Tilman Plehn

Higgs to bottor Fundamental?

Higgs soupling

Exotic Higgs

FP gravity

Higgs Physics Revolution vs Evolution

Tilman Plehn

Universität Heidelberg

Aspen, 1/2010

Tilman Plehn

Higgs to bottom Fundamental? Higgs couplings Exotic Higgs EP gravity

Outline

Higgs to bottoms

Fundamental Higgs or What?

Higgs couplings

Exotic Higgs

Fixed-point gravity

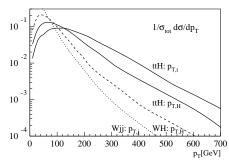
Tilman Plehn

Higgs to bottoms

Fundamental?

Higgs couplings

Exotic Higgs


FP gravity

Higgs to bottoms: Revolution

A new strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed for light Higgs $[2/3 \text{ of all Higgses; inclusive CMS } S/B \sim 1/80]$
- S: large mbb, boost-dependent Rbb
 - B: large m_{bb} only for large R_{bb} S/B: large m_{bb} and small R_{bb}

 $-~qar{q}
ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
ho_T}\gtrsim$ 300 GeV, few % of total rate]

Tilman Plehn

Higgs to bottoms

- Fundamental?
- Higgs couplings
- Exotic Higgs
- FP gravity

Higgs to bottoms: Revolution

A new strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed for light Higgs $[2/3 \text{ of all Higgses; inclusive CMS } S/B \sim 1/80]$
- S: large mbb, boost-dependent Rbb
 - B: large m_{bb} only for large R_{bb} S/B: large m_{bb} and small R_{bb}
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- underlying event: 2+1 filtered subjets
- \Rightarrow non-trivial challenge to jet algorithms

jet definition	$\sigma_{\mathcal{S}}/{ m fb}$	$\sigma_{\it B}/{\rm fb}$	S/\sqrt{B}_{30}
C/A, R = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{\rm cut}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

Tilman Plehn

Higgs to bottoms

- Fundamental?
- Higgs couplings
- Exotic Higgs
- FP gravity

Higgs to bottoms: Revolution

A new strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

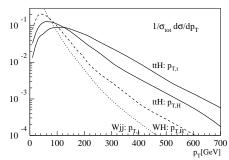
- desperately needed for light Higgs $[2/3 \text{ of all Higgses; inclusive CMS } S/B \sim 1/80]$
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: large m_{bb} and small R_{bb}
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- underlying event: 2+1 filtered subjets
- \Rightarrow non-trivial challenge to jet algorithms

Results and checks

- combined channels $V \to \ell \ell, \nu \nu, \ell \nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- checked by Freiburg [Piquadio] subjet *b* tag excellent [70%/1%] charm rejection challenging $m_H \pm 8$ GeV tough
- \Rightarrow confirmed at 20% level

Tilman Plehn

Higgs to bottoms


Fundamental?

- Higgs couplings
- Exotic Higgs
- FP gravity

Higgs to bottoms: Evolution

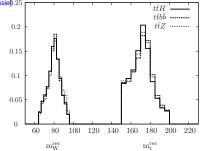
Tackling $ttH, H \rightarrow bb$ [TP, Salam, Spannowsky]

- traditional analysis dead $[S/B \sim 1/9]$ killed by indistinguishable background killed by bottom combinatorics
- S: large *m_{bb}*, boost-dependent *R_{bb}* B: large *m_{bb}* only for large *R_{bb}* S/B: large *m_{bb}* and small *R_{bb}*; correct bottom pair boosted
- $-pp \rightarrow t_{\ell}t_{h}H_{b}$ even larger in boosted regime

Tilman Plehn

Higgs to bottoms

- Fundamental?
- Higgs couplings
- Exotic Higgs
- P gravity


Higgs to bottoms: Evolution

Tackling $ttH, H \rightarrow bb$ [TP, Salam, Spannowsky]

- traditional analysis dead [S/B ~ 1/9] killed by indistinguishable background killed by bottom combinatorics
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: large m_{bb} and small R_{bb} ; correct bottom pair boosted
- $-pp \rightarrow t_{\ell} t_h H_b$ even larger in boosted regime
- cool: fat Higgs jet + fat top jet + trigger lepton
- uncool: QCD activity [Dittmaier et al: K = 2.3 for $t\bar{t}b\bar{b}$]

Top tag [cf Johns Hopkins, Princeton, Washington, talk by Jessie].25

- C/A algorithm [R = 1.5] mass drop criterion
- reconstruct m_W and m_t
 cut on helicity angle
- filtering against underlying event
- efficiency 43%; mistag 5%
- \Rightarrow working Standard Model top tag

Tilman Plehn

Higgs to bottoms

Fundamental?

