XX


- Einstein: beam energy to particle mass $E = mc^2$ smash 7 TeV protons onto 7 TeV protons [energy unit GeV: proton mass] produce anything that couples to quarks and gluons search for it in decay products repeat every 25 ns

 huge detectors, computers, analysis... → experimental particle physics prejudice, fun and smart comments... → theoretical particle physics

Everything you always wanted to know ...

- Atlas/CMS: measure anything flying around
- signal: everything new, exciting and rare background: yesterday's signal
- Standard Model: theory of background QCD: evil background theory trying to kill us
- $N_{
 m events} = \sigma \cdot \mathcal{L}$ ['cross section times luminosity']
- trigger: soft jets not on tape
- jet: everything except for leptons/photons crucial: what is inside a jet [q, g, b, τ tagged?]
- discovery $N_S/\sqrt{N_B} > 5$

Tilman Plehn

The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

A brief history of our Standard-Model mess...

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particle exchange Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2 / (E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!!]

Tilman Plehn

The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

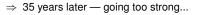
Standard–Model effective theory

A brief history of our Standard–Model mess...

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particle exchange Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2/(E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV

Tilman Plehn

The LHC


Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

A brief history of our Standard–Model mess...

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particle exchange Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2 / (E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV
- 't Hooft & Veltman 1971: renormalizability beware of 1/*M* in the Lagrangian! gauge theories without cut-off truly fundamental theory

Tilman Plehn

The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

What is the Standard Model?

- gauge theory with local $\textit{SU}(3) \times \textit{SU}(2) \times \textit{U}(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector

- renormalizability $\mathcal{L} \sim -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + g H W_{\mu\nu} W^{\mu\nu} / M$
- ⇒ fundamental theory: particle content, interactions, renormalizability

Tilman Plehn

The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

What is the Standard Model?

- gauge theory with local $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector

- renormalizability $\mathcal{L} \sim -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + g H W_{\mu\nu} W^{\mu\nu} / M$
- ⇒ fundamental theory: particle content, interactions, renormalizability

Tilman Plehn

The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

What is the Standard Model?

- gauge theory with local $SU(3) \times SU(2) \times U(1)$
- massless SU(3) and U(1) gauge bosons massive W, Z bosons [Higgs mechanism]
- Dirac fermions in doublets with masses = Yukawas generation mixing in quark and neutrino sector

- renormalizability $\mathcal{L} \sim -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + g H W_{\mu\nu} W^{\mu\nu} / M$
- ⇒ fundamental theory: particle content, interactions, renormalizability

And how complete is it experimentally?

- dark matter? [solid evidence for low-scale new physics!?]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?]
- matter-antimatter asymmetry? [universe mostly matter?]
- gauge coupling unification real?
- gravity missing? [mostly negligible but definitely unrenormalizaby]
- \Rightarrow large cut-off scale unavoidable, size negotiable, renormalizability desirable
- \Rightarrow who the hell cares???

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

Weak boson fusion

Parameters

Standard–Model effective theory

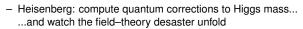
Theorists care!!

- Heisenberg: compute quantum corrections to Higgs mass... $[\Delta t \Delta E < 1]$

Н

Н

Tilman Plehn


The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

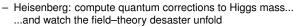
Theorists care!!

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

 $- \ Higgs \ mass \ pulled \ to \ cut-off \ \Lambda \quad \ [where \ Higgs \ at \ \Lambda \ does \ not \ work]$

 \Rightarrow hierarchy problem — Higgs without stabilization incomplete

Tilman Plehn


The LHC

Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

Theorists care!!

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

- Higgs mass pulled to cut-Off $\Lambda \quad [\text{where Higgs at Λ does not work]}$
- \Rightarrow hierarchy problem Higgs without stabilization incomplete

Starting from data which...

- ...indicates a light Higgs [e-w precision data] ...indicates higher-scale physics
- easy solution: counter term but gauge theories don't do tuning
- or new physics at TeV scale: supersymmetry [(815) 753-6467] extra dimensions little Higgs composite Higgs, TopColor [wish they were gone...] YourFavoriteNewPhysics...
- $\Rightarrow\,$ typically cancellation by new particles or discussing away high scale
- \Rightarrow beautiful concepts, but problematic in reality
- \Rightarrow TeV–scale models in baroque state

Tilman Plehn

The LHC

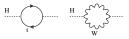
Why BSM?

- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Standard–Model effective theory

Theorists care!!

Heisenberg: compute quantum corrections to Higgs mass...
 ...and watch the field-theory desaster unfold


$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

- Higgs mass pulled to cut-off $\Lambda \quad \mbox{[where Higgs at Λ does not work]}$

 \Rightarrow hierarchy problem — Higgs without stabilization incomplete

Expectations from the LHC

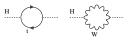
- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Tilman Plehn

The LHC

Why BSM?

Supersymmetry


- Measurements
- Weak boson fusion

Parameters

Example: TeV-scale supersymmetry

Supersymmetry

- partner for each Standard-Model particle
- SUSY obviously broken by masses, mechanism unknown
- not an LHC paradigm: maximally blind mediation [MSUGRA, CMSSM]
 - $\text{scalars} m_0 \quad \text{fermions} m_{1/2} \quad \text{tri-scalar} A_0 \quad \text{Higgs sector} \text{sign}(\mu), \tan\beta$
- assume dark matter, stable lightest partner
- \Rightarrow measure BSM spectrum with missing energy at LHC

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

- Measurements
- Weak boson fusion
- Parameters

Example: TeV-scale supersymmetry

Supersymmetry


- partner for each Standard-Model particle
- SUSY obviously broken by masses, mechanism unknown
- not an LHC paradigm: maximally blind mediation [MSUGRA, CMSSM]
 - $\text{scalars} m_0 \quad \text{fermions} m_{1/2} \quad \text{tri-scalar} A_0 \quad \text{Higgs sector} \text{sign}(\mu), \tan\beta$
- assume dark matter, stable lightest partner
- ⇒ measure BSM spectrum with missing energy at LHC

LHC searches: MSSM

- conjugate Higgs field not allowed
 - \rightarrow give mass to *t* and *b*?
 - \rightarrow five Higgs bosons
- SUSY-Higgs alone interesting
- \Rightarrow would be another talk...
- \Rightarrow list of SUSY partners

ſ			spin	d.o.f.	
Г	fermion	f_L, f_B	1/2	1+1	
	\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
ſ	gluon	G_{μ}	1	n-2	
	\rightarrow gluino	ĝ	1/2	2	Majorana
- E	gauge bosons	γ, Z	1	2+3	
	Higgs bosons	h ⁰ , H ⁰ , A ⁰	0	3	
	\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	LSP
ſ	gauge bosons	W±	1	2 · 3	
	Higgs bosons	н±	0	2	
	\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

Tilman Plehn

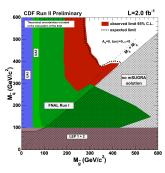
The LHC

Why BSM?

Supersymmetry

- Measurements
- Weak boson fusio
- Parameters

Supersymmetric signatures


New physics at the LHC

- (1) discovery signals for new physics
- (2) measurements spectrum, quantum numbers
- (3) parameters TeV-scale Lagrangian, underlying theory
- $\Rightarrow\,$ approach independent of new physics model

Special about LHC, except bigger than Tevatron

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- rates not good in $\alpha_s/(4\pi) \sim 0.01$ (collinear) jets everywhere good LHC observables needed
- \Rightarrow aim at underlying theory

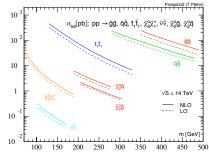
Tilman Plehn

The LHC

Why BSM?

Supersymmetry

- Measurements
- Weak boson fusio
- Parameters


Supersymmetric signatures

New physics at the LHC

- (1) discovery signals for new physics
- (2) measurements spectrum, quantum numbers
- (3) parameters TeV-scale Lagrangian, underlying theory
- $\Rightarrow\,$ approach independent of new physics model

Special about LHC, except bigger than Tevatron

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- rates not good in $\alpha_s/(4\pi) \sim 0.01$ (collinear) jets everywhere good LHC observables needed
- \Rightarrow aim at underlying theory

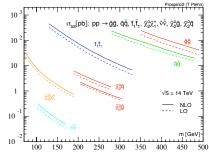
Tilman Plehn

The LHC

Why BSM?

