Tilman Plehn

BSM@LHC

Masses

MRSSN

Spin & jets

Parameters

SFitter

Once we have all that LHC data...

Tilman Plehn

Heidelberg

Mainz 2/2009

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

Effective Standard Model

Outline

Masses from cascades

Interlude: MRSSM and jets

Interlude: spins from jets

Underlying parameters

TeV-scale MSSM: SFitter

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Effective Standard–Model

Data vs renormalizable Standard Model

- dark matter? [only solid evidence for new physics, weak-scale?]
- $-(g-2)_{\mu}$? [loop effects around weak scale?]
- flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses? [see-saw at 10¹¹ GeV?]
- gauge-coupling unification? [something happening above 10¹⁶ GeV?]
- gravity? [mostly negligible below 10¹⁹ GeV]
- \Rightarrow obviously effective theory, cutoff negotiable

Problem with fundamental Higgs

- Higgs introduced for fundamental theory in UV
- mass driven to cutoff: $\delta m_H^2/m_H^2 \propto g^2 (2m_W^2 + m_Z^2 + m_H^2 4m_t^2) \Lambda^2$
- tuned counter term: fundamental gauge theory betrayed
- or new physics at TeV scale: supersymmetry

extra dimensions little Higgs, Higgsless, composite Higgs...

- typically cancellation by new states or discussing away high scale
- beautiful concepts, challenged at TeV scale
- \Rightarrow whatever is there LHC's job to sort it out

Tilman Plehn

BSM@LHC

Masses

- MRSSM
- Spin & jets
- Parameters
- SFitter

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,....
 continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,.... continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- \Rightarrow aim at underlying theory

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,.... continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- general theme: try to survive QCD
- \Rightarrow aim at underlying theory

Tilman Plehn

BSM@LHC

Masses

- MRSSM
- Spin & jets
- Parameters
- SFitter

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $ilde{g}
 ightarrow ilde{b} ar{b}
 ightarrow ilde{\chi}_2^0 b ar{b}
 ightarrow \mu^+ \mu^- b ar{b} ilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- new-physics mass spectrum from endpoints
- new-physics spins from shapes [Barr, Lester, Smillie, Webber; Alves, Eboli, TP;...]

Tilman Plehn

BSM@LHC

Masses

- MRSSM
- Spin & jets
- Parameters
- SFitter

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain $ilde{g}
 ightarrow ilde{b} ar{b}
 ightarrow ilde{\chi}_2^0 b ar{b}
 ightarrow \mu^+ \mu^- b ar{b} ilde{\chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- new-physics mass spectrum from endpoints
- new-physics spins from shapes [Barr, Lester, Smillie, Webber; Alves, Eboli, TP;...]

Gluino decay [Gjelsten, Miller, Osland, Raklev...]

- only b jets [otherwise dead by QCD]
- no problem: off-shell [Catpiss]
- no problem: jet radiation? [later
- gluino mass to $\sim 1\%$

Tilman Plehn

BSM@LHC

Masses

- MRSSM
- Spin & jets
- Parameters
- SFitter

Masses from cascades

Cascade decays [Atlas-TDR, Cambridge people]

- if new particles strongly interacting and LSP weakly interacting
- like Tevatron: jets + missing energy
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: cascade kinematics [10⁷ · · · 10⁸ events]
- long chain ${ ilde g} o { ilde b} {ar b} o { ilde \chi}_2^0 b {ar b} o \mu^+ \mu^- b {ar b} { ilde \chi}_1^0$
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- new-physics mass spectrum from endpoints
- new-physics spins from shapes [Barr, Lester, Smillie, Webber; Alves, Eboli, TP;...]

Gluino decay [Gjelsten, Miller, Osland, Raklev...]

- only b jets [otherwise dead by QCD]
- no problem: off-shell [Catpiss]
- no problem: jet radiation? [later
- gluino mass to $\sim 1\%$
- \Rightarrow but why physical masses?

