Fat jets

Tilman Plehn

Fat jets

 $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H,\,H
ightarrow\,b\bar{b}$

HEPTopTagger

Stop pairs

More Higgs

Fat jets

Tilman Plehn

Universität Heidelberg

Higgs Days, Santander 10/2010

Fat jets

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger Stop pairs More Higgs

Fat jets

. . .

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow$ 2 jets from strongly interacting WW [Butterworth, Cox, Forshaw]
- 2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
- 2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]
- 2009 boosted $\tilde{\chi}^0_1 \rightarrow 3$ jets in *R* parity violating SUSY [Butterworth, Ellis, Raklev, Salam]
- 2009 boosted $t \rightarrow 3$ jets from top partners [TP, Salam, Spannowsky, Takeuchi]

Fat jets

 $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger Stop pairs More Higgs

Fat jets

. . .

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow$ 2 jets from strongly interacting WW [Butterworth, Cox, Forshaw]

2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]

2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

2009 boosted $\tilde{\chi}^0_1 \rightarrow 3$ jets in *R* parity violating SUSY [Butterworth, Ellis, Raklev, Salam]

2009 boosted $t \rightarrow 3$ jets from top partners [TP, Salam, Spannowsky, Takeuchi]

$VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \rightarrow b\bar{b}$

More Higgs

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter]
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T \sim 0.8$

Higgs to bottoms

 $- q \bar{q} \rightarrow V_{\ell} H_b$ sizeable in boosted regime [$p_T \gtrsim$ 300 GeV, few % of total rate]

Fat jets

$VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger Stop pairs More Higgs

Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter]
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]
- ⇒ non-trivial challenge to jet algorthms [details later]

jet definition	$\sigma_{\mathcal{S}}/{ m fb}$	σ_{B} /fb	S/\sqrt{B}_{30}
C/A, <i>R</i> = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{cut}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

Fat jets

- $VH, H \rightarrow b\bar{b}$
- $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger Stop pairs More Higgs

Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter]
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $\textit{R}_{bb} \sim 2\textit{m}_{H}/\textit{p}_{T} \sim 0.8$
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- ⇒ non-trivial challenge to jet algorthms [details later]

Results and checks

- combined channels $\textit{V} \rightarrow \ell\ell, \nu\nu, \ell\nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- checked by Freiburg [Piquadio] subjet *b* tag excellent [70%/1%] charm rejection challenging $m_H \pm 8$ GeV tough
- \Rightarrow confirmed at 20% level

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagget Stop pairs

More Higgs

Rescuing $t\bar{t}H$

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- no chance:
 - 1– combinatorics: m_{bb} from $pp
 ightarrow 4b_{tag}$ 2j $\ell
 u$

Fat jets $VH, H \rightarrow b\overline{b}$ $t\overline{t}H, H \rightarrow b\overline{b}$ HEPTopTagger

More Higgs

Rescuing tTH

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp
 ightarrow 4b_{tag}$ 2j $\ell
 u$
 - 2- kinematics: peak-on-peak

Fat jets $VH, H \rightarrow b\overline{b}$ $t\overline{t}H, H \rightarrow b\overline{b}$ HEPTopTagger

More Higgs

Rescuing $t\bar{t}H$

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

m_H (GeV)

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger Stop pairs More Higgs

Rescuing *t*tH

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets analysis [TP, Salam, Spannowsky]

- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: large m_{bb} and small R_{bb}; correct bottom pair boosted [solves 1]
- $pp \rightarrow t_{\ell} t_h H_b$ even harder than VH also boost different for S and B [solves 2]
- cool: fat Higgs jet + fat top jet uncool: QCD [Dittmaier et al: K = 2.3 for $t\bar{t}b\bar{b}$]
- see how far we get... [watch S/B for 3]

 $VH, H \rightarrow b\bar{b}$

$t\bar{t}H, H \rightarrow b\bar{b}$

- More Higgs

Rescuing ttH

Top tag [cf Johns Hopkins, Princeton, Washington]

