MC@NLO
Tilman Plehn

MC@NLO fat jets

Top-Higgs Production in MC@NLO

Tilman Plehn

Universität Heidelberg

Charged Higgs Workshop, 9/2010

Top-Higgs associated production

why charged Higgs?

- extension of minimal Higgs sector
- MSSM only one example
- additional neutral scalar not conclusive

why top-Higgs associated production?

- no tree level WZH $^\pm$ coupling due to $\Delta \rho \ll 1$ [electroweak precision data]
- large Yukawa coupling btH[±]
- processes in a type-II THDM tree level 2 \rightarrow 3 process $qq \rightarrow b\bar{t}H^-$ largest

tree level $q\bar{q} \rightarrow H^+H^-$ small [Alves, TP]

loop-induced $qq \rightarrow H^+H^-$, H^+W^- small [Krause, TP, Spira, Zerwas]

tree level $b\bar{b} \to H^+H^-$ tiny [Kniehl,...; Alves, TP]

why bottom-initiated?

- $\sigma(gg \rightarrow \bar{b}tH^-)$ divergent for $m_b \rightarrow 0$ collinear divergence $d\sigma/dp_{T,b} \propto 1/p_{T,b}$
 - 1 regularize with separation cuts [part of analysis?]
 - 2- regularize with $m_b \neq 0$ [large logarithm?] 3- resum in analogy to usual DGLAP [bottom partons]

Top-Higgs associated production

consistency check for 5 flavors: $m_b \rightarrow 0$

- check distributions [Berger, Han, Jiang, TP]
- check perturbative behavior [Harlander, Kilgore: $b\bar{b} \to h^0$]
- uncertainties on bottom parton densities?
- understand differences to 4 flavor scheme [we know which log it is; Michael's talk]

gluon-induced vs bottom-induced at NLO

- LO diagram $gg \rightarrow b\bar{t}H^-$ included in 5FS perturbative log m_H/m_b included in 4FS
- difference only higher order improved agreement at NLO on both sides expected [Michael's talk]

[Michael's talk]			
4 flavors	5 flavors		
α_s^2	$\alpha_s \log$		
α_s^3	$lpha_s^2 \log \\ NLO \otimes LL$		
NLO	NLO ⊗ LL		
NLO	NLO ⊗ LL		
NLO	LO		
	$\begin{array}{c} 4 \text{ flavors} \\ \alpha_s^2 \\ \alpha_s^3 \\ \text{NLO} \\ \text{NLO} \end{array}$		

- leading SUSY-QCD corrections identical [Berger, Han, Jiang, TP; many talks]
- 5FL-NLO code private add-on to Prospino2.1 [tested with Zhu and MC@NLO]

MC@NLO fat iets

Top-Higgs in MC@NLO Tilman Plehn

why combining NLO/hard radiation/parton shower?

- promised at end of CHARGED06
- parton shower for jet and recoil simulations [Alwall & Rathsmann: MATCHING] NLO normalization to reduce scale issues [Boos & TP: scales of bottom pdf] complete bottom jet kinematics for analysis design
- implementation in MC@NLO the solution

[Frixione, Herquet, Klasen, Laenen, TP, Stavenga, Weydert, White]

Top-Higgs in MC@NLO Tilman Plehn

why combining NLO/hard radiation/parton shower?

- promised at end of CHARGED06
- parton shower for jet and recoil simulations [Alwall & Rathsmann: MATCHING] NLO normalization to reduce scale issues [Boos & TP: scales of bottom pdf] complete bottom jet kinematics for analysis design
- implementation in MC@NLO the solution

[Frixione, Herquet, Klasen, Laenen, TP, Stavenga, Weydert, White]

top and Higgs distributions from MC@NLO

top identical for NLO and MC@NLO

why combining NLO/hard radiation/parton shower?

- promised at end of CHARGED06
- parton shower for jet and recoil simulations [Alwall & Rathsmann: MATCHING]
 NLO normalization to reduce scale issues [Boos & TP: scales of bottom pdf]
 complete bottom jet kinematics for analysis design
- implementation in MC@NLO the solution

[Frixione, Herquet, Klasen, Laenen, TP, Stavenga, Weydert, White]

- top identical for NLO and MC@NLO
- Higgs identical for NLO and MC@NLO

Tilman Plehn

MC@NLO

fat iets

Top-Higgs in MC@NLO

why combining NLO/hard radiation/parton shower?