Tilman Plehn

BSM@LHC

Masses

MRSSM

- Spin & jets
- Parameters
- SFitter

Interlude: MRSSM and jets

Bored without a collider: solving old MSSM problems

- problematic general ansatz: 6 \times 6 squark mass matrix
- flavor violation: $K \overline{K}$ mixing, etc
- CP violation in flavor sector
- flavor-violating decays: $b
 ightarrow s \gamma$
- electric dipole moments...
- \Rightarrow well-known problem for squark sector [include 500 citations here]

Solution via symmetries [Kribs, Poppitz, Weiner]

- continuous global symmetry R[heta]=+1 [Hall & Randall]
- chiral superfield $\Phi^{(+1)} = \phi^{(+1)} + \theta \cdot \chi^{(0)} + \theta \theta F^{(-1)}$ vector superfield $V^{(0)} = \theta \sigma^{\mu} \bar{\theta} A^{(+1)}_{\mu} - i \bar{\theta} \bar{\theta} \theta \lambda^{(+1)} + \theta \theta \bar{\theta} \bar{\theta} D^{(0)}/2$ superpotential $R[\int d^2 \theta W^{(+2)}] = 0$
- forbidden soft-breaking terms ϕ^3 , $\phi^* \phi^2$, $\tilde{\lambda} \tilde{\lambda}$ allowed soft-breaking terms ϕ^2 , $\phi^* \phi$, $\tilde{\lambda} \psi$
- no Majorana masses, no A terms, no μ term... [Majorana neutrino okay]
- gluino mass via additional state [chiral superfield, sgluon lowest state, weak sector ugly]
- \Rightarrow at least proof of power of symmetries

Tilman Plehn

BSM@LHC

Masses

MRSSM

- Spin & jets
- Parameters

SFitter

Interlude: MRSSM and jets

Testable at the LHC

$$- \ \mathcal{L} \sim -m_{ ilde{g}} ilde{g} ilde{G} - m_{ ilde{g}}^2 G^2 - \sqrt{2} g m_{ ilde{g}} G \ ilde{q}^* T ilde{q}$$

- sgluon G integrated out for supersoft SUSY breaking [Fox, Nelson, Weiner]
- G-G-g coupling tree level
 - G-g-g coupling loop-induced $\propto m_{\tilde{g}}/m_G^2$ G-q-q coupling loop-induced $\propto m_{\tilde{g}}m_q/m_G^2$
- \Rightarrow pair production, decay to top quark [TP, Tait]

Like-sign top quarks [preliminary numbers]

- production determined by QCD [always same at LHC]
- incoming partons: steep drop for large masses
- decay through G
 ightarrow t ar q, ar t q
- leptonic decays: no background
- also LHC physicists being bored ...

Tilman Plehn

BSM@LHC

Masses

MRSSM

- Spin & jets
- Parameters

SFitter

Interlude: MRSSM and jets

Testable at the LHC

$$- \ \mathcal{L} \sim -m_{ ilde{g}} ilde{g} ilde{G} - m_{ ilde{g}}^2 G^2 - \sqrt{2} g m_{ ilde{g}} G \ ilde{q}^st T ilde{q}$$

- sgluon G integrated out for supersoft SUSY breaking [Fox, Nelson, Weiner]
- G-G-g coupling tree level
 - G-g-g coupling loop-induced $\propto m_{\tilde{g}}/m_G^2$ G-q-q coupling loop-induced $\propto m_{\tilde{g}}m_q/m_G^2$
- \Rightarrow pair production, decay to top quark [TP, Tait]

Likely bad ideas [Tait & TP; Alwall, Maltoni, de Visscher; TP, Rainwater, Skands]

