Tilman Plehn

Higgs

Hadronic top

Leptonic tops

W/Z bosons

No trees

To do

Status of taggers

Tilman Plehn

Universität Heidelberg

BOOST 5/2011

Tilman Plehn

Higgs Hadronic tops Leptonic tops

W/Z bosons

No tree:

To do

Fat jets

Boosted particles at the LHC

1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]1994 boosted $t \rightarrow 3$ jets [Seymour]2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [Butterworth, Cox, Forshaw]2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]2008 boosted $t \rightarrow 3$ jets from heavy resonances [Kaplan, Rehermann, Schwartz, Tweedie]...

2010 dedicated conference and meta-analysis [BOOST proceedings, Ed: Karagoz, Spannowsky, Vos]

Fat jets from boosted massive particles

- 1- collinear decay products
- 2- improved mass reconstruction
- 3- solution to signal combinatorics

Tilman Plehn

- Higgs Hadronic tops Leptonic tops W/Z bosons
- To do

Fat jets

. . .

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [Butterworth, Cox, Forshaw]
- 2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
- 2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]
- 2008 boosted $t \rightarrow$ 3 jets from heavy resonances [Kaplan, Rehermann, Schwartz, Tweedie]

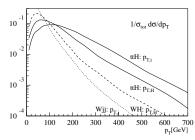
2010 dedicated conference and meta-analysis [BOOST proceedings, Ed: Karagoz, Spannowsky, Vos]

Fat jets from boosted massive particles

- 1- collinear decay products
- 2- improved mass reconstruction
- 3- solution to signal combinatorics

Tilman Plehn

Higgs


- Hadronic tops
- W/Z bosons

Standard Model Higgs

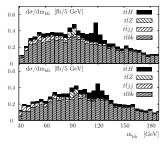
Starting frenzy: $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- boost mass reconstruction, QCD rejection
- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- $q ar q o V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]
- Z peak as sanity check subjet b tag excellent [70%/1%]
- QCD rejection with two $b ags \sim 10^{-5}$ [used by Graham et al]

Tilman Plehn

Higgs

- Hadronic tops
- Leptonic tops
- W/Z bosons
- No tree
- To do


Standard Model Higgs

Starting frenzy: $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- boost mass reconstruction, QCD rejection
- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- Z peak as sanity check subjet b tag excellent [70%/1%]
- QCD rejection with two $b~{\rm tags} \sim 10^{-5}~{\rm [used by Graham et al]}$

Hopeful: $t_h \overline{t}_\ell H$ [TP, Salam, Spannowsky]

- boost signal combinatorics
- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum [costing s/\sqrt{B}] only continuum $t\bar{t}b\bar{b}$ left
- BDRS adapted to high jet multiplicity: increased soft cutoff, increased mass drop three leading candidates in p_{T,1}p_{T,2}(ΔR)⁴ but asymmetric tails

Tilman Plehn

Higgs

- Hadronic tops
- Leptonic tops
- W/Z bosons
- No tree
- To do

Standard Model Higgs

Starting frenzy: $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- boost mass reconstruction, QCD rejection
- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- Z peak as sanity check subjet b tag excellent [70%/1%]
- QCD rejection with two $b~tags \sim 10^{-5}~$ [used by Graham et al]

Improving the Higgs tagger

- combine e.g. with QCD pre-jet observables, jet shapes multivariate analysis [Black, Gallicchio, Huth, Kagan, Schwartz, Tweedie]
 - 1- which new observables have power?
 - 2- do they survive detectors?
 - 3- do they survive pileup?
 - 4- then, combine them again
- no changes in basic idea

Tilman Plehn

Higgs

- Hadronic tops
- Leptonic tops
- W/Z bosons
- No tree
- To do

Standard Model Higgs

Starting frenzy: $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- boost mass reconstruction, QCD rejection
- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- Z peak as sanity check subjet b tag excellent [70%/1%]
- QCD rejection with two $b~tags \sim 10^{-5}~$ [used by Graham et al]

Improving the Higgs tagger

- combine e.g. with QCD pre-jet observables, jet shapes multivariate analysis [Black, Gallicchio, Huth, Kagan, Schwartz, Tweedie]
 - 1- which new observables have power?
 - 2- do they survive detectors?
 - 3- do they survive pileup?
 - 4- then, combine them again
- no changes in basic idea
- testable in $Z \rightarrow b\bar{b}$?

