Higgs to bottoms Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

SUSY $H \to b\bar{b}$

Measuring y_b

Side remark

Higgs decays to bottoms

Tilman Plehn

Universität Heidelberg

Ann Arbor, 5/2010

Tilman Plehn

 $VH,\, H\,
ightarrow\, bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring v

weasuring y

Side remark

 $VH, H \rightarrow b\bar{b}$

 $H \rightarrow b\bar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background $_{\text{[CMS: }S/B}\sim$ 1/80]
- WBF H: no trigger, killed by QCD backgrounds [WH, γH might work]
- VH: killed by low rate and NLO background
- $t\bar{t}H$: killed by combinatorics etc

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring y

Side remark

$VH, H \rightarrow b\bar{b}$

 $H \rightarrow b\bar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background [CMS: $S/B \sim 1/80$]
- WBF H: no trigger, killed by QCD backgrounds [WH, \(\gamma\) H might work]
- VH: killed by low rate and NLO background
- $-t\bar{t}H$: killed by combinatorics etc

Changing everything [Butterworth, Davison, Rubin, Salam; Seymour...]

- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: large m_{bb} and small R_{bb} , so boosted Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T < 1$
- $qar{q}
 ightarrow V_\ell H_b$ $ext{viable}$ $_{[
 ho_T} \gtrsim$ 300 GeV, few % of rate]

Tilman Plehn

 $VH,\, H\,
ightarrow\, bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring y

Side remark

 $VH, H \rightarrow b\bar{b}$

 $H
ightarrow b ar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background [CMS: $S/B \sim 1/80$]
- WBF H: no trigger, killed by QCD backgrounds [WH, \(\gamma\)H might work]
- VH: killed by low rate and NLO background
- $t\bar{t}H$: killed by combinatorics etc

Changing everything [Butterworth, Davison, Rubin, Salam; Seymour...]

- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: large m_{bb} and small R_{bb} , so boosted Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T < 1$
- $qar{q}
 ightarrow V_\ell H_b$ $ext{viable}$ $_{[
 ho_T} \gtrsim$ 300 GeV, few % of rate]
- ⇒ non-trivial challenge to jet algorthms

	$\sigma_{\mathcal{S}}/fb$	σ_B /fb	S/\sqrt{B}_{30}
C/A, R = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{\text{cut}}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

Higgs to bottoms Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

$VH. H \rightarrow b\bar{b}$

 $H \rightarrow b\bar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background [cms: S/B ~ 1/80]
- WBF H: no trigger, killed by QCD backgrounds [WH, \(\gamma H\) might work]
- VH: killed by low rate and NLO background
- $-t\bar{t}H$: killed by combinatorics etc

VH production

- combined channels $V \rightarrow \ell\ell, \nu\nu, \ell\nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- confirmed to 20% [Piquadio] subjet b tag excellent [70%/1%] charm rejection challenging $m_H \pm 8 \text{ GeV tough}$
- improvements possible [Soper, Spannowsky]
- ⇒ crucial for Higgs sector studies

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

tīH. H → b̄b

ELIEV LL

Measuring y

weasuring y

Side remark

 $t\bar{t}H, H \rightarrow b\bar{b}$

Long death of $t\bar{t}H,H\to b\bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $tar{t}bar{b}, tar{t}jj$ [know at NLO]
- no chance: 1- combinatorics: m_{bb} from $pp \rightarrow 4b_{taa}$ 2 $j \ell \nu$

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring y

wicasamig y

Side remark

 $t\bar{t}H, H \rightarrow b\bar{b}$

Long death of $t\bar{t}H, H o b\bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t ar{t} b ar{b}, t ar{t} j j$ [know at NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell\nu$
 - 2- kinematics: peak-on-peak

 $t\bar{t}H, H \rightarrow b\bar{b}$

Long death of $t\bar{t}H, H \to b\bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$ reconstruction and rate: $\bar{t} \rightarrow \bar{b}W^- \rightarrow \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [know at NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$ 2- kinematics: peak-on-peak

