Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Looking at LHC Results following Uli's advice

Tilman Plehn

Heidelberg

Buffalo, 9/2011

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

The LHC

On physics mission for a while now

- Einstein: smash 3.5 TeV protons onto 3.5 TeV protons produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, soldering, exciting data... → experiment deep knowledge, fun, workshops in nice places... → theory best of both words (Uli et al) → phenomenology

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

The LHC

On physics mission for a while now

- Einstein: smash 3.5 TeV protons onto 3.5 TeV protons produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, soldering, exciting data... → experiment deep knowledge, fun, workshops in nice places... → theory best of both words (Uli et al) → phenomenology

life as an experimentalist

life as a theorist

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

The LHC

On physics mission for a while now

- Einstein: smash 3.5 TeV protons onto 3.5 TeV protons produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, soldering, exciting data... → experiment deep knowledge, fun, workshops in nice places... → theory best of both words (Uli et al) → phenomenology

life as an experimentalist

life as a theorist

Tilman Plehn

The LHC

Standard Model

Supersymmetry

Higgs

Jets

Fat jets

The LHC

On physics mission for a while now

- Einstein: smash 3.5 TeV protons onto 3.5 TeV protons produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, soldering, exciting data... → experiment deep knowledge, fun, workshops in nice places... → theory best of both words (Uli et al) → phenomenology

In short

- signal: everything new, exciting and rare background: yesterday's signal
- Standard Model: theory of background QCD: evil background theory trying to kill us
- jet: everything except for leptons/photons crucial: what is inside a jet [q, g, b, τ, W, H, t]

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Standard–Model effective theory

A brief history of Uli's favorite (Standard) model

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Standard–Model effective theory

A brief history of Uli's favorite (Standard) model

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV

- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2 / (E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!!]

Tilman Plehn

The LHC

Standard Model?

- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

A brief history of Uli's favorite (Standard) model

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2 / (E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV

Tilman Plehn

The LHC

Standard Model?

- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

A brief history of Uli's favorite (Standard) model

- Fermi 1934: theory of weak interactions $[n \rightarrow \rho e^{-} \bar{\nu}_e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2/(E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV
- 't Hooft & Veltman 1971: renormalizability beware of 1/*M* couplings! theory valid to high energy truly fundamental theory

Tilman Plehn

The LHC

Standard Model?

- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

A brief history of Uli's favorite (Standard) model

- Fermi 1934: theory of weak interactions $[n \rightarrow pe^{-}\bar{\nu}e]$ (2 \rightarrow 2) transition amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation pre-80s effective theory for E < 600 GeV
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ four fermions unitary for $E \gg M$: $\mathcal{A} \propto g^2 E^2 / (E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ current effective theory for E < 1.2 TeV [LHC energy!!]
- Higgs 1964: spontaneous symmetry breaking unitarity for massive W, Z unitarity for massive fermions fundamental scalar below TeV
- 't Hooft & Veltman 1971: renormalizability beware of 1/*M* couplings! theory valid to high energy truly fundamental theory
- but experimentally incomplete effective theory

Tilman Plehn

The LHC

- Standard Model?
- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

Theorists worrying

- Heisenberg: quantum corrections to Higgs mass... $[\Delta t \, \Delta E < 1]$...imply effective field theory problem

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

- Higgs mass pulled to cut-off Λ [where Higgs at Λ does not work]
- \Rightarrow hierarchy problem Higgs without stabilization incomplete

Tilman Plehn

The LHC

Standard Model?

- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

Theorists worrying

- Heisenberg: quantum corrections to Higgs mass... $[\Delta t \, \Delta E < 1]$...imply effective field theory problem

$$m_H^2 \longrightarrow m_H^2 - rac{g^2}{(4\pi)^2} \ rac{3}{2} \ rac{\Lambda^2}{m_W^2} \left[m_H^2 + 2m_W^2 + m_Z^2 - 4m_t^2
ight] + \cdots$$

- Higgs mass pulled to cut-off $\Lambda \quad [{\tt where Higgs at Λ does not work]}$

 \Rightarrow hierarchy problem — Higgs without stabilization incomplete

Starting from data which ...