Tilman Plehn

Higgs

Hadronic tops

Leptonic tops

W/Z bosons

No tree

To do

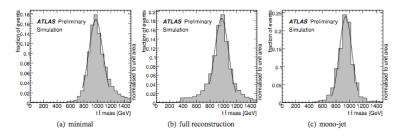
Non-standard Higgs

Hadronic 4-body decays [Falkowski, Krohn, Wang, Shelton, Thalapillil; Chen, Nojiri, Sreethawong]

- boost QCD background rejection
- search for $H \rightarrow 2a \rightarrow 4g$
- start with fat anti- k_T jet require mass balance $m_{J,1} \sim m_{j,2}$ require $p_{T,3} < (p_{T,1} + p_{T,2})/200$
- applied to VH and $t\bar{t}H$ channels promising for $m_H = 100$ GeV and 100 fb⁻¹
- how do we test it?

Tilman Plehn

Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No tree
- To do

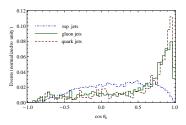
Tops from heavy resonances

Different jet algorithms [Hopkins, Princeton, Seattle; jet shapes]

- boost top reconstruction with $ho_{T}\gtrsim$ 500 GeV $_{
 m [isolation and b tagging challenging]}$
- shown to work on MC [ATLAS, adapted Y-splitter, full sim, ATLAS-2010-008]
- BDRS-inspired C/A with p_T drop [Kaplan, Rehermann, Schwartz, Tweedie] all top decay jets identified top and W masses included [no sidebins] 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no *b* tag]
- open: do we need more than calo information?

Tilman Plehn

Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No tree
- To do

Tops from heavy resonances

Different jet algorithms [Hopkins, Princeton, Seattle; jet shapes]

- boost top reconstruction with $ho_{ au}\gtrsim$ 500 GeV [isolation and *b* tagging challenging]
- shown to work on MC [ATLAS, adapted Y-splitter, full sim, ATLAS-2010-008]
- BDRS-inspired C/A with p_T drop [Kaplan, Behermann, Schwartz, Tweedie] all top decay jets identified top and W masses included [no sidebins] 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no *b* tag]
- open: do we need more than calo information?

Tilman Plehn

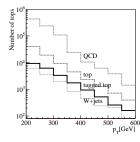
Higgs

Hadronic tops

- _eptonic tops
- W/Z bosons
- No tree
- To do

Tops from heavy resonances

Different jet algorithms [Hopkins, Princeton, Seattle; jet shapes]


- boost top reconstruction with $ho_{T}\gtrsim$ 500 GeV [isolation and b tagging challenging]
- shown to work on MC [ATLAS, adapted Y-splitter, full sim, ATLAS-2010-008]
- BDRS-inspired C/A with p_T drop [Kaplan, Rehermann, Schwartz, Tweedie] all top decay jets identified top and W masses included [no sidebins] 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no *b* tag]
- open: do we need more than calo information?

Reality

- many taggers similar at medium-high p_T
- but:

there is no heavy Z'there is no RS graviton there are top pairs

- differences at low p_T $p_T \gtrsim 250$ GeV possible?
- how to extract 'poorly defined tops'?

Tilman Plehn

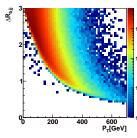
Higgs

Hadronic tops

- _eptonic tops
- W/Z bosons
- No tree:
- To do

Tops from heavy resonances

Different jet algorithms [Hopkins, Princeton, Seattle; jet shapes]


- boost top reconstruction with $p_{T}\gtrsim$ 500 GeV [isolation and b tagging challenging]
- shown to work on MC [ATLAS, adapted Y-splitter, full sim, ATLAS-2010-008]
- BDRS-inspired C/A with p_T drop [Kaplan, Rehermann, Schwartz, Tweedie] all top decay jets identified top and W masses included [no sidebins] 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no *b* tag]
- open: do we need more than calo information?

Reality

- many taggers similar at medium-high p_T
- but:

there is no heavy Z'there is no RS graviton there are top pairs

- differences at low p_T $p_T \gtrsim 250$ GeV possible?
- how to extract 'poorly defined tops'?

Tilman Plehn

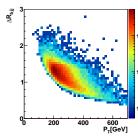
Higgs

Hadronic tops

- _eptonic tops
- W/Z bosons
- No tree:
- To do

Tops from heavy resonances

Different jet algorithms [Hopkins, Princeton, Seattle; jet shapes]


- boost top reconstruction with $ho_{T}\gtrsim$ 500 GeV [isolation and b tagging challenging]
- shown to work on MC [ATLAS, adapted Y-splitter, full sim, ATLAS-2010-008]
- BDRS-inspired C/A with p_T drop [Kaplan, Rehermann, Schwartz, Tweedie] all top decay jets identified top and W masses included [no sidebins] 3 kinematic constraints: m_W , m_t , $\cos \theta_{hel}$ [no *b* tag]
- open: do we need more than calo information?