- promised at end of CHARGED06
- parton shower for jet and recoil simulations [Alwall & Rathsmann: MATCHING] NLO normalization to reduce scale issues [Boos & TP: scales of bottom pdf] complete bottom jet kinematics for analysis design
- implementation in MC@NLO the solution [Frixione, Herquet, Klasen, Laenen, TP, Stavenga, Weydert, White]

- top identical for NLO and MC@NLO
- Higgs identical for NLO and MC@NLO
- QCD recoil different for NLO and MC@NLO [hard radiation plus parton shower]

why combining NLO/hard radiation/parton shower?

- promised at end of CHARGED06
- parton shower for jet and recoil simulations [Alwall & Rathsmann: MATCHING]
 NLO normalization to reduce scale issues [Boos & TP: scales of bottom pdf]
 complete bottom jet kinematics for analysis design
- implementation in MC@NLO the solution
 [Frixione, Herquet, Klasen, Laenen, TP, Stavenga, Weydert, White]

- top identical for NLO and MC@NLO
- Higgs identical for NLO and MC@NLO
- QCD recoil different for NLO and MC@NLO [hard radiation plus parton shower]
- angular correlations different for NLO and MC@NLO

Tilman Plehn

MC@NLO

fat iets

Top-Higgs in MC@NLO

why combining NLO/hard radiation/parton shower?

- promised at end of CHARGED06
- parton shower for jet and recoil simulations [Alwall & Rathsmann: MATCHING]
 NLO normalization to reduce scale issues [Boos & TP: scales of bottom pdf]
 complete bottom jet kinematics for analysis design
- implementation in MC@NLO the solution

[Frixione, Herquet, Klasen, Laenen, TP, Stavenga, Weydert, White]

- top identical for NLO and MC@NLO
- Higgs identical for NLO and MC@NLO
- QCD recoil different for NLO and MC@NLO [hard radiation plus parton shower]
- angular correlations different for NLO and MC@NLO
- ⇒ matching ready to be used

Tilman Plehn

MC@NLO

fat jets

Bottom jets

decay jets vs jet radiation [TP, Rauch, Spannowsky]

- H_{ℓ} combined with t_h or t_{ℓ}

Tilman Plehn

MC@NLO

fat jets

Bottom jets

- $-H_{\ell}$ combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]

Tilman Plehn

MC@NLO

fat jets

Bottom jets

- H_{ℓ} combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]
- t_{ℓ} : all light jets from QCD

Tilman Plehn

MC@NLO

fat iets

Bottom jets

- H_{ℓ} combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]
- t_{ℓ} : all light jets from QCD
- $-t_h$: three light jets from top decay

Tilman Plehn

MC@NLO

fat iets

Bottom jets

- H_{ℓ} combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]
- $t_ℓ$: all light jets from QCD
- $-t_h$: three light jets from top decay
- \Rightarrow distinctly different, hopefully useful

Tilman Plehn

MC@NLO fat iets

Bottom jets

decay jets vs jet radiation [TP, Rauch, Spannowsky]

- H_{ℓ} combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]
- t_{ℓ} : all light jets from QCD
- $-t_h$: three light jets from top decay
- ⇒ distinctly different, hopefully useful

more QCD questions we can answer now

- probability to in addition to a b jet observe $[|\eta| < 2.5; \rho_T > 25 \text{ GeV}]$
 - (a) a light jet from t_{ℓ}
 - (b) a light jet from t_h
 - (c) a second b jet

MC@NLO Bottom jets Tilman Plehn

MC@NLO fat iets

decay jets vs jet radiation [TP, Rauch, Spannowsky]