- sgluon identification? hadronic W reconstruction? top 4-momentum measurement?
- decay jet or QCD radiation?
- collinear initial state radiation $[P_{T,j} < M_{hard}]$
- proper description: CKKW/MLM [in MadEvent]
- $\langle N_{\text{jet}} \rangle$ dependent on hard scale $\langle N_{\text{jet}} \rangle$ dependent on $p_{T,j}$
- ⇒ QCD under control

Tilman Plehn

BSM@LHC

Masses

MRSSM

- Spin & jets
- Parameters

SFitter

Interlude: MRSSM and jets

Testable at the LHC

$$- \ \mathcal{L} \sim -m_{ ilde{g}} ilde{g} ilde{G} - m_{ ilde{g}}^2 G^2 - \sqrt{2} g m_{ ilde{g}} G \ ilde{q}^st T ilde{q}$$

- sgluon G integrated out for supersoft SUSY breaking [Fox, Nelson, Weiner]
- G-G-g coupling tree level
 - G-g-g coupling loop-induced $\propto m_{\tilde{g}}/m_G^2$ G-q-q coupling loop-induced $\propto m_{\tilde{g}}m_q/m_G^2$
- \Rightarrow pair production, decay to top quark [TP, Tait]

Likely bad ideas [Tait & TP; Alwall, Maltoni, de Visscher; TP, Rainwater, Skands]

- sgluon identification? hadronic W reconstruction? top 4-momentum measurement?
- decay jet or QCD radiation?
- collinear initial state radiation $[P_{T,j} < M_{hard}]$
- proper description: CKKW/MLM [in MadEvent]
- $\langle N_{\text{jet}} \rangle$ dependent on hard scale $\langle N_{\text{jet}} \rangle$ dependent on $p_{T,j}$
- \Rightarrow QCD under control

Tilman Plehn

BSM@LHC

Masses

MRSSM

- Spin & jets
- Parameters

SFitter

Interlude: MRSSM and jets

Testable at the LHC

$$- \ \mathcal{L} \sim -m_{ ilde{g}} ilde{g} ilde{G} - m_{ ilde{g}}^2 G^2 - \sqrt{2} g m_{ ilde{g}} G \ ilde{q}^st T ilde{q}$$

- sgluon G integrated out for supersoft SUSY breaking [Fox, Nelson, Weiner]
- G-G-g coupling tree level
 - G-g-g coupling loop-induced $\propto m_{\tilde{g}}/m_G^2$ G-q-q coupling loop-induced $\propto m_{\tilde{g}}m_q/m_G^2$
- \Rightarrow pair production, decay to top quark [TP, Tait]

Likely bad ideas [Tait & TP; Alwall, Maltoni, de Visscher; TP, Rainwater, Skands]

- sgluon identification? hadronic W reconstruction? top 4-momentum measurement?
- decay jet or QCD radiation?
- collinear initial state radiation $[P_{T,j} < M_{hard}]$
- proper description: CKKW/MLM [in MadEvent]
- $\langle N_{\text{jet}} \rangle$ dependent on hard scale $\langle N_{\text{jet}} \rangle$ dependent on $p_{T,j}$
- \Rightarrow QCD under control

Tilman Plehn

BSM@LHC

- Masses
- MRSSM

Spin & jets

- Parameters
- SFitter

Interlude: spins from jets

Illustrating useful jets: spin of LSP [Alwall, TP, Rainwater]

- Majorana LSP with like-sign charginos?
- hypotheses: like–sign charginos (SUSY) like–sign scalars (scalar dark matter) like–sign vector bosons (little–Higgs inspired)
- chargino decay/kinematics not used
- \Rightarrow WBF : two key distributions $\Delta \phi_{jj}$, $p_{T,j}$ [like $H \rightarrow ZZ \rightarrow 4\mu$ or WBF-Higgs]
 - distinct WBF signal? [p_{T,j} ~ m_W, forward jets] visible over backgrounds? [SUSY-QCD backgrounds dominant]
 - toy model, but not swamped by SUSY-QCD

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

Interlude: spins from jets

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- H^+H^- same as simple H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x,p_T) \sim rac{1+(1-x)^2}{2x} \; rac{1}{p_T^2}$$

 \Rightarrow scalars with softer $p_{T,j}$

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

Interlude: spins from jets

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- $-H^+H^-$ same as simple H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{2x} \frac{1}{p_T^2} \qquad P_L(x, p_T) \sim \frac{(1 - x)^2}{x} \frac{m_W^2}{p_T^4}$$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors or fermions?