Reality

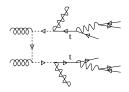
- many taggers similar at medium-high p_T
- but:

there is no heavy Z'there is no RS graviton there are top pairs

- differences at low p_T $p_T \gtrsim 250$ GeV possible?
- how to extract 'poorly defined tops'?

Tilman Plehn

Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No trees
- To do

Tops from top partners

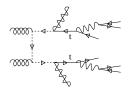
Stop pairs [TP, Spannowsky, Takeuchi, Zerwas; + Salam]

- boost QCD background rejection
- know there are top partners [Meade & Reece] know there is dark matter [and the WIMP miracle] know there are no FCNC search for $\tilde{t} \rightarrow t p$ [Graham et al use $\tilde{t} \rightarrow tH$]

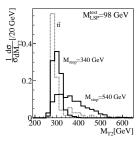
- hadronic: $\tilde{t}\tilde{t}^* \to t\tilde{\chi}^0_1 \ \bar{t}\tilde{\chi}^0_1$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]
- BDRS-inspired C/A with democratic mass drop [HEPTopTagger]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]
- as easy as $b\bar{b} + \not\!\!\!E_T$

Tilman Plehn

Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No trees
- To do


Tops from top partners

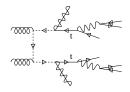
Stop pairs [TP, Spannowsky, Takeuchi, Zerwas; + Salam]

- boost QCD background rejection
- know there are top partners [Meade & Reece] know there is dark matter [and the WIMP miracle] know there are no FCNC search for $\tilde{t} \rightarrow t p / t$ [Graham et al use $\tilde{t} \rightarrow t H$]

- hadronic: $\tilde{t}\tilde{t}^* \to t\tilde{\chi}_1^0 \ t\tilde{\chi}_1^0$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]
- BDRS-inspired C/A with democratic mass drop [HEPTopTagger]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]
- as easy as $b\bar{b} + \not\!\!\!E_T$

Tilman Plehn

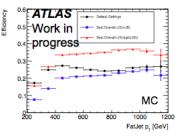
Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No trees
- To do

Tops from top partners

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas; + Salam]


- boost QCD background rejection
- know there are top partners [Meade & Reece] know there is dark matter [and the WIMP miracle] know there are no FCNC search for $\tilde{t} \rightarrow t/p_T$ [Graham et al use $\tilde{t} \rightarrow tH$]

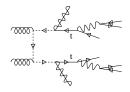
- hadronic: $\tilde{t}\tilde{t}^* o t \tilde{\chi}^0_1 \ \bar{t}\tilde{\chi}^0_1$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]
- BDRS-inspired C/A with democratic mass drop [HEPTopTagger]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]
- as easy as $b\bar{b} + \not\!\!\! E_T$

Improving top taggers

- tested by ATLAS [Kasieczka & Schätzei] include QCD parameters include pileup rejection/filtering
- different optimization for S/B or S/\sqrt{B}

Tilman Plehn

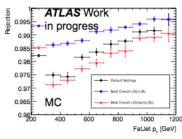
Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No trees
- To do

Tops from top partners

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas; + Salam]


- boost QCD background rejection
- know there are top partners [Meade & Reece] know there is dark matter [and the WIMP miracle] know there are no FCNC search for $\tilde{t} \rightarrow t/p_T$ [Graham et al use $\tilde{t} \rightarrow tH$]

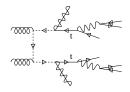
- hadronic: $ilde{t} ilde{t}^* o t ilde{\chi}^0_1 \ ar{t} ilde{\chi}^0_1$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]
- BDRS-inspired C/A with democratic mass drop [HEPTopTagger]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]
- as easy as $b\bar{b} + \not\!\!\! E_T$

Improving top taggers

- tested by ATLAS [Kasieczka & Schätzel] include QCD parameters include pileup rejection/filtering
- different optimization for S/B or S/\sqrt{B}

Tilman Plehn

Higgs


Hadronic tops

- Leptonic tops
- W/Z bosons
- No trees
- To do

Tops from top partners

Stop pairs [TP, Spannowsky, Takeuchi, Zerwas; + Salam]

- boost QCD background rejection
- know there are top partners [Meade & Reece] know there is dark matter [and the WIMP miracle] know there are no FCNC search for $\tilde{t} \rightarrow t/p_T$ [Graham et al use $\tilde{t} \rightarrow t/H$]

