Fat jets

Tilman Plehn

Universität Heidelberg

Higgs Days, Santander 10/2010
Fat jets

Boosted particles at the LHC

1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
1994 boosted $t \rightarrow 3$ jets [Seymour]
2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [Butterworth, Cox, Forshaw]
2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
2008 boosted $H \rightarrow b\overline{b}$ [Butterworth, Davison, Rubin, Salam]
2009 boosted $\tilde{\chi}_1^0 \rightarrow 3$ jets in R parity violating SUSY [Butterworth, Ellis, Raklev, Salam]
2009 boosted $t \rightarrow 3$ jets from top partners [TP, Salam, Spannowsky, Takeuchi]

...
Fat jets

Boosted particles at the LHC

1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
1994 boosted $t \rightarrow 3$ jets [Seymour]
2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [Butterworth, Cox, Forshaw]
2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]
2009 boosted $\tilde{\chi}_1^0 \rightarrow 3$ jets in R parity violating SUSY [Butterworth, Ellis, Raklev, Salam]
2009 boosted $t \rightarrow 3$ jets from top partners [TP, Salam, Spannowsky, Takeuchi]
...
Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter]

- S: large m_{bb}, boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: go for large m_{bb} and small R_{bb}, so boost Higgs

- fat Higgs jet $R_{bb} \sim 2m_H/p_T \sim 0.8$

- $q\bar{q} \rightarrow V_ℓH_b$ sizeable in boosted regime [\(p_T \gtrsim 300\) GeV, few % of total rate]
Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all Higgses; impact Dührssen & SFitter]
- S: large m_{bb}, boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T \sim 0.8$
- $q\bar{q} \rightarrow V\ell H_b$ sizeable in boosted regime [$p_T \gtrsim 300$ GeV, few % of total rate]

\Rightarrow non-trivial challenge to jet algorithms [details later]

<table>
<thead>
<tr>
<th>jet definition</th>
<th>σ_S/fb</th>
<th>σ_B/fb</th>
<th>$S/\sqrt{B_{30}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/A, $R = 1.2$, MD-F</td>
<td>0.57</td>
<td>0.51</td>
<td>4.4</td>
</tr>
<tr>
<td>k_\perp, $R = 1.0$, y_{cut}</td>
<td>0.19</td>
<td>0.74</td>
<td>1.2</td>
</tr>
<tr>
<td>SISCone, $R = 0.8$</td>
<td>0.49</td>
<td>1.33</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter]
- S: large m_{bb}, boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T \sim 0.8$
- $q\bar{q} \rightarrow V_\ell H_b$ sizeable in boosted regime [$p_T \gtrsim 300$ GeV, few % of total rate]
⇒ non-trivial challenge to jet algorithms [details later]

Results and checks

- combined channels $V \rightarrow \ell\ell, \nu\nu, \ell\nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- checked by Freiburg [Piquadio]
 - subjet b tag excellent [70%/1%]
 - charm rejection challenging
 - $m_H \pm 8$ GeV tough
⇒ confirmed at 20% level
Rescuing $t\bar{t}H$

Traditional $t\bar{t}H$, $H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$
 reconstruction and rate: $\bar{t} \rightarrow \bar{b}W^- \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [weighted by b-tag]
- no chance:
 1– combinatorics: m_{bb} from $pp \rightarrow 4b_{tag} 2j \ell\nu$
Rescuing $t\bar{t}H$

Traditional $t\bar{t}H$, $H \to b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$
 reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 1– combinatorics: m_H in $pp \to 4b_{tag} 2j \ell\nu$
 2– kinematics: peak-on-peak
Rescuing $\tilde{t}\tilde{t}H$

Traditional $\tilde{t}\tilde{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$
 reconstruction and rate: $\tilde{t} \rightarrow bW^- \rightarrow bjj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 1– combinatorics: m_H in $pp \rightarrow 4b_{tag} 2j \ell\nu$
 2– kinematics: peak-on-peak
 3– systematics: $S/B \sim 1/9$
Rescuing $t\bar{t}H$

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$
 - reconstruction and rate: $\bar{t} \rightarrow \bar{b}W^- \rightarrow \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 1– combinatorics: m_H in $pp \rightarrow 4b_{\text{tag}} 2j \ell\nu$
 2– kinematics: peak-on-peak
 3– systematics: $S/B \sim 1/9$

Fat jets analysis [TP, Salam, Spannowsky]