- start with C/A jet [R = 1.5] [Johns Hopkins]
- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1– unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2– soft m_{i_1} < 30 GeV means QCD; keep j_1
- top decay kinematics in relevant substructures reconstruct $m_W = 60...95 \text{ GeV}$ reconstruct $m_t = 150...200 \text{ GeV}$ helicity angle $\cos \theta_{t,j_1} > 0.7$ [changed later] 0.25no b tag needed
- underlying event scaling like R⁴ filter reconstruction jets [Butterworth-Salam] decay plus one add'l jet at $R_{\rm filt} \sim R_{\rm ii}/2$ reconstruct masses w/ QCD jet
- ⇒ HEPTopTagger

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger Stop pairs

More Higgs

Rescuing *t*t*H*

Higgs tag

- same as top tag [stricter mass drop criterion, harder jets] but: Higgs mass unknown
- double *b* tag [$\mathcal{O}(10\%)$ from leptonic top] combinations ordered by $J = \rho_{T,1}\rho_{T,2}(\Delta R_{12})^4$ three leading combinations vs m_{bb}^{filt}
- ⇒ like Butterworth-Salam for busy QCD

Analysis

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum $B = 3.8S \rightarrow 2.4S$ [costing s/\sqrt{B}] only continuum $t\bar{t}b\bar{b}$ left

per 1 fb-1	signal	tīZ	tītbb	tt+jets
events after acceptance	24.1	6.9	191	4160
events with one top tag	10.2	2.9	70.4	1457
events with $m_{bb} = 110 - 130 \text{ GeV}$	2.9	0.44	12.6	116
corresponding to subjet pairings	3.2	0.47	13.8	121
subjet pairings two b tags	1.0	0.08	2.3	1.4
including a third b tag	0.48	0.03	1.09	0.06

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagget Stop pairs More Higgs

Rescuing ttH

Higgs tag

- same as top tag [stricter mass drop criterion, harder jets] but: Higgs mass unknown
- double *b* tag [$\mathcal{O}(10\%)$ from leptonic top] combinations ordered by $J = \rho_{T,1}\rho_{T,2}(\Delta R_{12})^4$ three leading combinations vs m_{bb}^{filt}
- ⇒ like Butterworth-Salam for busy QCD

Analysis

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum $B = 3.8S \rightarrow 2.4S$ [costing s/\sqrt{B}] only continuum $t\bar{t}b\bar{b}$ left

m _H	5	S/B	S/\sqrt{B}
115	57	1/2.1	5.2 (5.7)
120	48	1/2.4	4.5 (5.1)
130	29	1/3.6	2.9 (3.0)

⇒ under experimental scrutiny

Fat jets $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H,\,H
ightarrow b\bar{b}$

HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified **3 kinematic constraints:** m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins
- general ATLAS studies [ATLAS-2010-008]

Fat jets VH, $H \rightarrow b\bar{b}$

 $t\bar{t}H,\,H\,
ightarrow\,b\bar{b}$

HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified **3 kinematic constraints:** m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

- extend lower $p_T\gtrsim$ 250 GeV testable in Standard Model $t\bar{t}$
- start like Higgs tagger [mass drop, R = 1.5] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no *b* tag, filtered]

Fat jets VH, $H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

- _____
- HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and *b* tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified **3 kinematic constraints:** m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

- extend lower $p_T\gtrsim$ 250 GeV testable in Standard Model $t\bar{t}$
- start like Higgs tagger [mass drop, R = 1.5] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no *b* tag, filtered]

Fat jets $VH, H \rightarrow b\bar{b}$

 $t\bar{t}H, H \rightarrow b\bar{b}$

HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified **3 kinematic constraints:** m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

- extend lower $p_T\gtrsim$ 250 GeV testable in Standard Model $t\bar{t}$
- start like Higgs tagger [mass drop, R = 1.5] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no *b* tag, filtered]
- momentum reconstruction for free
- promising tests by ATLAS [Kasieczka & Schätzel]
- hadronic top like tagged b

Fat jets $VH, H \rightarrow b\bar{b}$

$t\bar{t}H,\,H\, ightarrow\,b\bar{b}$

HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified **3 kinematic constraints:** m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