- hadronic: $\tilde{t}\tilde{t}^* o t\tilde{\chi}^0_1 \ \bar{t}\tilde{\chi}^0_1$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]
- BDRS-inspired C/A with democratic mass drop [HEPTopTagger]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]
- as easy as $b\bar{b} + \not\!\!\!E_T$

Improving top taggers

Tilman Plehn

Higgs

Hadronic tops

Leptonic tops

W/Z bosons

No trees

To do

Semileptonic top partners

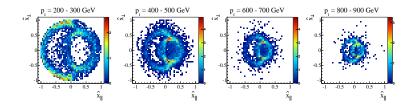
Leptonic (non-)tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector

Tilman Plehn

- Higgs
- Hadronic tops

Leptonic tops


- W/Z bosons
- No trees
- To do

Semileptonic top partners

Leptonic (non-)tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane components $(p_{\nu}^{\parallel}, p_{\nu}^{\perp})$

[orthogonal approx $p_{
u}^{\parallel} = 0$] [decay plance approx $p_{
u}^{\perp} = 0$]

Tilman Plehn

- Higgs
- Hadronic tops

Leptonic tops

- W/Z bosons
- No trees
- To do

Semileptonic top partners

Leptonic (non-)tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane

[orthogonal approx $p_{\nu}^{\parallel} = 0$] [decay plance approx $p_{\nu}^{\perp} = 0$]

- semileptonic top partners at LHC:

'At the LHC, combinatorics make it unlikely that we will be able to observe stop pair production with a decay to a semileptonic top pair and missing energy.' [TP, Spannowsky, Takeuchi, Zerwas]

Tilman Plehn

- Higgs
- Hadronic tops

Leptonic tops

- W/Z bosons
- No trees
- To do

Semileptonic top partners

Leptonic (non-)tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{||}=0$] [decay plance approx $p_{
u}^{\perp}=0$]

- semileptonic top partners at LHC:

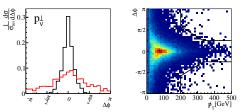
'At the LHC, combinatorics make it unlikely that we will be able to observe stop pair production with a decay to a semileptonic top pair and missing energy.' [TP, Spannowsky, Takeuchi, Zerwas]

sorry, totally wrong!

Tilman Plehn

- Higgs
- Hadronic tops

Leptonic tops


- W/Z bosons
- No trees
- To do

Semileptonic top partners

Leptonic (non-)tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: $E_b, E_\ell, m_{b\ell}$ [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane
- semileptonic top partners at LHC: use approximate $\Delta \Phi(p_T, \hat{p}_t)$

[orthogonal approx $p_{
u}^{||}=0$] [decay plance approx $p_{
u}^{\perp}=0$]

Tilman Plehn

- Higgs
- Hadronic tops

Leptonic tops

- W/Z bosons
- No trees
- To do

Semileptonic top partners

Leptonic (non-)tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: E_b, E_ℓ, m_{bℓ} [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{||}=0$] [decay plance approx $p_{
u}^{\perp}=0$]

- semileptonic top partners at LHC: use approximate $\Delta \Phi(p_T, \hat{p}_t)$
- top partner decays observable

	orthogonal approximation							decay plane approximation						
		$\tilde{t}_1 \tilde{t}_1$	*		tī	W+jets	S/B		$\tilde{t}_1 \tilde{t}_1$	ĸ		i	t W+jets	S/B
m _{ř[} GeV]	340		540				440	340	440	540	640			440
15. base cuts	27.38	13.71	6.33	2.89	642.72		0.021							
approximation	14.81	7.69	3.61	1.66	285.16	1.41	0.027	27.33	13.67	6.31	2.89	642.3	7 2.63	0.021
7. $p_T^{\text{est}} > 200 \text{GeV}$	8.61	4.53	2.41	1.24	215.62	0.60	0.021	9.13	5.16	2.87	1.61	242.2	1 0.54	0.021
8. p_T vs. $\Delta \phi$ cut	0.97	1.52	1.23	0.76	0.72	0.02	2.06	1.22	1.82	1.53	1.02	1.3	1 0.06	1.33

Tilman Plehn

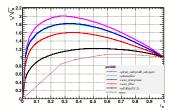
- Higgs
- Hadronic tops
- Leptonic tops

W/Z bosons

- No trees
- To do

Back to the W and Z

Semileptonic $H \rightarrow ZZ$ [Englert, Hackstein, Spannowsky]


- boost Z+jets background rejection
- inclusive H with WBF contribution
- BDRS inspired, plus trimming+pruning
- promising for $m_H > 400 \text{ GeV}$ [S/B \sim 1/2]
- decay plane correlation usable

Again, use QCD structure [Cui, Han, Schwartz]

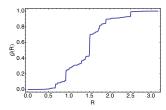
- boost QCD background rejection [SIC, aka significance improvement]
- mass and p_T in variable cone

$$c_{
ho}(R) = rac{
ho_T(R)}{
ho_T(R_{
m fat})}$$

- combination in multivariate analysis
- possibility to extract W_L from W_T
- experimentalists, please check!