- S: large m_{bb}, boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: large m_{bb} and small R_{bb}; correct bottom pair boosted [solves 1]
- $pp \rightarrow t\ell t_H H_b$ even harder than VH
 - also boost different for S and B [solves 2]
- cool: fat Higgs jet + fat top jet
 - uncool: QCD [Dittmaier et al: $K = 2.3$ for $t\bar{t}b\bar{b}$]
- see how far we get... [watch S/B for 3]
Rescuing $t\bar{t}H$

Top tag [cf Johns Hopkins, Princeton, Washington]

- start with C/A jet \([R = 1.5]\) [Johns Hopkins]
- uncluster one-by-one: \(j \rightarrow j_1 + j_2\)
 1– unbalanced \(m_{j_1} > 0.8m_j\) means QCD; discard \(j_2\)
 2– soft \(m_{j_1} < 30\) GeV means QCD; keep \(j_1\)
- top decay kinematics in relevant substructures
 reconstruct \(m_W = 60\ldots95\) GeV
 reconstruct \(m_t = 150\ldots200\) GeV
 helicity angle \(\cos \theta_{t,j_1} > 0.7\) [changed later]
 no \(b\) tag needed
- underlying event scaling like \(R^4\)
 filter reconstruction jets [Butterworth–Salam]
 decay plus one add’l jet at \(R_{\text{filt}} \sim R_{jj}/2\)
 reconstruct masses w/ QCD jet

⇒ HEPTopTagger
Rescuing $t\bar{t}H$

Higgs tag

- same as top tag
 [stricter mass drop criterion, harder jets]
 but: Higgs mass unknown

- double b tag
 [$\mathcal{O}(10\%)$ from leptonic top]
 combinations ordered by $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$
 three leading combinations vs m_{bb}^{filt}

⇒ like Butterworth-Salam for busy QCD

Analysis

- require tagged top and Higgs
trigger on lepton

- remove ‘Higgs’ as $t_\ell \rightarrow b$ plus QCD
 3rd b tag in continuum
 $B = 3.8S \rightarrow 2.4S$
 [costing S/\sqrt{B}]
 only continuum $t\bar{t}bb$ left

<table>
<thead>
<tr>
<th>per 1 fb$^{-1}$</th>
<th>signal</th>
<th>$t\bar{t}Z$</th>
<th>$t\bar{t}bb$</th>
<th>$t\bar{t}+$jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>events after acceptance</td>
<td>24.1</td>
<td>6.9</td>
<td>191</td>
<td>4160</td>
</tr>
<tr>
<td>events with one top tag</td>
<td>10.2</td>
<td>2.9</td>
<td>70.4</td>
<td>1457</td>
</tr>
<tr>
<td>events with $m_{bb} = 110 - 130$ GeV</td>
<td>2.9</td>
<td>0.44</td>
<td>12.6</td>
<td>116</td>
</tr>
<tr>
<td>corresponding to subjet pairings</td>
<td>3.2</td>
<td>0.47</td>
<td>13.8</td>
<td>121</td>
</tr>
<tr>
<td>subjet pairings two b tags</td>
<td>1.0</td>
<td>0.08</td>
<td>2.3</td>
<td>1.4</td>
</tr>
<tr>
<td>including a third b tag</td>
<td>0.48</td>
<td>0.03</td>
<td>1.09</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Rescuing $\bar{t}tH$

Higgs tag

- same as top tag [stricter mass drop criterion, harder jets]
 but: Higgs mass unknown
- double b tag [$\mathcal{O}(10\%)$ from leptonic top]
 combinations ordered by $J = p_{T, 1} p_{T, 2} (\Delta R_{12})^4$
 three leading combinations vs m_{bb}^{filt}
 ⇒ like Butterworth-Salam for busy QCD

Analysis

- require tagged top and Higgs trigger on lepton
- remove ‘Higgs’ as $t_\ell \rightarrow b$ plus QCD
 3rd b tag in continuum
 $B = 3.8S \rightarrow 2.4S$ [costing S / \sqrt{B}]
 only continuum $t\bar{t}bb$ left

<table>
<thead>
<tr>
<th>m_H</th>
<th>S</th>
<th>S/B</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>57</td>
<td>1/2.1</td>
<td>5.2 (5.7)</td>
</tr>
<tr>
<td>120</td>
<td>48</td>
<td>1/2.4</td>
<td>4.5 (5.1)</td>
</tr>
<tr>
<td>130</td>
<td>29</td>
<td>1/3.6</td>
<td>2.9 (3.0)</td>
</tr>
</tbody>
</table>