- little–Higgs inspired
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Tilman Plehn

BSM@LHC

- Masses
- MRSSM

Spin & jets

- Parameters
- SFitter

Interlude: spins from jets

Like-sign scalars or fermions?

- charged Higgs in 2HDM
- $-H^+H^-$ same as simple H^0 [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
- W radiated off quarks [Goldstone coupling to Higgs]

$$P_T(x, p_T) \sim rac{1+(1-x)^2}{2x} rac{1}{p_T^2} \qquad P_L(x, p_T) \sim rac{(1-x)^2}{x} rac{m_W^2}{p_T^4}$$

 \Rightarrow scalars with softer $p_{T,j}$

Like-sign vectors or fermions?

- little–Higgs inspired
- start with copy of SM, heavy W', Z', H', f' [H' necessary for unitarity, but irrelevant at LHC]
- Lorentz structure reflected in angle between jets
- \Rightarrow vectors with peaked $\Delta \phi_{jj}$

Heavy fermions in little-Higgs models

- part of unitary UV completion [Englert, Zeppenfeld]
- huge effects on distributions [at low scales]
- \Rightarrow more like strongly interacting Ws

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets

Parameters

SFitter

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian

Underlying parameters

- measurements: better edges than masses, branching fractions, rates,... [NLO, of course] flavor, dark matter, electroweak constraints,...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- want to evaluate probability of model being true p(m|d)
- can compute fully exclusive likelihood map p(d|m) over m [tough]
- additional LHC challenge: remove poor directions [e.g. endpoints vs rates]
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local best-fitting points
 - (3) predict additional observables

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

Define set of representative points in new-physics space

- measure of 'representative': likely to agree with data [Markov chain]
- evaluate any function over chain

Markov chains

(1) probability to agree with data weighted Markov chains [Rauch & TP; Ferrenberg & Swendsen]

$$P_{\rm bin}(p \neq 0) = \frac{N}{\sum_{i=1}^{N} 1/p}$$

- (2) Higgs mass from LEP and DM relic density LHC rates from LEP and DM relic density dark matter detection from LEP and/or LHC...
- \Rightarrow anything possible and well defined [but better not screw up technically]

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets

Parameters

SFitter

Markov chains

Define set of representative points in new-physics space

- measure of 'representative': likely to agree with data [Markov chain]
- evaluate any function over chain
- (1) probability to agree with data weighted Markov chains [Rauch & TP; Ferrenberg & Swendsen]

$$P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^{N}1/p}$$

- (2) Higgs mass from LEP and DM relic density LHC rates from LEP and DM relic density dark matter detection from LEP and/or LHC...
- \Rightarrow anything possible and well defined [but better not screw up technically]

Bayesian probabilities vs profile likelihood [Allanach, Cranmer, Lester, Weber; Roszkowski,...]

- 'Which is the most likely parameter point?'
- 'How does dark matter annihilate/couple?'