- H_{ℓ} combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]
- t_ℓ: all light jets from QCD
- th: three light jets from top decay
- ⇒ distinctly different, hopefully useful

more QCD questions we can answer now

- probability to in addition

(a) a light jet from t_{ℓ}

(b) a light jet from th

(c) a second b jet

n to a b jet observe $[\eta < 2.5; \rho_T > 25 \text{ GeV}]$								
					η_{cut}			
		$p_{T, \text{cut}}$	2.5	2.0	1.5	1.0	0.5	
•		25 GeV	45.9	40.0	32.7	23.9	13.0	
	(2)	45 GeV	32.4	27.8	22.3	16.1	9.0	
	(a)	65 GeV	22.3	18.8	14.7	10.4	5.8	
-		85 GeV	16.2	13.4	10.3	7.3	4.2	
	4	25 GeV	94.9	91.0	84.3	72.2	48.4	
		45 GeV	83.2	79.2	72.3	61.0	39.9	
	(b)	65 GeV	60.9	57.3	51.7	43.2	28.8	
		85 GeV	44.4	41.5	37.1	31.1	21.3	
	45 (25 GeV	17.8	14.3	10.0	5.7	2.3	
		45 GeV	12.9	10.6	7.6	4.5	1.8	
	(c)	65 GeV	9.4	8.0	5.9	3.5	1.6	

6.4

4.8

3.0

1.4

7.2

85 GeV

Bottom jets

decay jets vs jet radiation [TP, Rauch, Spannowsky]

- H_{ℓ} combined with t_h or t_{ℓ}
- hardest bottom jet with a jacobian peak [top decay] second bottom jet collinear [hard or shower, how hard?]
- t_{ℓ} : all light jets from QCD
- $-t_h$: three light jets from top decay
- ⇒ distinctly different, hopefully useful

more QCD questions we can answer now

- probability to in addition to a *b* jet observe $[|\eta| < 2.5; p_T > 25 \text{ GeV}]$
 - (a) a light jet from t_{ℓ}
 - (b) a light jet from th
 - (c) a second b jet
- light jets everywhere not only soft and now only forward
- second bottom rare [gluon splitting vs decay?]
- jet radiation correct for all p_T and η
- ⇒ whatever...data makes you smart...

Tilman Plehn

MC@NLO

fat iets

Low-ish Higgs masses

combination of $t\bar{t}$ with $t \rightarrow bH^+$ at NLO

- in principle: $gg
 ightarrow t ar t
 ightarrow t (ar b H^-)$ counted as t ar t
- experiment: start from understood $t\bar{t}$ sample <code>[including normalization]</code> add tH^- sample for signal hypothesis <code>[compute tH^- without on-shell t\bar{t}]</code>
- ⇒ no best way, difference measure of the theory uncertainty?

combination of $t\bar{t}$ with $t \rightarrow bH^+$ at NLO

- in principle: $gg o t ar t o t (ar b H^-)$ counted as t ar t
- experiment: start from understood $t\bar{t}$ sample [including normalization] add tH^- sample for signal hypothesis [compute tH^- without on-shell $t\bar{t}$]
- Prospino: on-shell subtraction

$$\frac{d\sigma(M^2)}{(M^2-m_t^2)^2+m_t^2\Gamma_t^2}\,-\,\frac{d\sigma(m_t^2)}{(M^2-m_t^2)^2+m_t^2\Gamma_t^2}\,\Theta(\cdots)$$

- MC@NLO: removing $t\bar{t}$ diagrams on amplitude level [crap solution]
- MC@NLO: diagam subtraction [re-inventing Prospino scheme]

$$d\sigma_{H-t}^{\text{sub}} = \left|\mathcal{M}^{(t\bar{t})}\right|^2 \frac{f_{\text{BW}}(m_{H-\bar{b}})}{f_{\text{BW}}(m_t)} = \left|\mathcal{M}^{(t\bar{t})}\right|^2 \left(1 + \mathcal{O}\left(\frac{\Gamma_t}{m_t}\right)\right)$$

 \Rightarrow no best way, difference measure of the theory uncertainty?

Low-ish Higgs masses

combination of $t\bar{t}$ with $t \rightarrow bH^+$ at NLO

- in principle: $gg \to t\bar{t} \to t(\bar{b}H^-)$ counted as $t\bar{t}$
- experiment: start from understood $t\bar{t}$ sample [including normalization] add tH^- sample for signal hypothesis [compute tH^- without on-shell $t\bar{t}$]
- Prospino: on-shell subtraction

$$\frac{d\sigma(\textit{M}^{2})}{(\textit{M}^{2}-\textit{m}_{t}^{2})^{2}+\textit{m}_{t}^{2}\Gamma_{t}^{2}}-\frac{d\sigma(\textit{m}_{t}^{2})}{(\textit{M}^{2}-\textit{m}_{t}^{2})^{2}+\textit{m}_{t}^{2}\Gamma_{t}^{2}}\Theta(\cdots)$$