Supersymmetry

- Measurements
- Weak boson fusion
- Parameters


Supersymmetric signatures

New physics at the LHC

- (1) **discovery** signals for new physics
- (2) measurements spectrum, quantum numbers
- (3) parameters TeV-scale Lagrangian, underlying theory
- $\Rightarrow\,$ approach independent of new physics model

Special about LHC, except bigger than Tevatron

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- rates not good in $\alpha_s/(4\pi) \sim 0.01$ (collinear) jets everywhere good LHC observables needed
- \Rightarrow aim at underlying theory

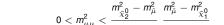
New Physics at the

Tilman Plehn

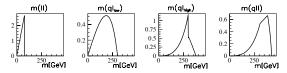
The LHC

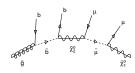
Why BSM?

Measurements


Weak boson fusion

New physics measurements


Spectra from cascade decays


- more than 10⁷ squark-gluino events
- target decay $\tilde{g} \rightarrow \tilde{b}\bar{b} \rightarrow \tilde{\chi}_2^0 b\bar{b} \rightarrow \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- thresholds & edges

$$\begin{split} m_{ij}^2 &= E_i E_j - |\vec{p_i}| |\vec{p_j}| \cos \theta_{ij} \\ 0 &< m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\mu}^2}{m_{\tilde{\mu}}} \; \frac{m_{\tilde{\mu}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\mu}}} \end{split}$$

\Rightarrow new-physics mass spectrum from cascade decays

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

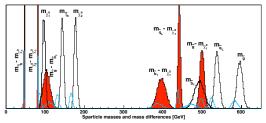
Measurements

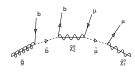
Weak boson fusion

Parameters

New physics measurements

Spectra from cascade decays


- more than 10⁷ squark-gluino events
- target decay $ilde{g}
 ightarrow ilde{b} b
 ightarrow ilde{\chi}_2^0 b \overline{b}
 ightarrow \mu^+ \mu^- b \overline{b} ilde{\chi}_1^0$
- thresholds & edges


$$\begin{split} m_{ij}^2 &= E_i E_j - |\vec{p_i}| |\vec{p_j}| \cos \theta_{ij} \\ 0 &< m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\mu}}^2}{m_{\tilde{\mu}}} \; \frac{m_{\tilde{\mu}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\mu}}} \end{split}$$

 \Rightarrow new–physics mass spectrum from cascade decays

Cascade masses from kinematics

- all decay jets b quarks [otherwise dead by QCD]
- gluino mass to $\sim 1\%$
- \Rightarrow what's more in m_{ij} ?

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

Weak boson fusion

Parameters

New physics measurements

When do I believe it's SUSY-QCD?

- gluinos: strongly interacting Majorana fermions Majorana = its own antiparticle
- first jet in gluino decay: q or \bar{q}
- final–state leptons with charges 50% 50%
- ⇒ gluino = like-sign dileptons in SUSY-like events

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

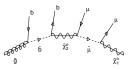
Measurements

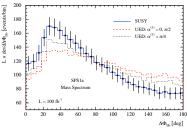
Weak boson fusion

Parameters

New physics measurements

When do I believe it's SUSY-QCD?


- gluinos: strongly interacting Majorana fermions Majorana = its own antiparticle
- first jet in gluino decay: q or \bar{q}
- final-state leptons with charges 50%-50%
- ⇒ gluino = like-sign dileptons in SUSY-like events


All new physics is hypothesis testing

- loop hole: 'gluino is Majorana if it is a fermion'
- assume gluino cascade observed
- straw-man model where 'gluino' is a boson: universal extra dimensions (spectra degenerate — ignore; cross section larger — ignore)
- \Rightarrow compare angular correlations

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

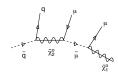
Weak boson fusion

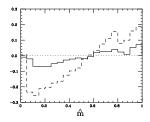
Parameters

New physics measurements

When do I believe it's SUSY-QCD?

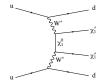
- gluinos: strongly interacting Majorana fermions Majorana = its own antiparticle
- first jet in gluino decay: q or \bar{q}
- final-state leptons with charges 50%-50%
- ⇒ gluino = like-sign dileptons in SUSY-like events


Asymmetries


- shorter sqark decay chain
- shape between endpoints: $\hat{m} = m_{q\mu}/m_{q\mu}^{\rm max} \sim \sin \theta/2$
- dominant $pp
 ightarrow { ilde q} { ilde g} { ilde g}$ with ${ ilde q}:{ ilde q}^* \sim 2:1$
- production asymmetry with reduced errors

$$\mathcal{A}(m_{\mu j}) = \frac{\sigma(j\mu^+) - \sigma(j\mu^-)}{\sigma(j\mu^+) + \sigma(j\mu^-)}$$

- kind of similar for gluino decay
- \Rightarrow gluino = fermion with like-sign dileptons

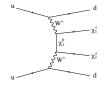

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Weak boson fusion

Illustrating useful jets: spin of LSP

- Majorana LSP with like-sign charginos?
- hypotheses: like–sign charginos (SUSY)
 like–sign scalars (scalar dark matter)
 like–sign vector bosons (little–Higgs inspired)
- chargino decay/kinematics not used
- want to bet this man can tell them apart just using the jets?


Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Weak boson fusion

Illustrating useful jets: spin of LSP

- Majorana LSP with like-sign charginos?
- hypotheses: like–sign charginos (SUSY)
 like–sign scalars (scalar dark matter)
 like–sign vector bosons (little–Higgs inspired)
- chargino decay/kinematics not used
- want to bet this man can tell them apart just using the jets?

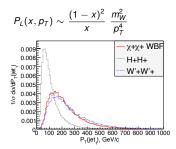
Tilman Plehn

The LHC

- Why BSM?
- Supersymmetry
- Measurements

Weak boson fusion

Parameters


Weak boson fusion

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- H^+H^- same as simple H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2}$$

 \Rightarrow scalars with softer $p_{T,j}$

Tilman Plehn

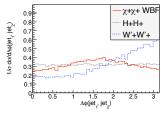
- The LHC
- Why BSM?
- Supersymmetry
- Measurements

Weak boson fusion

Parameters

Weak boson fusion

Like-sign scalars or fermions?


- charged Higgs in 2HDM
- H^+H^- same as simple H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2} \qquad P_L(x, p_T) \sim \frac{(1 - x)^2}{x} \frac{m_W^2}{p_T^4}$$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors or fermions?

- little-Higgs inspired
- start with copy of SM, heavy W', Z', f'
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements

Weak boson fusion

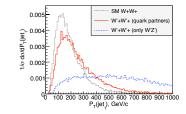
Parameters

Weak boson fusion

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- H^+H^- same as simple H^0
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim \frac{1+(1-x)^2}{2x} \frac{1}{p_T^2} \qquad P_L(x,p_T) \sim \frac{(1-x)^2}{x} \frac{m_W^2}{p_T^4}$$


 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors or fermions?

- little-Higgs inspired
- start with copy of SM, heavy W', Z', f'
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Or else ...

- nightmare: strongly interacting WW

Tilman Plehn

- The LHC
- Why BSM?

- Parameters

Fundamental parameters

From kinematics to weak-scale parameters

- parameters: weak-scale Lagrangian
- measurements: better edges than masses, branching fractions, rates,... flavor, dark matter, electroweak constraints,...
 - errors: general correlation, statistics & systematics & theory
 - problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Probability maps of new physics

- want to evaluate probability of model being true p(m|d)
- can compute fully exclusive likelihood map p(d|m) over m
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_{m} p(d|m)$ [flavor]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local best-fitting points
 - (3) predict additional observables

Tilman Plehn

The LHC

- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Markov chains

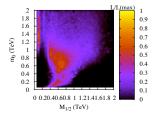
Define set of representative points in new-physics space

- measure of 'representative': likely to agree with data [Markov chain]
- evaluate any function over chain
- (1) probability to agree with data
- (2) Higgs mass from LEP and DM relic density LHC rates from LEP and DM relic density dark matter detection from LEP and/or LHC dates of birth of people on shift...
- \Rightarrow anything goes

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion

Parameters


Define set of representative points in new-physics space

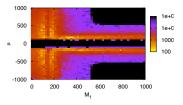
- measure of 'representative': likely to agree with data [Markov chain]
- evaluate any function over chain
- (1) probability to agree with data
- (2) Higgs mass from LEP and DM relic density LHC rates from LEP and DM relic density dark matter detection from LEP and/or LHC dates of birth of people on shift...
- \Rightarrow anything goes

Markov chains

Bayesian probabilities vs profile likelihood

- 'Which is the most likely parameter point?'
- 'How does dark matter annihilate/couple?'

Tilman Plehn


- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion

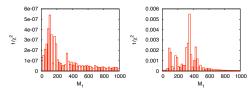
Parameters

Fundamental parameters

MSSM map for LHC

- four neutralinos with (diagonal) mass parameters M_1, M_2, μ
- three of four mass-eigenstate neutralinos observed
- alternative solutions in parameter space

Tilman Plehn


- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion

Parameters

Fundamental parameters

MSSM map for LHC

- four neutralinos with (diagonal) mass parameters M_1, M_2, μ
- three of four mass-eigenstate neutralinos observed
- alternative solutions in parameter space

- quality of fit not useful: all the same ...