 - 3- systematics: $S/B \sim 1/9$ [S/ \sqrt{B} irrelevant]

Tilman Plehn

 $VH,\,H\,
ightarrow\,bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring y

Side reilla

 $t\bar{t}H, H \rightarrow b\bar{b}$

Long death of t ar t H, H o b ar b [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [know at NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$ [S/ \sqrt{B} irrelevant]

New analysis

- tagged (boosted) top and Higgs trigger on lepton
- add'l continuum b tag [remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD]
- side bin in continuum tībb

per 1 fb ⁻¹	signal	tīZ	tītbīb	$t\bar{t}$ +jets
events after acceptance	24.1	6.9	191	4160
events with one top tag	10.2	2.9	70.4	1457
events with $m_{bb} = 110 - 130 \text{ GeV}$	2.9	0.44	12.6	116
corresponding to subjet pairings	3.2	0.47	13.8	121
subjet pairings two b tags	1.0	0.08	2.3	1.4
including a third b tag	0.48	0.03	1.09	0.06
	'			

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring y

Side remark

 $t\bar{t}H, H \rightarrow b\bar{b}$

Long death of t ar t H, H o b ar b [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$

reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$

- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [know at NLO]

- not a chance:

1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$

2- kinematics: peak-on-peak

3– systematics: $S/B \sim 1/9$ [S/\sqrt{B} irrelevant]

New analysis

- tagged (boosted) top and Higgs trigger on lepton
- add'l continuum b tag
- side bin in continuum $t \bar{t} b \bar{b}$

m_H	S	S/B	S/\sqrt{B}
115	57	1/2.1	5.2 (5.7)
120	48	1/2.4	4.5 (5.1)
130	29	1/3.6	2.9 (3.0)

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H,\,H\,
ightarrow\,b\bar{b}$

SUSY $H \to b \bar b$

Measuring y

Side remark

Higgs and top tagging

Higgs tag in $t\bar{t}H$ [TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J=p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs $m_{bb}^{\rm filt}$ no mass constraint side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets [Butterworth–Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{\rm jj}/2$ reconstruct masses w/ QCD jet

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \rightarrow b\bar{b}$

SUSY $H \rightarrow b\bar{b}$

Higgs and top tagging

Higgs tag in $t\bar{t}H$ [TP, Salam, Spannowsky]

- uncluster one-by-one: $i \rightarrow i_1 + i_2$ 1– unbalanced $m_{i_1} > 0.8 m_i$ means QCD; discard j_2 2– soft m_{i_1} < 30 GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{ii}/2$ reconstruct masses w/ QCD jet

Standard Model top tag [TP, Salam, Spannowsky, Takeuchi]

only way to test fat-jet methods

 start like Higgs tagger [R=1.5] kinematic selection [filtered]

no side bands to check

 $m_t^{\rm rec} = 150...200 \, {\rm GeV}$ $m_{W}^{\text{rec}} = 60...95 \text{ GeV}$ helicity angle large [learn from single tops]

Tilman Plehn

VH. H → b̄b

 $t\bar{t}H,\,H\,
ightarrow\,b\bar{b}$

SUSY $H \rightarrow b\bar{b}$

Measuring y_l

Side remark

Higgs and top tagging

Higgs tag in $t\bar{t}H$ [TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2- soft $m_{j_1} <$ 30 GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J=p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs $m_{bb}^{\rm filt}$ no mass constraint side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets [Butterworth–Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{jj}/2$ reconstruct masses w/ QCD jet

Standard Model top tag [TP, Salam, Spannowsky, Takeuchi]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Atlas]
- only way to test fat-jet methodsstart like Higgs tagger [R=1.5]

kinematic selection [filtered] $m_t^{\text{rec}} = 150...200 \text{ GeV}$

 $m_W^{\text{fec}} = 60...95 \text{ GeV}$ helicity angle large [learn from single tops]

no side bands to check

Higgs and top tagging

Higgs tag in $t\bar{t}H$ [TP, Salam, Spannowsky]