- MC@NLO: removing $t\bar{t}$ diagrams on amplitude level [crap solution]
- MC@NLO: diagam subtraction [re-inventing Prospino scheme]

$$d\sigma_{H^{-}t}^{\text{sub}} = \left| \mathcal{M}^{(\bar{t}\bar{t})} \right|^{2} \frac{f_{\text{BW}}(m_{H^{-}\bar{b}})}{f_{\text{BW}}(m_{t})} = \left| \mathcal{M}^{(\bar{t}\bar{t})} \right|^{2} \left(1 + \mathcal{O}\left(\frac{\Gamma_{t}}{m_{t}}\right) \right)$$

⇒ no best way, difference measure of the theory uncertainty?

scheme dependence

- Γ_t issue well known
- sample combination a la Prospino

combination of $t\bar{t}$ with $t \rightarrow bH^+$ at NLO

- in principle: $gg \rightarrow t\bar{t} \rightarrow t(\bar{b}H^-)$ counted as $t\bar{t}$
- experiment: start from understood $t\bar{t}$ sample [including normalization] add tH^- sample for signal hypothesis [compute tH^- without on-shell $t\bar{t}$]
- Prospino: on-shell subtraction

$$\frac{d\sigma(\textit{M}^{2})}{(\textit{M}^{2}-\textit{m}_{t}^{2})^{2}+\textit{m}_{t}^{2}\Gamma_{t}^{2}} - \frac{d\sigma(\textit{m}_{t}^{2})}{(\textit{M}^{2}-\textit{m}_{t}^{2})^{2}+\textit{m}_{t}^{2}\Gamma_{t}^{2}} \, \Theta(\cdots)$$

- MC@NLO: removing tt diagrams on amplitude level [crap solution]
- MC@NLO: diagam subtraction [re-inventing Prospino scheme]

$$d\sigma_{H^{-}t}^{\text{sub}} = \left| \mathcal{M}^{(\bar{t}\bar{t})} \right|^{2} \frac{f_{\text{BW}}(m_{H^{-}\bar{b}})}{f_{\text{BW}}(m_{t})} = \left| \mathcal{M}^{(\bar{t}\bar{t})} \right|^{2} \left(1 + \mathcal{O}\left(\frac{\Gamma_{t}}{m_{t}}\right) \right)$$

⇒ no best way, difference measure of the theory uncertainty?

scheme dependence

- Γ_t issue well known
- sample combination a la Prospino
- gauge invariance not a big issue
- interference terms big difference
- \Rightarrow sample combination available for tH^-

Tilman Plehn

MOON

fat iets

Tagging tops from charged Higgses

Anyone interested?

- $-H^+ \rightarrow t \bar{b}$ agreed to be impossible killed by continuum $t \bar{t} b \bar{b}$
- look for boosted tops reconstruct with jet algorithm [TP, Salam, Spannowsky: HEPTopTagger] reduce QCD and combinatorics reconstruct 4-momentum promising for $t\bar{t}h^0$, $h^0\to b\bar{b}$

Tagging tops from charged Higgses

Anyone interested?

- $-H^+ \rightarrow t \bar{b}$ agreed to be impossible killed by continuum $t \bar{t} b \bar{b}$
- look for boosted tops reconstruct with jet algorithm <code>[TP, Salam, Spannowsky: HEPTopTagger]</code> reduce QCD and combinatorics reconstruct 4-momentum promising for $t\bar{t}h^0, h^0 \to b\bar{b}$
- signature $t_h H^- \rightarrow t_h(\overline{t}_h b)$
 - 1- hardest b from H^- tagged
 - 2- tag two tops
 - 3- reconstruct m_H [S/B \gtrsim 1/8]

...

- only fun with experimental help

Tilman Plehn

fat jets

Outlook

tH⁻ production included in MC@NLO

- difference between 4FS and 5FS of higher order
- numerics confirming small differences
- combination with $t\bar{t}$ sample sorted
- remaining difference: jet radiation from LO/NLO/shower
- try MC@NLO and tell us what else is needed [ask us for a test code]

Tilman Plehn

MC@NLO fat jets