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground [will do anything for citations]
- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A_0 and y_t [including all errors]
- ⇒ correlations and secondary maxima significant [0709.3985]

100000	χ^2	<i>m</i> 0	^m 1/2	tan β	A ₀	μ	m _t
10000	0.3e-04	100.0	250.0	10.0	-99.9	+	171.4
1000	27.42	99.7	251.6	11.7	848.9	+	181.6
10	54.12	107.2	243.4	13.3	-97.4	-	171.1
1	70.99	108.5	246.9	13.9	26.4	-	173.6
	88.53	107.7	245.9	12.9	802.7	-	182.7
	100000 10000 1000 100 10 10	$\begin{array}{cccc} 100000 & \chi^2 \\ 10000 & 0.3e-04 \\ 1000 & 27.42 \\ 10 & 54.12 \\ 1 & 70.99 \\ & 88.53 \\ & \cdots \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tilman Plehn

BSM@LHC

Masses

- MRSSM
- Spin & jets

Parameters

SFitter

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground [will do anything for citations]
- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A_0 and y_t [including all errors]
- ⇒ correlations and secondary maxima significant [0709.3985]

A word on errors

- central values secondary locally
- statistical errors Gaussian systematic errors Gaussian, correlated theory errors flat
- RFit scheme

[CKMFitter, profile likelihood inspired]

$$\begin{split} \chi^{2} &= -2\log \mathcal{L} = \vec{\chi}_{d}^{I} \ C^{-1} \ \vec{\chi}_{d} \\ \chi_{d,i} &= \begin{cases} 0 & |d_{i} - \bar{d}_{i}| < \sigma_{i}^{(\text{theo})} \\ \frac{\mathcal{D} |d_{i} - \bar{d}_{i}| - \sigma_{i}^{(\text{theo})}}{\mathcal{D} \sigma_{i}^{(\text{exp})}} & |d_{i} - \bar{d}_{i}| > \sigma_{i}^{(\text{theo})} \\ \end{cases}, \\ C_{i,i} &= 1 \qquad C_{i,j} = C_{j,i} = \frac{0.99 \ \sigma_{i}^{(\ell)} \ \sigma_{j}^{(\ell)} + 0.99 \ \sigma_{i}^{(j)} \ \sigma_{j}^{(j)}}{\sigma_{i}^{(\text{exp})} \ \sigma_{i}^{(\text{exp})} \ \sigma_{i}^{(\text{exp})}} \end{split}$$

Tilman Plehn

BSM@LHC

Masses

- MRSSM
- Spin & jets

Parameters

SFitter

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground [will do anything for citations]
- weighted Markov chains: several times faster
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A_0 and y_t [including all errors]
- ⇒ correlations and secondary maxima significant [0709.3985]

A word on errors

- central values secondary locally
- statistical errors Gaussian systematic errors Gaussian, correlated theory errors flat
- theory error sizeable

	SPS1a	$\Delta_{zero}^{theo-exp}$	$\Delta_{zero}^{expNoCorr}$	$\Delta_{zero}^{theo-exp}$	$\Delta_{gauss}^{theo-exp}$	$\Delta_{\text{flat}}^{\text{theo}-\text{exp}}$
		masses		endp	oints	
m ₀	100	4.11	1.08	0.50	2.97	2.17
m1/2	250	1.81	0.98	0.73	2.99	2.64
tan β	10	1.69	0.87	0.65	3.36	2.45
A	-100	36.2	23.3	21.2	51.5	49.6
mt	171.4	0.94	0.79	0.26	0.89	0.97

 \Rightarrow errors mean: endpoints instead of masses

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

TeV-scale MSSM: SFitter

MSSM map from LHC

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- Markov chain globally + hill climber locally
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- three neutralinos observed [left: Bayesian right: likelihood]

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

TeV-scale MSSM: SFitter

MSSM map from LHC

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- Markov chain globally + hill climber locally
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- three neutralinos observed [left: Bayesian right: likelihood]

- quality of fit not always useful: all the same ...

	$\mu < 0$				$\mu > 0$			
M ₁	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M_2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ^{-}	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
tan β	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M ₃	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
$M_{\tilde{\mu}_{I}}$	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8
M _{µ̃}	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9
m _A	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1
m't	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

 \Rightarrow means probably much more work to do...