Higgs coupling:

Exotic Higgs

FP gravity

Higgs to bottoms: Evolution

Higgs tag

- same as top [stricter mass drop criterion, harder jets]
- QCD activity: one or two QCD jets inside fat Higgs jet
- Higgs mass unknown subjet combinations ordered by $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ three leading combinations vs m_{bb}

- events in 1 fb^{-1} [5.1 σ for m_H = 120 GeV and 100 fb^{-1}]

	[0,10,10,10]			_	
		signal	tīΖ	tītbb	<i>tī</i> +jets
-	events after acceptance	24.1	6.9	191	4160
	events with one top tag	10.2	2.9	70.4	1457
	events with $m_{bb} = 110 - 130 \text{ GeV}$	2.9	0.44	12.6	116
	corresponding to subjet pairings	3.2	0.47	13.8	121
-	subjet pairings two b tags	1.0	0.08	2.3	1.4

Tilman Plehn

Higgs to bottoms

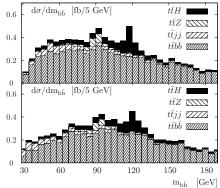
Fundamental?

Higgs couplings

Exotic Higgs

FP gravity

Higgs to bottoms: Evolution


Higgs tag

- same as top [stricter mass drop criterion, harder jets]
- QCD activity: one or two QCD jets inside fat Higgs jet
- Higgs mass unknown subjet combinations ordered by $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ three leading combinations vs m_{bb}
- $t\bar{t}jj$ background: 'Higgs' as *b* from t_{ℓ} plus QCD jet additional isolated *b* tag, only continuum $t\bar{t}b\bar{b}$ left missing energy cut?

jet patterns? [TP, Rauch, Spannowsky]

m_H	S	S/B	S/\sqrt{B}
115	57	1/2.1	5.2 (5.7)
120	48	1/2.4	4.5 (5.1)
130	29	1/3.6	2.9 (3.0)

 \Rightarrow under experimental scrutiny

Higgs Physics Tilman Plehn

Higgs to bottom:

Fundamental?

Higgs coupling

- Exotic Higgs
- FP gravity

Fundamental Higgs or What?

Higher-dimensional Higgs operators [Low, Rattazzi, Vicchi]

- 'strongly interacting light Higgs' [Giudice, Grojean, Pomarol, Rattazzi]
- most relevant for LHC [WBF?]

$$\begin{aligned} \mathcal{O}_{H} &= \partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H) \qquad \mathcal{O}_{y} &= (H^{\dagger}H)\,\overline{f}_{L}Hf_{R} + \mathrm{h.c.} \\ \mathcal{O}_{g} &= (H^{\dagger}H)\,G_{\mu\nu}G^{\mu\nu} \qquad \mathcal{O}_{\gamma} &= (H^{\dagger}H)\,B_{\mu\nu}B^{\mu\nu} \end{aligned}$$

- Standard Model: no decoupling in presence of chiral fermions etc.
- fundamental Higgs: $c_H > 0$ unless triplet scalar contribute [Higgs couplings reduced] $c_H + 2c_y > 0$ from heavy scalars and vectors [reduced coupling to fermions] $c_g < 0$; $c_\gamma > 0$ from top partner solving hierarchy problem $c_g < 0$ in SUSY only for large mixing
- composite Higgs [non-linear σ model]: $c_H, c_y > 0$
- little Higgs:

 $c_{H,y}$ large, $c_{g,\gamma}$ suppressed

 \Rightarrow study Higgs couplings at the LHC

Tilman Plehn

Higgs to bottoms Fundamental?