...indicates light Higgs [e-w precision data] ...indicates large cutoff to effective Standard Model

- easy solution: counter term but against idea of symmetries
- or new physics at TeV scale: supersymmetry extra dimensions little Higgs composite Higgs, TopColor YourFavoriteNewPhysics...
- \Rightarrow beautiful concepts, contrived models

Tilman Plehn

The LHC

Standard Model?

- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

Theorists worrying

- Heisenberg: quantum corrections to Higgs mass... $[\Delta t \, \Delta E < 1]$...imply effective field theory problem

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

Higgs mass pulled to cut-off Λ [where Higgs at Λ does not work]

 \Rightarrow hierarchy problem — Higgs without stabilization incomplete

Starting from data which...

...indicates light Higgs [e-w precision data] ...indicates large cutoff to effective Standard Model

- easy solution: counter term but against idea of symmetries
- or new physics at TeV scale: supersymmetry extra dimensions little Higgs composite Higgs, TopColor YourFavoriteNewPhysics...

 \Rightarrow beautiful concepts, contrived models

Tilman Plehn

The LHC

Standard Model?

- Supersymmetry
- Higgs
- Jets
- Fat jets

Standard–Model effective theory

Theorists worrying

- Heisenberg: quantum corrections to Higgs mass... $[\Delta t \, \Delta E < 1]$...imply effective field theory problem

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

- Higgs mass pulled to cut-off $\Lambda \quad [{\tt where Higgs at Λ does not work]}$

 \Rightarrow hierarchy problem — Higgs without stabilization incomplete

Uli: theoretists obviously have too much time

- there is always new physics at higher scales
- means for the LHC:

find light Higgs? find new physics stabilizing Higgs mass?? see dark-matter candidate???

 \Rightarrow imagining Uli's advice

let's instead find something totally unexpected!!

Tilman Plehn

The LHC

Standard Model

Supersymmetry

Higgs

Jets

Fat jets

Things we have not (yet) seen: supersymmetry

Against Uli's advice: look for supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- obviously broken by masses, mechanism unknown
- assume dark matter, stable lightest partner
- \Rightarrow LHC: measure spectrum with missing energy

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Things we have not (yet) seen: supersymmetry _H

Against Uli's advice: look for supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- obviously broken by masses, mechanism unknown
- assume dark matter, stable lightest partner
- ⇒ LHC: measure spectrum with missing energy

Particle spectrum

			1.1	
		spin	d.o.t.	
fermion	f_L, f_B	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	dark matter
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	\tilde{x}_i^{\pm}	1/2	2 · 4	

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Things we have not (yet) seen: supersymmetry

Against Uli's advice: look for supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- obviously broken by masses, mechanism unknown

10

10

10 200 300

- assume dark matter, stable lightest partner
- \Rightarrow LHC: measure spectrum with missing energy

Supersymmetry at the LHC

- production of squarks and gluinos cascade decay to DM candidate and jets
- general theme: try to survive QCD

500 600 700 800 900 m_{average} [GeV]

н

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Things we have not (yet) seen: supersymmetry

Against Uli's advice: look for supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- obviously broken by masses, mechanism unknown
- assume dark matter, stable lightest partner
- \Rightarrow LHC: measure spectrum with missing energy

Supersymmetry at the LHC

- production of squarks and gluinos cascade decay to DM candidate and jets
- general theme: try to survive QCD
- kind of interesting exclusion limits...

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Things we have not (yet) seen: supersymmetry

Against Uli's advice: look for supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- obviously broken by masses, mechanism unknown
- assume dark matter, stable lightest partner
- ⇒ LHC: measure spectrum with missing energy

Supersymmetry at the LHC

- production of squarks and gluinos cascade decay to DM candidate and jets
- general theme: try to survive QCD
- kind of interesting exclusion limits...
- \Rightarrow Uli recommending:

work on what we actually see!

