Fat jets Tilman Plehn

Physics case

Higgs tagging

Top tagging

Fat jets for $t\bar{t}H$ production

Tilman Plehn

Heidelberg University

Pheno, 5/2010

Physics case

Top tagging

Physics case Tilman Plehn

Long death of $t\bar{t}H,H\to b\bar{b}$ [Michael's talk — Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}ii$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [know at NLO]
- no chance: 1– combinatorics: m_{bb} from $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$

Tilman Plehn

Physics case

Higgs tagging

Ton togging

Physics case

Long death of $t\bar{t}H,H\to b\bar{b}$ [Michael's talk — Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t ar{t} b ar{b}, t ar{t} j j$ [know at NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$
 - 2- kinematics: peak-on-peak

Tilman Plehn

Physics case

Higgs tagging

Top tagging

Physics case

Long death of $t\bar{t}H,H o b\bar{b}$ [Michael's talk — Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t ar{t} b ar{b}, t ar{t} j j$ [know at NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell\nu$
 - 2- kinematics: peak-on-peak
 - 3- systematics: $S/B \sim 1/9$ [S/ \sqrt{B} irrelevant]

Tilman Plehn

hynian anan

Higgs tagging

Top tagging

Higgs tagging

New strategy for $H \to bb$ [Butterworth, Davison, Rubin, Salam; Adam's and Michael's talks]

- desperately needed for light Higgs $\,$ [2/3 of all Higgses; inclusive CMS $S/B \sim 1/80$]
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb}
 - S/B: ask for large m_{bb} and small R_{bb} boosted Higgs $R_{bb} \sim 2m_H/p_T \sim 0.8$

Tilman Plehn

Physics case

Higgs tagging

Top taggin

Higgs tagging

New strategy for H o bb [Butterworth, Davison, Rubin, Salam; Adam's and Michael's talks]

- desperately needed for light Higgs $\,$ [2/3 of all Higgses; inclusive CMS $S/B \sim 1/80$]
- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: ask for large m_{bb} and small R_{bb} boosted Higgs $R_{bb} \sim 2m_H/p_T \sim 0.8$
- ⇒ non-trivial challenge to jet algorthms

jet definition	$\sigma_{\mathcal{S}}/fb$	σ_B /fb	S/\sqrt{B}_{30}
C/A, R = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{\text{cut}}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

```
Higgs tagging
Top tagging
```

Fat iets

Tilman Plehn

Higgs tagging

New strategy for H o bb [Butterworth, Davison, Rubin, Salam; Adam's and Michael's talks]

- desperately needed for light Higgs $\,$ [2/3 of all Higgses; inclusive CMS $S/B \sim 1/80$]
- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: ask for large m_{bb} and small R_{bb}
- ⇒ non-trivial challenge to jet algorthms

Higgs tag in $t\bar{t}H$ [TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$
 - 1– unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2– soft $m_{j_1} < 30$ GeV means QCD; keep j_1

boosted Higgs $R_{bb} \sim 2m_H/p_T \sim 0.8$

- double *b* tag three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin possibly add't balance criterion
- QCD jets everywhere underlying event and pileup deadly filter reconstruction jets [Eutterworth-Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{jj}/2$ reconstruct masses w/ QCD jet
- $-S/B\sim 1/2$, so 5σ for 100 fb $^{-1}$ makes sense

```
Fat jets
```

Tilman Plehn

nysics cas

Higgs tagging

Top taggin

Higgs tagging

New strategy for H o bb [Butterworth, Davison, Rubin, Salam; Adam's and Michael's talks]

- desperately needed for light Higgs [2/3 of all Higgses; inclusive CMS $S/B \sim 1/80$]
- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} , only for large R_{bb}
 - S/B: ask for large m_{bb} and small R_{bb} boosted Higgs $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- ⇒ non-trivial challenge to jet algorthms

Higgs tag in $t\bar{t}H$ [TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double *b* tag three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin possibly add't balance criterion
- QCD jets everywhere underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{\rm ii}/2$
- reconstruct masses w/ QCD jet $-S/B \sim 1/2$, so 5σ for 100 fb⁻¹ makes sense

Tilman Plehn

Top tagging

Top tagging

Standard Model top tagger [TP, Salam, Spannowsky, Takeuchi]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Atlas]
- cool for $t\bar{t}H$: fat Higgs and top jets
- start like Higgs tagger [but R=1.5]
- $\begin{array}{ll} & \text{kinematic selection} & \text{[filtered]} \\ m_t^{\text{rec}} = 150...200 \text{ GeV} \\ m_W^{\text{rec}} = 60...95 \text{ GeV} \\ \text{helicity angle large} & \text{[learn from single tops]} \end{array}$
- no check with side bands
- QCD tag typical for signal

Tilman Plehn

Himan Pie

Higgs taggin

Top tagging

Top tagging

Standard Model top tagger [TP, Salam, Spannowsky, Takeuchi]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Atlas]
- cool for $t\bar{t}H$: fat Higgs and top jets
- start like Higgs tagger [but R=1.5]
- kinematic selection [filtered] $m_t^{\rm rec} = 150...200~{\rm GeV}$ $m_W^{\rm rec} = 60...95~{\rm GeV}$ helicity angle large [learn from single tops]
- no check with side bands
- QCD tag typical for signal

Results and challenges

- focus on $p_T < 400$ GeV
- $\mathcal{O}(50\%+)$ efficiency for boosted tops
- reconstruct top momentum?
- identify three decay sub-jets?
- ⇒ give us a little more time

Tilman Plehn

. ..

Higgs tagging

Top tagging

Top tagging

Standard Model top tagger [TP, Salam, Spannowsky, Takeuchi]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Atlas]
- cool for $t\bar{t}H$: fat Higgs and top jets
- start like Higgs tagger [but R=1.5]
- kinematic selection [filtered] $m_t^{\rm fec} = 150...200 \; {\rm GeV}$ $m_W^{\rm fec} = 60...95 \; {\rm GeV}$ helicity angle large [learn from single tops]
- no check with side bands
- QCD tag typical for signal

Results and challenges

- focus on $p_T < 400 \; \text{GeV}$
- $\mathcal{O}(50\%+)$ efficiency for boosted tops
- reconstruct top momentum?
- identify three decay sub-jets?
- ⇒ give us a little more time

Tilman Plehn

Physics case

Higgs taggin

Top tagging

Outlook

Top and Higgs tagging

- great success in VH production
- possible rescue of $t \bar{t} H$ production
- Higgs tag based on bottom tags and side bin
- top tag based on reconstructed masses

Fat jets Tilman Plehn Physics case

Higgs tagging

Top tagging