- uncluster one-by-one: $i \rightarrow i_1 + i_2$ 1– unbalanced $m_{i_1} > 0.8 m_i$ means QCD; discard j_2 2– soft m_{i_1} < 30 GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{ii}/2$ reconstruct masses w/ QCD jet

Standard Model top tag [TP, Salam, Spannowsky, Takeuchi]

- only way to test fat-jet methods - start like Higgs tagger [R=1.5] kinematic selection [filtered]
 - $m_t^{\rm rec} = 150...200 \, {\rm GeV}$ $m_{W}^{\text{rec}} = 60...95 \text{ GeV}$ helicity angle large [learn from single tops]
- no side bands to check

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

SUSY $H \rightarrow b\bar{b}$

Side remark

SUSY $H \rightarrow b\bar{b}$

Higgs in cascade decays [Kribs, Martin, Roy, Spannowsky]

- idea: find Higgs in cascade decays [Cambridge]
- BSM sample after missing energy or hard γ cut
- Higgs tag over the remaining event
- side bin analysis in mbb
- more to follow...

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring y_b

Side remark

Higgs sector

Higgs-sector analysis [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- optimistic LHC scenario: everything working and good data
- Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- light Higgs: 10 main channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$

WBF: $H \rightarrow ZZ$, WW, $\gamma\gamma$, $\tau\tau$

 $VH: H \to b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

 $t\bar{t}H: H \to \gamma\gamma, WW, (b\bar{b})...$

- parameters: couplings $W, Z, t, b, au, g, \gamma$ [plus $m_{H^{]}}$

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring yb

Side remark

Higgs sector

Higgs-sector analysis [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- optimistic LHC scenario: everything working and good data
- Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- light Higgs: 10 main channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus m_H]

Total width and g_{bbH}

- degeneracy
$$\sigma$$
 BR $\propto (g_p^2/\sqrt{\Gamma_H}) (g_d^2/\sqrt{\Gamma_H}) \equiv C > 0$

$$\begin{array}{ccc} - \text{ bad scaling} \\ C = \lim\limits_{g^2 \to 0} & \frac{g^4}{\Gamma_H} = \lim\limits_{g^2 \to 0} & \frac{g^4}{g^2(\Gamma_{\text{vis}}/g^2) + \Gamma_x} = 0 \end{array}$$

means constraint: $\sum \Gamma_i(g^2) < \Gamma_H \rightarrow \Gamma_H|_{min}$

- $WW \rightarrow WW$ unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$
- for now $\Gamma_H = \sum_{\text{obs}} \Gamma_j$, so $H \to b\bar{b}$ crucial

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring yb

Side remark

Errors

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 LHC rate 300% off: Standard Model wrong means theory likelihood flat centrally and zero far away
- profile likelihood construction: RFit [CKMFitter]

$$\begin{aligned} -2\log\mathcal{L} &= \chi^2 = \vec{\chi}_d^T \ \mathcal{C}^{-1} \ \vec{\chi}_d \\ \chi_{d,i} &= \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}, \end{aligned}$$

measuring ratios
 useless if statistics dominated
 theory errors — same initial states
 systematic errors — same final states
 ???

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

Measuring yb

Side remark

Higgs couplings

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings varied around SM values $g_{HXX}=g_{HXX}^{\rm SM}$ (1 + δ_{HXX}) $\delta_{HXX}\sim -2$ means sign flip $_{[g_{HWW}>0\,{\rm fixed}]}$
- need assumption about loop-induced couplings $g_{ggH}, g_{\gamma\gamma H}$ [lan's talk]
- likelihood map and local errors from SFitter
- experimental/theory errors on signal and backgrounds [do not ask theorists!]

luminosity measurement	5 %
detector efficiency	2 %
lepton reconstruction efficiency	2 %
photon reconstruction efficiency	2 %
WBF tag-jets / jet-veto efficiency	5 %
b-tagging efficiency	3 %
τ -tagging efficiency (hadronic decay)	3 %
lepton isolation efficiency $(H \rightarrow 4\ell)$	3 %

σ (gluon fusion)	13 %
σ (weak boson fusion)	7 %
σ (VH-associated)	7 %
σ ($t\bar{t}$ -associated)	13 %