- extend lower $p_T\gtrsim$ 250 GeV testable in Standard Model $t\bar{t}$
- start like Higgs tagger [mass drop, R = 1.5] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no *b* tag, filtered]
- momentum reconstruction for free
- promising tests by ATLAS [Kasieczka & Schätzel]
- hadronic top like tagged b

		tī		QCD	W+jets	
$p_{T,t}^{\min}[\text{GeV}]$	0	200	300			
one fat jet	100%	100%	100%	100%	100%	
two fat jets	44%	57%	70%	53%	50%	rel to one fat jet
one top tag	23%	37%	51%	2.0%	3.9%	rel to one fat jet
two top tags	2.0%	4.5%	8.5%	0.027%	0.07%	rel to one fat jet
	4.5%	8.0%	12%	0.05%	0.15%	rel to two fat jets

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim$ 800 GeV isolation and *b* tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

HEPTopTagger: kinematic selection

- kinematic criteria without boosts etc

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

HEPTopTagger

Stop pairs More Higgs

Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~GeV$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

HEPTopTagger: momentum reconstruction

- top momentum reconstruction $[p_T > 200, 300 \text{ GeV}]$

Fat jets

Tilman Plehn

- Fat jets
- $VH,\,H\,\longrightarrow\,b\bar{b}$
- $t\bar{t}H, H \rightarrow b\bar{b}$
- HEPTopTagge

Stop pairs

More Higgs

Stops

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas]

- stop most important particle for hierarchy problem comparison to other top partners [Meade & Reece]
- dark matter means difficult semi-leptonic channel
- purely hadronic: $\tilde{t}\tilde{t}^* \to t\tilde{\chi}^0_1 \ \bar{t}\tilde{\chi}^0_1$ [CMS TDR: leptons as spontaneous life guards]

events in 1 fb ⁻¹			$\tilde{t}_1 \tilde{t}$	* 1			tī	QCD	W+jets	Z+jets	S/B	$S/\sqrt{B}_{10 \text{ fb}-1}$
$m_{\tilde{t}}[\text{GeV}]$	340	390	440	490	540	640						340
$p_{T,i} > 200 \text{ GeV}, \ell \text{ veto}$	728	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	1.6 · 10 ⁵	n/a	$3.0 \cdot 10^{-5}$	
∉ _T > 150 GeV	283	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710	2240	1.2 · 10-3	
first top tag	100	91	75	57	42	15	743	7590	90	114	$1.2 \cdot 10^{-2}$	
second top tag	15	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	$8.3 \cdot 10^{-2}$	
b tag	8.7	7.4	6.3	5.0	3.8	1.4	19	2.6	≤ 0.2	≤ 0.05	0.40	5. 9
$m_{T2} > 250 \text{GeV}$	4.3	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	$\lesssim 0.1$	$\lesssim 0.03$	0.88	6. 1

Stops

Fat jets VH, $H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$

- _____
- HEPTopTagge

Stop pairs

More Higgs

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas]

- stop most important particle for hierarchy problem comparison to other top partners [Meade & Reece]
- dark matter means difficult semi-leptonic channel
- purely hadronic: $\tilde{t}\tilde{t}^* \to t\tilde{\chi}^0_1 \ t\tilde{\chi}^0_1$ [CMS TDR: leptons as spontaneous life guards]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTaggel Stop pairs

More Higgs

More Higgs

...

Higgs in cascade decays [Kribs, Martin, Roy, Spannowsky]

- idea: find Higgs in cascade decays [Cambridge]
- BSM sample after missing energy or hard γ cut
- Higgs tag over the remaining event
- side bin analysis in m_{bb}

Fat jets $VH, H \rightarrow b\bar{b}$ $t\bar{t}H, H \rightarrow b\bar{b}$ HEPTopTagger

More Higgs

Outlook

Fat jets — Aspirin of LHC phenomenology

- VH: curing QCD backgrounds
- $t\bar{t}H$: curing combinatorics and backgrounds
- *tt*^{*}: curing backgrounds
- cascade Higgs: curing lack of strategie
- heavy resonances: curing calorimeter resolution
- try using it against your headache...

Fat jets

Tilman Plehn

Fat jets

 $VH,\,H\,\rightarrow\,b\bar{b}$

 $t\bar{t}H, H \rightarrow b\bar{b}$

HEPTopTagger

Stop pairs

More Higgs