		μ	< 0			μ :	> 0	
M ₁	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
Mo	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
tan β	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M ₃	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
Μ _{μ̃L}	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8
M _{µ̃R}	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9
mA	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1
mt	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

 \Rightarrow let's try to not miss too many particles...

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe-based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim an eta$
 - strongly correlated and promising

	LHC	$LHC \otimes (g - 2)$		SPS1a
tan β	10.0± 4.5	10.3 \pm	2.0	10.0
M ₁	102.1± 7.8	$102.7\pm$	5.9	103.1
Mo	193.3± 7.8	$193.2 \pm$	5.8	192.9
M3	577.2±14.5	$578.2 \pm$	12.1	577.9
Μ _{μ̃ι}	193.2± 8.8	$194.0\pm$	6.8	194.4
м _{д3} ,	481.4±22.0	$485.6\pm$	22.4	480.8
M _{ĎR}	501.7±17.9	$499.2\pm$	19.3	502.9
μ	350.5 ± 14.5	$352.5\pm$	10.8	353.7

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe-based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim an eta$
 - strongly correlated and promising

	LHC	LHC $\otimes (g - 2)$		SPS1a
tan β	10.0± 4.5	10.3 \pm	2.0	10.0
M ₁	102.1± 7.8	$102.7\pm$	5.9	103.1
M2	193.3± 7.8	$193.2 \pm$	5.8	192.9
M3	577.2±14.5	$578.2 \pm$	12.1	577.9
Μ _{μ̃ι}	193.2± 8.8	194.0 \pm	6.8	194.4
M _{q3} L	481.4±22.0	$485.6\pm$	22.4	480.8
M _b R	501.7±17.9	$499.2\pm$	19.3	502.9
μ	350.5 ± 14.5	$352.5\pm$	10.8	353.7

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

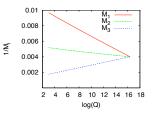
- remember: unknown sign(μ), believe-based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim an eta$
 - strongly correlated and promising
- (2) maybe we will see BR($B_s \rightarrow \mu \mu$) $\sim \tan^6 \beta$
 - stop-chargino sector missing
 - prediction of f_{Bs} missing

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Beyond the LHC

Why theorists involved?


- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim an eta$
 - strongly correlated and promising
- (2) maybe we will see BR($B_s \rightarrow \mu \mu$) $\sim \tan^6 \beta$
 - stop-chargino sector missing
 - prediction of f_{Bs} missing

Renormalization group analysis

- SUSY breaking, unification, GUT?
- scale-invariant sum rules?

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim an eta$
 - strongly correlated and promising
- (2) maybe we will see BR($B_{s} \rightarrow \mu \mu$) $\sim \tan^{6} \beta$
 - stop-chargino sector missing
 - prediction of f_{Bs} missing

Renormalization group analysis

- SUSY breaking, unification, GUT?
- scale-invariant sum rules?
- ⇒ fundamental theory at all scales happy Dutch!

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

Beyond the LHC

Why theorists involved?

- want to learn statistics
- know about theory errors
- know about link with other observations and models

Beyond the LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- (1) maybe it's new physics: $(g-2)_{\mu} \sim \tan \beta$
 - strongly correlated and promising
- (2) maybe we will see BR($B_s \rightarrow \mu \mu$) $\sim \tan^6 \beta$
 - stop-chargino sector missing
 - prediction of f_{Bs} missing

Renormalization group analysis

- SUSY breaking, unification, GUT?
- scale-invariant sum rules?
- ⇒ fundamental theory at all scales happy Dutch!

Tilman Plehn

- The LHC
- Why BSM?
- Supersymmetry
- Measurements
- Weak boson fusion
- Parameters

New physics at the LHC

Need for new physics

- know there is physics beyond our Standard
- Higgs and new physics the same question
- LHC should find and study it

Supersymmetry one well-studied example

- solves the hierarchy problem
- easily explains dark matter
- cascade decays rule
- LHC to determine underlying model

LHC not only the biggest, but also the coolest machine!

Tilman Plehn

The LHC

Why BSM?

Supersymmetry

Measurements

Weak boson fusion

Parameters