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring y_b

Side remark

Higgs couplings

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings varied around SM values $g_{HXX}=g_{HXX}^{\rm SM}$ (1 + δ_{HXX}) $\delta_{HXX}\sim -2$ means sign flip $[g_{HWW}>0$ fixed]
- need assumption about loop-induced couplings $g_{ggH}, g_{\gamma\gamma H}$ [lan's talk]
- likelihood map and local errors from SFitter
- experimental/theory errors on signal and backgrounds [do not ask theorists!]
- error bars for Standard Model hypothesis [smeared data point, 30fb⁻¹]

coupling	without eff. couplings			gs including eff. couplings		
	σ_{symm}	σ_{neg}	σ_{pos}	σ_{symm}	σ_{neg}	σ_{pos}
δ_{WWH}	± 0.23	- 0.21	+0.26	± 0.24	- 0.21	+0.27
δ_{ZZH}	± 0.50	-0.74	+0.30	± 0.44	-0.65	+0.24
$\delta_{t\bar{t}H}$	± 0.41	-0.37	+0.45	± 0.53	-0.65	+0.43
$\delta_{b\bar{b}H}$	± 0.45	-0.33	+0.56	± 0.44	-0.30	+0.59
$\delta_{ au au H}$	± 0.33	-0.21	+0.46	± 0.31	-0.19	+0.46
$\delta_{\gamma\gamma H}$	_	_	_	± 0.31	-0.30	+0.33
δ_{qqH}	_	_	_	± 0.61	-0.59	+0.62
m_H	± 0.26	-0.26	+0.26	± 0.25	-0.26	+0.25
m_b	± 0.071	-0.071	+0.071	± 0.071	-0.071	+0.072
m_t	±1.00	– 1.03	+0.98	± 0.99	– 1.00	+0.98

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring y_h

Side remark

Higgs couplings

One-dimensional distributions to check....

1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring y_h

Side remark

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods $[no\ effective\ couplings,\ 30\ fb^{-1}]$
- 2— higher luminosity quantitatively different $\,$ [no effective couplings, 30 vs 300 ${\rm fb}^{-1}{\rm J}$

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring yh

Side remark

Higgs couplings

One-dimensional distributions to check....

- 1 noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2— higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3— but not saving Bayesian statistics $\,$ [no effective couplings, 300 $\,{\rm fb}^{-1}]$

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ SUSY $H \rightarrow b\bar{b}$

Measuring yh

weasuring y_E

Side remark

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2— higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3– but not saving Bayesian statistics [no effective couplings, 300 ${
 m fb}^{-1}$]
- 4— theory errors not dominant for 30 ${\rm fb^{-1}}$ [with effective couplings, 30 ${\rm fb^{-1}}$]

 \Rightarrow profile likelihood promising for 30 fb⁻¹, errors a mess

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \to b\bar{b}$ SUSY $H \to b\bar{b}$

Measuring yt

Side remark

Side remark: scaling Higgs couplings

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner]

- looking like fundamental Higgs
- couplings scaled, e.g. $g^2 o g^2 (1-\xi)$
- equivalent to Higgs portal scenarios
- technically easy with SFitter [Diploma thesis: SFitter + Bock]
- for 120 GeV Higgs: $\Delta \xi \sim$ 0.2 for 30 fb $^{-1}$

Tilman Plehn

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

SUSY $H \rightarrow b\bar{b}$

Measuring y_b

Side remark

Outlook

Trying to understand Higgs@LHC

- Higgs still an exciting field
- decay to bottoms observable
- parameter analysis the goal
- bottoms in the initial state by Sally...

Higgs to bottoms $\begin{array}{c} {\rm Tilman\ Plehn} \\ \\ {\it VH}, \, H \, \rightarrow \, b\bar{b} \\ \\ {\it t\bar{t}H}, \, H \, \rightarrow \, b\bar{b} \end{array}$

SUSY $H \rightarrow b\bar{b}$

Measuring y_b Side remark