Tilman Plehn

- Higgs
- Hadronic tops
- Leptonic tops
- W/Z bosons
- No trees
- To do


Make taggers less biased

Avoid unclustering [Jankowiak & Larkorski]

- angular correlation function

$$G(R) \sim rac{\sum (m{
ho}_{T,i}m{
ho}_{T,j}) \, \Theta(R - \Delta R_{ij})}{\sum (m{
ho}_{T,i}m{
ho}_{T,j})}$$

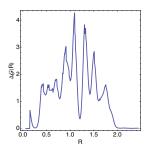
 featureless for QCD ledge in *R* for massive particles

Tilman Plehn

- Higgs
- Hadronic tops
- Leptonic tops
- W/Z bosons

No trees

To do


Make taggers less biased

Avoid unclustering [Jankowiak & Larkorski]

- angular correlation function

$$G(R) \sim rac{\sum (p_{T,i} p_{T,j}) \Theta(R - \Delta R_{ij})}{\sum (p_{T,i} p_{T,j})}$$

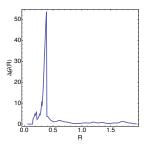
- featureless for QCD ledge in *R* for massive particles
- interesting structure in derivative, ∆G(R) look for peaks categorize by height [topographic prominence] count number of peaks
- translate peak position into jet mass

Tilman Plehn

- Higgs
- Hadronic tops
- Leptonic tops
- W/Z bosons

No trees

To do


Make taggers less biased

Avoid unclustering [Jankowiak & Larkorski]

- angular correlation function

$$G(R) \sim rac{\sum (p_{T,i} p_{T,j}) \Theta(R - \Delta R_{ij})}{\sum (p_{T,i} p_{T,j})}$$

- featureless for QCD ledge in *R* for massive particles
- interesting structure in derivative, ∆G(R) look for peaks categorize by height [topographic prominence] count number of peaks
- translate peak position into jet mass

Tilman Plehn

- Higgs
- Hadronic tops
- Leptonic tops
- W/Z bosons

No trees

To do

Make taggers less biased

Avoid unclustering [Jankowiak & Larkorski]

- angular correlation function

$$G(R) \sim rac{\sum (p_{T,i} p_{T,j}) \Theta(R - \Delta R_{ij})}{\sum (p_{T,i} p_{T,j})}$$

- featureless for QCD ledge in *R* for massive particles
- interesting structure in derivative, ∆G(R) look for peaks categorize by height [topographic prominence] count number of peaks
- translate peak position into jet mass
- worth not using clustering history?

Tilman Plehn

- Higgs
- Hadronic tops
- Leptonic tops
- W/Z bosons
- INO Tree
- To do

To do: jet algorithms and pileup

Filtering [BDRS, also used in HEPTopTagger]

- designed for C/A algorithm
- reduce effective fat-jet area zoom in on relevant final subjets
- number of jets and size negotiable

Pruning [Ellis, Vermillion, Walsh]

- designed for k_T algorithm
- extract relevant collinear splittings in splitting history
- soft/collinearity condition negotiable

Trimming [Krohn, Thaler, Wang]

- designed for anti- k_T algorithm
- remove soft fat jet regions [inverse to filtering] slightly different interpretation for k_T algo
- filtering + pruning useful [Spannowsky & Soper]
- should we use more/less of the clustering history?
- and can we do this with pileup?

Tilman Plehn

- Higgs
- Hadronic tops
- Leptonic tops
- W/Z bosons
- No trees
- To do

Outlook

Bottom line from new physics guy turned German

- increase LHC luminosity
- increase LHC energy
- deal with underlying event/pileup
- test, test, test, and on data!

Communication issues solved here

- theorists write taggers
- experimentalists test taggers
- communication illegal [experiments prefers to blog Higgses and write CMSSM papers]
- we would be dead without Heidelberg-ATLAS and their coffee machine

Tilman Plehn

Higgs

Hadronic tops

Leptonic tops

W/Z bosons

No trees

To do