Tilman Plehn

The LHC

- Standard Model?
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: $H \rightarrow ZZ$ pretty boring light Higgs: tough and fun

Tilman Plehn

The LHC

- Standard Model?
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: $H \rightarrow ZZ$ pretty boring light Higgs: tough and fun
- decays $H \rightarrow b\bar{b}, \tau^+\tau^-, W^+W^-$
- production $pp \rightarrow H + 0, 1, 2 \text{ jets}$ [Baur & Glover]
- \Rightarrow Higgs phenomenology really all QCD...

Tilman Plehn

The LHC

- Standard Model?
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: $H \rightarrow ZZ$ pretty boring light Higgs: tough and fun
- decays $H \rightarrow b\bar{b}, \tau^+\tau^-, W^+W^-$
- production $pp \rightarrow H + 0, 1, 2 \text{ jets}$ [Baur & Glover]
- \Rightarrow Higgs phenomenology really all QCD...

LHC results

- let me focus on EPS 2011

Tilman Plehn

The LHC

- Standard Model?
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: $H \rightarrow ZZ$ pretty boring light Higgs: tough and fun
- decays $H \rightarrow b\bar{b}, \tau^+\tau^-, W^+W^-$
- production $pp \rightarrow H + 0, 1, 2 \text{ jets}$ [Baur & Glover]
- \Rightarrow Higgs phenomenology really all QCD...

LHC results

 let me focus on EPS 2011 very boring until Friday

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: $H \rightarrow ZZ$ pretty boring light Higgs: tough and fun
- decays $H \rightarrow b\bar{b}, \tau^+\tau^-, W^+W^-$
- production $pp \rightarrow H + 0, 1, 2 \text{ jets}$ [Baur & Glover]
- \Rightarrow Higgs phenomenology really all QCD...

LHC results

 let me focus on EPS 2011 very boring until Friday then very exciting

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: $H \rightarrow ZZ$ pretty boring light Higgs: tough and fun
- decays $H \rightarrow b\bar{b}, \tau^+\tau^-, W^+W^-$
- production $pp \rightarrow H + 0, 1, 2 \text{ jets}$ [Baur & Glover]
- ⇒ Higgs phenomenology really all QCD...

LHC results

- let me focus on EPS 2011 very boring until Friday then very exciting
- since then kind of vanishing...

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry

Higgs

- Jets
- Fat jets

Things we might have seen: Higgs

Standard Model Higgs searches

- remember: we know everything about it except: does it exist? and what is its mass?
- heavy Higgs: H → ZZ pretty boring light Higgs: tough and fun
- decays $H \rightarrow b\bar{b}, \tau^+\tau^-, W^+W^-$
- production $pp \rightarrow H + 0, 1, 2 \text{ jets}$ [Baur & Glover]
- ⇒ Higgs phenomenology really all QCD...

LHC results

- let me focus on EPS 2011 very boring until Friday then very exciting
- since then kind of vanishing...
- \Rightarrow more good advice by Uli:

experimenters are smart people, give the

Tilman Plehn

The LHC

Standard Model

Supersymmet

Higgs

Jets

Fat jets

Jets we do see!

Tilman Plehn

The LHC

- Standard Model
- Supersymmetr
- Higgs

Jets

Fat jets

Jets we do see!

Exclusive jet counting [challenge to LHC-QCD]

- Peskin & Schroeder: soft photons with Poisson scaling
- UA2 to ATLAS: staircase scaling [Ellis, Kleiss, Stirling]

$$\mathsf{R}_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \mathrm{const}$$

- funny: same for inclusive and exclusive

$$\mathbf{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \mathbf{R}_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS and CMS

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs

Jets

Fat jets

Jets we do see!