⇒ under experimental scrutiny
Boosted top

Highly boosted top quarks
[Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T \gtrsim 800$ GeV isolation and b tagging challenging
- C/A algorithm with p_T drop criterion
 all top decay jets identified
 3 kinematic constraints: m_W, m_t, $\cos \theta_{\text{hel}}$
 [no b tag]
- top mass included, no sidebins
- general ATLAS studies
 [ATLAS-2010-008]
Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T \gtrsim 800$ GeV isolation and b tagging challenging
- C/A algorithm with p_T drop criterion
 all top decay jets identified
 3 kinematic constraints: $m_W, m_t, \cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

Standard Model: HEPTopTagger [TP, Salam, Spannowsky, Takeuchi]

- extend lower $p_T \gtrsim 250$ GeV testable in Standard Model $t\bar{t}$
- start like Higgs tagger [mass drop, $R = 1.5$]
 kinematic selection: $m_{jjj}, m_j^{(1)}, m_j^{(2)}$ [no b tag, filtered]
Fat jets

Tilman Plehn

Fat jets

VH, H → b̅b

t̅tH, H → b̅b

HEPTopTagger

Stop pairs

More Higgs

Boosted top

Highly boosted top quarks
[Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with \(p_T \gtrsim 800 \text{ GeV} \)
 isolation and \(b \) tagging challenging

- C/A algorithm with \(p_T \) drop criterion
 all top decay jets identified

 3 kinematic constraints: \(m_W, m_t, \cos \theta_{\text{hel}} \)
 [no \(b \) tag]

- top mass included, no sidebins

Standard Model: HEPTopTagger
[TP, Salam, Spannowsky, Takeuchi]

- extend lower \(p_T \gtrsim 250 \text{ GeV} \)
 testable in Standard Model \(t\bar{t} \)

- start like Higgs tagger
 [mass drop, \(R = 1.5 \)]

 kinematic selection: \(m_{jjj}, m^{(1)}_{jj}, m^{(2)}_{jj} \)
 [no \(b \) tag, filtered]
Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T \gtrsim 800$ GeV
 isolation and b tagging challenging

- C/A algorithm with p_T drop criterion
 all top decay jets identified
 3 kinematic constraints: m_W, m_t, $\cos \theta_{hel}$ [no b tag]

- top mass included, no sidebins

Standard Model: HEPTopTagger [TP, Salam, Spannowsky, Takeuchi]

- extend lower $p_T \gtrsim 250$ GeV
 testable in Standard Model $t\bar{t}$

- start like Higgs tagger [mass drop, $R = 1.5$]
 kinematic selection: m_{jjj}, $m_j^{(1)}$, $m_j^{(2)}$ [no b tag, filtered]

- momentum reconstruction for free

- promising tests by ATLAS [Kasieczka & Schätzel]

- hadronic top like tagged b

![Efficiencies graph](https://via.placeholder.com/150)
Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T \gtrsim 800$ GeV
 isolation and b tagging challenging
- C/A algorithm with p_T drop criterion
 all top decay jets identified
 3 kinematic constraints: m_W, m_t, $\cos \theta_{\text{hel}}$ [no b tag]
- top mass included, no sidebins

Standard Model: HEPTopTagger [TP, Salam, Spannowsky, Takeuchi]

- extend lower $p_T \sim 250$ GeV
 testable in Standard Model $t\bar{t}$
- start like Higgs tagger [mass drop, $R = 1.5$]
 kinematic selection: m_{jjj}, $m_{jj}^{(1)}$, $m_{jj}^{(2)}$ [no b tag, filtered]
- momentum reconstruction for free
- promising tests by ATLAS [Kasieczka & Schätzel]
- hadronic top like tagged b

<table>
<thead>
<tr>
<th>p_T^{min} [GeV]</th>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
<td>57%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
<td>70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
<tr>
<td>600</td>
<td>100%</td>
</tr>
<tr>
<td>700</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
<tr>
<td>600</td>
<td>100%</td>
</tr>
<tr>
<td>700</td>
<td>100%</td>
</tr>
<tr>
<td>800</td>
<td>100%</td>
</tr>
<tr>
<td>900</td>
<td>100%</td>
</tr>
<tr>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
<tr>
<td>600</td>
<td>100%</td>
</tr>
<tr>
<td>700</td>
<td>100%</td>
</tr>
<tr>
<td>800</td>
<td>100%</td>
</tr>
<tr>
<td>900</td>
<td>100%</td>
</tr>
<tr>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
<tr>
<td>600</td>
<td>100%</td>
</tr>
<tr>
<td>700</td>
<td>100%</td>
</tr>
<tr>
<td>800</td>
<td>100%</td>
</tr>
<tr>
<td>900</td>
<td>100%</td>
</tr>
<tr>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tt</th>
<th>QCD W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>100%</td>
</tr>
<tr>
<td>400</td>
<td>100%</td>
</tr>
<tr>
<td>500</td>
<td>100%</td>
</tr>
<tr>
<td>600</td>
<td>100%</td>
</tr>
<tr>
<td>700</td>
<td>100%</td>
</tr>
<tr>
<td>800</td>
<td>100%</td>
</tr>
<tr>
<td>900</td>
<td>100%</td>
</tr>
<tr>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>
Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T \gtrsim 800$ GeV isolation and b tagging challenging
- C/A algorithm with p_T drop criterion
 all top decay jets identified
 3 kinematic constraints: m_W, m_t, $\cos \theta_{hel}$ [no b tag]
- top mass included, no sidebins