Higgs couplings

Exotic Higgs

P gravity

Higgs couplings

Coupling extraction at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- optimistic LHC scenario: everything working and good data
- light Higgs around 120 GeV: 10 main channels ($\sigma \times BR$) [bb channel new]
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties

 $\begin{array}{l} (WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau) \\ (WBF: H \rightarrow WW)/(GF: H \rightarrow WW)... \end{array}$

Tilman Plehn

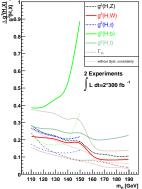
Higgs to bottoms Fundamental?

Higgs couplings

Exotic Higgs

P gravity

Higgs couplings


Coupling extraction at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- optimistic LHC scenario: everything working and good data
- light Higgs around 120 GeV: 10 main channels ($\sigma imes BR$) [bb channel new]
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]

Total width

- degeneracy: $\sigma BR \propto (g_{\rho}^2/\sqrt{\Gamma_H}) (g_d^2/\sqrt{\Gamma_H})$
- additional constraint: $\sum \Gamma_i(g^2) < \Gamma_H \rightarrow \Gamma_H|_{min}$
- $WW \rightarrow WW$ unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$
- width extraction hard

$$\Rightarrow$$
 this analysis: $\Gamma_H = \sum_{obs} \Gamma_j$

Tilman Plehn

Higgs to bottoms Fundamental?

- Higgs couplings
- Exotic Higgs
- P gravity

SFitter — Higgs couplings at LHC

Know-how from TeV-scale MSSM analysis [SFitter]

- parameters: weak-scale Higgs Lagrangian measurements: signal+background rates errors: statistics & systematics & theory [RFit from CKMFitter]
- fully exclusive likelihood map p(d|m) over model space m
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmo, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor, here: cooling Markov chains]
- LHC aim: compute high-dimensional map p(d|m)find and rank local maxima in p(d|m)Bayesian-frequentist dance to reduce dimensions

Alternative best-fit points and error bars [Dührssen, Lafaye, TP, Rauch, Zerwas]

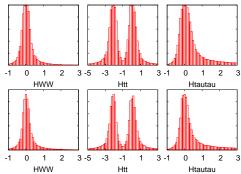
- all couplings varied around SM values $g_{HXX} = g_{HXX}^{SM} (1 + \delta_{HXX})$
- $\delta_{HXX} \sim -2$ means sign flip [g_{HWW} > 0 fixed]

	σ_{symm}	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$	σ_{symm}	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$
δ_{WWH}	± 0.23	- 0.21	+0.26	± 0.24	- 0.21	+0.27
δ_{ZZH}	± 0.50	-0.74	+0.30	± 0.44	- 0.65	+0.24
$\delta_{t\bar{t}H}$	± 0.41	-0.37	+0.45	± 0.53	- 0.65	+0.43
$\delta_{b\bar{b}H}$	± 0.45	-0.33	+0.56	± 0.44	-0.30	+0.59
$\delta_{\tau \bar{\tau} H}$	± 0.33	- 0.21	+0.46	± 0.31	- 0.19	+0.46
$\delta_{\gamma\gamma H}$	_	—	_	± 0.31	-0.30	+0.33
δ_{ggH}	-	_	_	± 0.61	- 0.59	+0.62
		_	_			

Tilman Plehn

Higgs to bottom Fundamental?

Higgs couplings


Exotic Higgs

FP gravity

SFitter — Higgs couplings at LHC

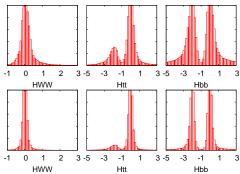
One-dimensional distributions

- 30 fb^{-1} with vs without theory error $\ensuremath{\mbox{[with effective couplings]}}$
- \Rightarrow theory errors there but not dominant for 30 ${
 m fb}^{-1}$

Tilman Plehn

Higgs to bottom Fundamental?

Higgs couplings


Exotic Higgs

P gravity

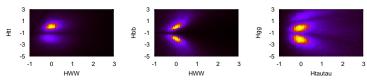
SFitter — Higgs couplings at LHC

One-dimensional distributions

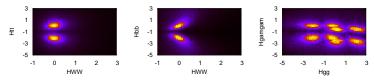
- 30 fb^{-1} with vs without theory error [with effective couplings]
- $\Rightarrow\,$ theory errors there but not dominant for 30 ${\rm fb^{-1}}$
 - 30 $fb^{-1}~\text{vs}$ 300 $fb^{-1}~~\text{[without effective couplings]}$
- \Rightarrow higher luminosity quantitatively different

Tilman Plehn

Higgs to bottoms Fundamental?