Exclusive jet counting [challenge to LHC-QCD]

- Peskin & Schroeder: soft photons with Poisson scaling
- UA2 to ATLAS: staircase scaling [Ellis, Kleiss, Stirling]

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- funny: same for inclusive and exclusive

$$\mathbf{P}_{(n+1)/n}^{\mathsf{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}}{\sigma_n^{(\mathsf{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}} = \mathbf{R}_{(n+1)/n}^{\mathsf{excl}}$$

- confirmed by ATLAS and CMS

Modern QCD simulations [CKKW/MLM merging]

- universal for W, Z, γ +jets and QCD jets
- phase space effects? \rightarrow moderate α_s uncertainties? \rightarrow small scale choices? \rightarrow tuning parameter
- we can also make it Poisson and predict the WBF Higgs veto rate

Tilman Plehn

The LHC

- Standard Model
- Supersymmetr
- Higgs

Jets

Fat jets

Jets we do see!

Exclusive jet counting [challenge to LHC-QCD]

- Peskin & Schroeder: soft photons with Poisson scaling
- UA2 to ATLAS: staircase scaling [Ellis, Kleiss, Stirling]

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- funny: same for inclusive and exclusive

$$\boldsymbol{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \boldsymbol{R}_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS and CMS

Modern QCD simulations [CKKW/MLM merging]

- universal for W, Z, γ +jets and QCD jets
- phase space effects? \rightarrow moderate α_s uncertainties? \rightarrow small scale choices? \rightarrow tuning parameter
- we can also make it Poisson and predict the WBF Higgs veto rate

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs

Jets

Fat jets

Jets we do see!

Exclusive jet counting [challenge to LHC-QCD]

- Peskin & Schroeder: soft photons with Poisson scaling
- UA2 to ATLAS: staircase scaling [Ellis, Kleiss, Stirling]

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- funny: same for inclusive and exclusive

$$\mathbf{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \mathbf{R}_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS and CMS

Modern QCD simulations [CKKW/MLM merging]

- universal for W, Z, γ +jets and QCD jets
- phase space effects? \rightarrow moderate α_s uncertainties? \rightarrow small scale choices? \rightarrow tuning parameter
- we can also make it Poisson and predict the WBF Higgs veto rate
- $\Rightarrow \text{ Uli?}$

nice calculation, but we really knew that all along!

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $\ q ar q o V_\ell H_b$ feasible in boosted regime

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H ightarrow b ar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $\,\, q ar q
 ightarrow \, V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H ightarrow b ar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $\ q ar q o V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $q \bar{q}
 ightarrow V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- momentum reconstruction for free

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H ightarrow b ar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $\ q ar q o V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- momentum reconstruction for free

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $q \bar{q}
 ightarrow V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- momentum reconstruction for free
- tested by ATLAS Heidelberg [Kasieczka & Schätzel]

Fat jets

Tilman Plehn

The LHC

- Standard Model
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/p_T]$
- $q \bar{q}
 ightarrow V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- momentum reconstruction for free
- tested by ATLAS Heidelberg [Kasieczka & Schätzel]
- hadronic top like b tag

Fat jets

Tilman Plehn

The LHC

- Standard Model?
- Supersymmetry
- Higgs
- Jets
- Fat jets

New strategy for $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- reconstruct fat 'Higgs jet' $[R_{bb} \sim 1 \gtrsim 2m_H/\rho_T]$
- $q \bar{q}
 ightarrow V_\ell H_b$ feasible in boosted regime

- identify hadronic tops with $p_T\gtrsim 250...800~{
 m GeV}$
- HEPTopTagger: extend to low $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- momentum reconstruction for free
- tested by ATLAS Heidelberg [Kasieczka & Schätzel]
- hadronic top like b tag
- \Rightarrow I think Uli liked that
 - TP: So if you are just doing what you like what do you like these days? Any cool new physics models? Some more top pair production? ... UB: Yes, I do top production. And what I call electroweak jets ... TP: Electroweak jets - is that something I can read about? UB: No. This is the biggest secret in the universe. (8/11/2010)

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets

Uli's final advice: and for next time update all these old experimental plots!!

Tilman Plehn

The LHC

Standard Model?

Supersymmetry

Higgs

Jets

Fat jets