HEPTopTagger: kinematic selection

- kinematic criteria without boosts etc
Boosted top

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...

- identify hadronic tops with $p_T \gtrsim 800$ GeV isolation and b tagging challenging
- C/A algorithm with p_T drop criterion all top decay jets identified
 3 kinematic constraints: m_W, m_t, $\cos \theta_{\text{hel}}$ [no b tag]
- top mass included, no sidebins

HEPTopTagger: momentum reconstruction

- top momentum reconstruction [\(p_T > 200, 300\) GeV]
Stops

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas]

- stop most important particle for hierarchy problem
- comparison to other top partners [Meade & Reece]
- dark matter means difficult semi-leptonic channel
- purely hadronic: \(\tilde{t}\tilde{t}^* \rightarrow t\tilde{\chi}_1^0 \tilde{t}\tilde{\chi}_1^0 \) [CMS TDR: leptons as spontaneous life guards]

<table>
<thead>
<tr>
<th>Events in 1 fb(^{-1})</th>
<th>(\tilde{t}_1\tilde{t}_1^*)</th>
<th>(\tilde{t}\tilde{t})</th>
<th>QCD</th>
<th>W+jets</th>
<th>Z+jets</th>
<th>(S/B)</th>
<th>(S/\sqrt{B}) 10 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\tilde{t}} [\text{GeV}])</td>
<td>340 390 440 490 540 640</td>
<td>728 447 292 187 124 46</td>
<td>87850 2.4 \times 10^7 1.6 \times 10^5</td>
<td>n/a</td>
<td>3.0 \times 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_T,j > 200 \text{ GeV, } \ell \text{ veto})</td>
<td>283 234 184 133 93 35</td>
<td>2245 2.4 \times 10^5 1710 2240</td>
<td>1.2 \times 10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\not{E}_T > 150 \text{ GeV})</td>
<td>100 91 75 57 42 15</td>
<td>743 7590 90 114</td>
<td>1.2 \times 10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First top tag</td>
<td>15 12.4 11 8.4 6.3 2.3</td>
<td>32 129 5.7 1.4</td>
<td>8.3 \times 10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second top tag</td>
<td>8.7 7.4 6.3 5.0 3.8 1.4</td>
<td>19 2.6</td>
<td>n/a</td>
<td>0.40</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b \text{ tag})</td>
<td>4.3 5.0 4.9 4.2 3.2 1.2</td>
<td>4.2 < 0.6 < 0.2 < 0.05</td>
<td>0.88</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stops

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas]

- stop most important particle for hierarchy problem
 comparison to other top partners [Meade & Reece]
- dark matter means difficult semi-leptonic channel
- purely hadronic: \(\tilde{t}\tilde{t}^* \rightarrow t\tilde{X}_1^0 \tilde{t}\tilde{X}_1^0 \) [CMS TDR: leptons as spontaneous life guards]
- stop mass from \(m_{T_2} \) endpoint [like sleptons or sbottoms]
- not harder analysis than \(b\bar{b} + E_T \)
More Higgs

Higgs in cascade decays [Kribs, Martin, Roy, Spannowsky]

- idea: find Higgs in cascade decays [Cambridge]
- BSM sample after missing energy or hard γ cut
- Higgs tag over the remaining event
- side bin analysis in m_{bb}

...
Outlook

Fat jets — Aspirin of LHC phenomenology

- VH: curing QCD backgrounds
- $t\bar{t}H$: curing combinatorics and backgrounds
- $\tilde{t}\tilde{t}^*$: curing backgrounds
- cascade Higgs: curing lack of strategy
- heavy resonances: curing calorimeter resolution
- try using it against your headache...
Fat jets

Tilman Plehn

Fat jets

$VH, H \rightarrow b\bar{b}$

$t\bar{t}H, H \rightarrow b\bar{b}$

HEPTopTagger

Stop pairs

More Higgs