Higgs couplings

- Exotic Higgs
- FP gravity


SFitter — Higgs couplings at LHC

Two-dimensional correlations and effective coupings

- (1) including effective g_{Hgg}
 - sign of g_{Htt} fixed, correlated with g_{HWW}
 - correlation of g_{Hbb} and g_{HWW} [loops and width]
 - effective coupling g_{Hgg} accessible

- (2) also effective $g_{H\gamma\gamma}$
 - correlation of g_{Htt} and g_{HWW} on both branches
 - still correlation of g_{Hbb} and g_{HWW} [width]
 - effective coupling $g_{H\gamma\gamma}$ more complex

Tilman Plehn

- Higgs to bottom Fundamental?
- Hiaas couplinas

Exotic Higgs

FP gravity

Bowing to the Organizers

Higgs in Space! [Jackson, Servant, Shaughnessy, Tait, Taoso; talk by Gabe]

- best paper title in 2009
- simple model:

Dirac fermion dark matter [somehow massive]

- Z^\prime portal to Standard Model $[{\tt Kinetic mixing and } \textit{tt}Z^\prime \ {\tt coupling}]$ lots of anomalies cancelled by whatever
- WIMP annihilation to γH with γ lines $[E_{\gamma}/M = 1 m_{H}^{2}/(4M^{2})]$
- \Rightarrow LHC signature $pp \rightarrow t\bar{t}H\gamma$ with monoenergetic γ [good for $t\bar{t}H$ search]

Higgs in model space [Kribs, Martin, Roy, Spannowsky; talk by Adam]

- showing the QCD animal in Graham
- assume new physics samples with Higgs and without backgrounds
- generic for GMSB with higgsino NLSP and gravitino LSP non-negligible for bino NLSP
- mixed $\gamma + \widetilde{G}$ and $h + \widetilde{G}$ decays
- \Rightarrow reconstruct *H* just like γ as fat jet

Tilman Plehn

Higgs to bottoms Fundamental? Higgs couplings Exotic Higgs

FP gravity

Fixed-point gravity

UV-save gravity as its own UV completion [Weinberg; Reuter; Wetterich; Percacci; Litim...]

- truly minimal model
- dimensionless gravitational coupling $g(\mu) = G(\mu)\mu^2 = G_0 Z_G^{-1}(\mu) \mu^2$
- IR no gravitational running
 M_{Planck} anomalous dimensions change
 UV finite gravity fixed point

Gravitational effects on Standard Model [Shaposhnikov, Wetterich]

- dominant in the UV regime

$$\beta = \frac{a}{8\pi} \frac{k^2}{M_{\text{Planck}}(k)^2} \{g_1, g_2, g_3, y_t, \lambda\} \text{ means } \{g_1, g_2, g_3, y_t, \lambda\} \sim k^a$$

- IR fixed point for λ/y_t^2
- IR and UV behavior
 - $\begin{array}{ll} a_{1,2,3} \lesssim -0.013 & \text{asymptotically free, not relevant in UV} \\ a_t < a_t^{\text{crit}} < 0 & \text{fixed by finite top mass, avoid Gaussian IR fixed point} \\ a_\lambda \sim 3 & \text{no Landau pole and } \lambda > 0 \text{ below } M_{\text{Planck}} \end{array}$

 $-m_H = (128 \pm 2)$ GeV means no physics to the Planck scale

Tilman Plehn

Higgs to bottoms Fundamental? Higgs couplings Exotic Higgs

FP gravity

Outlook

Higgs@LHC amazingly still showing progress

- 1. we can see $H \rightarrow b\bar{b}!$
- 2. Higgs sector analyses will work...
- 3. cool guys like Graham dig jet algorithms!
- \Rightarrow revolution ranking: (3) ahead of (1) ahead of (2)

and tell your students there is no such thing as a completely worked-out field

Tilman Plehn

Higgs to bottoms

Fundamental?

Higgs couplings

Exotic Higgs

FP gravity