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe-based tan β from m_h
- LHC rates: tan β from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: $\tan\beta$ from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]
- (1) use current precision on $(g-2)_{\mu} \sim aneta$ [SFitter + Alexander, Kreiss]
 - strongly correlated and promising

	LHC)	LHC $\otimes (g$	- 2)	SPS1a
tan β	10.0±	4.5	10.3 \pm	2.0	10.0
M ₁	102.1±	7.8	$102.7\pm$	5.9	103.1
Mo	193.3±	7.8	$193.2 \pm$	5.8	192.9
M3	577.2±	14.5	$578.2 \pm$	12.1	577.9
M _{µ̃}	193.2±	8.8	194.0 \pm	6.8	194.4
M _{µ̃}	135.0±	8.3	$135.6\pm$	6.3	135.8
M _{ã3} ,	481.4±	22.0	$485.6\pm$	22.4	480.8
M _Ď	501.7±	17.9	499.2 \pm	19.3	502.9
Mã	$524.6\pm$	14.5	$525.5\pm$	10.6	526.6
M _q R	507.3±	17.5	$507.6\pm$	15.8	508.1
m _A	406.3±℃	2(10 ³)	411.1±℃	(10 ²)	394.9
μ	$350.5\pm$	14.5	$352.5\pm$	10.8	353.7

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: $\tan \beta$ from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]
- (1) use current precision on $(g-2)_{\mu} \sim aneta$ [SFitter + Alexander, Kreiss]
 - strongly correlated and promising
- (2) use ${\sf BR}(B_s o \mu\mu)$ with stop-chargino sector [Hisano, Kawagoe, Nojiri]
 - 7% error on f_{Bs} by 2015 crucial [Della Morte, Del Debbio; SFitter + Jäger, Spannowsky]
 - perturbative effects secondary

	nc	theory erro	$\Delta BR/BR = 15\%$		
	true	best	error	best	error
tan β	30	29.5	3.4	29.5	6.5
MA	344.3	344.4	33.8	344.3	31.2
M ₁	101.7	100.9	16.3	100.9	16.4
Mo	192.0	200.3	18.9	200.3	18.8
M3	586.4	575.8	28.8	575.8	28.7
μ μ	345.8	325.6	20.6	325.6	20.6
M _{t̃,R}	430.0	400.4	79.5	399.8	79.5

Tilman Plehn

BSM@LHC

- Masses
- MRSSM
- Spin & jets
- Parameters
- SFitter

Beyond the LHC

Why theorists involved?

- want to learn statistics [usually get that badly wrong]
- theory errors not negligible [rates for focus-point scenarios]
- link with other observations model dependent

MSSM parameters beyond LHC

- remember: unknown sign(μ), believe–based tan β from m_h
- LHC rates: $\tan\beta$ from heavy Higgs tough [Kinnunen, Lehti, Moortgat, Nikitenko, Spira]
- (1) use current precision on $(g-2)_{\mu} \sim aneta$ [SFitter + Alexander, Kreiss]
 - strongly correlated and promising
- (2) use BR $(B_{s}
 ightarrow \mu \mu)$ with stop-chargino sector [Hisano, Kawagoe, Nojiri]
 - 7% error on f_{Bs} by 2015 crucial [Della Morte, Del Debbio; SFitter + Jäger, Spannowsky]
 - perturbative effects secondary

Renormalization group bottom-up [SFitter + Kneur]

- SUSY breaking, unification, GUT?
- scale-invariant sum rules? [Cohen, Schmalz]
- \Rightarrow solidly inference from weak scale

Tilman Plehn

BSM@LHC

Masses

MRSSN

Spin & jets

Parameters

SFitter

Outlook

Understanding the TeV scale

- (1) look for solid new-physics signals
- (2) measure weak-scale Lagrangian
- (3) determine fundamental physics
 - construct new-physics hypotheses
 - compute reliable predictions
 - avoid getting killed by QCD
- ⇒ LHC more than a discovery machine!

Tilman Plehn

BSM@LHC

Masses

MRSSM

Spin & jets

Parameters

SFitter