Tilman Plehn

Higgs Sector

Higgs to bottom

Markov chains

Higgs sector

WBF-SUSY

Higgs Physics for the LHC

Tilman Plehn

Universität Heidelberg

ICTP, 3/2011

Tilman Plehn

Higgs Sector

Higgs to bottoms Markov chains Higgs sector WBF-SUSY

Standard Model Higgs Sector

Massive W, Z bosons [Yukawa, 1935]

- start with SU(2) gauge theory [like QED with massless W, Z]
- include measured masses $\mathcal{L} \sim \textit{m}_{\textit{W},\textit{Z}}\textit{A}_{\mu}\textit{A}^{\mu}$
- \Rightarrow data driven but not gauge invariant/unitary

Unitarity

- test theory in $WW \rightarrow WW$ scattering
 - $\rightarrow \mathcal{A} \propto G_F E^2$ like Fermi's theory, not unitary above 1.2 TeV [barely LHC energy]
 - \rightarrow postulate additional scalar Higgs boson to conserve unitarity
 - ightarrow fixed coupling $g_{WWH} \propto m_W$
- add fermions and test $WW \rightarrow f\bar{f}$
 - ightarrow fixed coupling $g_{f\!f\!H} \propto m_f/m_W$
- test new theory in $WW \rightarrow WWH$
 - ightarrow fixed coupling $g_{HHH} \propto m_{H}^2/m_{W}$
- final test: $WW \rightarrow HHH$
 - ightarrow fixed coupling $g_{HHHH} \propto m_{H}^{2}/m_{W}^{2}$
- \Rightarrow Higgs couplings non-negotiable

Higgs Sector

Higgs to bottoms Markov chains Higgs sector WBF-SUSY

Standard Model Higgs Sector

Massive W, Z bosons [Yukawa, 1935]

- start with SU(2) gauge theory [like QED with massless W, Z]
- include measured masses $\mathcal{L} \sim -\textit{m}_{\textit{W},\textit{Z}}\textit{A}_{\mu}\textit{A}^{\mu}$
- \Rightarrow data driven but not gauge invariant/unitary

Spontaneous symmetry breaking [Higgs, 1964]

- break symmetry through vacuum: SU(2) doublet with vev [review: arXiv.0910.4182]
- first attempt: renormalizable Higgs potential [does all we want]

$$\mathcal{L}_{\mathsf{Higgs}} = \left| D_{\mu} \Phi \right|^{2} - V$$
$$V = \lambda \left(\left| \Phi \right|^{2} - \frac{v^{2}}{2} \right)^{2} = \mu^{2} \left| \Phi \right|^{2} + \lambda \left| \Phi \right|^{4} + \text{const}$$

- not the whole story with new scale Λ

$$V = \sum_{n=0} \frac{\lambda_n}{\Lambda^{2n}} \left(\left| \Phi \right|^2 - \frac{v^2}{2} \right)^{2+n}$$

- D6 Higgs operators allowed by e-w precision data

$$\mathcal{O}_{\mathsf{kin}} = rac{1}{2} \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi) \qquad \qquad \mathcal{O}_{\mathsf{pot}} = -rac{1}{3} (\Phi^{\dagger} \Phi)^{3}$$

 \Rightarrow need to test renormalizable Higgs sector

Tilman Plehn

Higgs Sector

Higgs to bottoms Markov chains Higgs sector WBF-SUSY

Higgs Production and Decay

Higgs searches for the LHC

- unitarity limit $m_H < 1$ TeV triviality & stability bound electroweak precision tests $m_H \lesssim 200$ GeV
- production & decay of light (Standard Model) Higgs mm

mm

 $\gamma\gamma\gamma\gamma$

mm

b.t

Tilman Plehn

Higgs Sector

Higgs to bottoms Markov chains Higgs sector

Higgs Production and Decay

Higgs searches for the LHC

- unitarity limit $m_H < 1$ TeV triviality & stability bound electroweak precision tests $m_H \lesssim 200$ GeV
- production & decay of light (Standard Model) Higgs mm

Some numbers

- $-~H
 ightarrow ZZ
 ightarrow 4\mu$ no-brainer ['golden channel' above 140 GeV, mass resolution excellent]
- $H \rightarrow WW$ only slightly harder, no mass peak [above 150 GeV, off-shell still unclear]

$$-gg \rightarrow H \rightarrow \gamma\gamma$$
 [mass resolution $\Delta m_H/m_H \sim \Gamma/\sqrt{s} < 0.5\%$]

- qq
 ightarrow qqH
 ightarrow qqWW [down to $m_H <$ 120 GeV]
- ~ qq
 ightarrow qq H
 ightarrow qq au au [important for MSSM]
- more channels, comments from 2006

 $\begin{array}{l} gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b} \quad \mbox{[ikely dead]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}WW \quad \mbox{[ikely to work]} \\ gg \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \quad \mbox{[yet unclear]} \\ q\bar{q}' \rightarrow WH \rightarrow Wb\bar{b} \quad \mbox{[killer QCD backgrounds]} \\ qq \rightarrow qqH \rightarrow qqb\bar{b} \quad \mbox{[no ATLAS trigger]} \\ qq \rightarrow qqH \rightarrow qq\mu\mu \quad \mbox{[long shot]} \end{array}$

 \Rightarrow many channels to test Higgs

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed for light Higgs $[2/3 \text{ of all Higgses; inclusive CMS } S/B \sim 1/80]$
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb}
 - S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed for light Higgs $[2/3 \text{ of all Higgses; inclusive CMS } S/B \sim 1/80]$
- S: large mbb, boost-dependent Rbb
 - B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- $q ar q o V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]
- \Rightarrow non-trivial challenge to jet algorithms

jet definition	$\sigma_{\mathcal{S}}/{ m fb}$	σ_{B} /fb	S/\sqrt{B}_{30}
C/A, <i>R</i> = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{cut}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Higgs to bottoms

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed for light Higgs $\,$ [2/3 of all Higgses; inclusive CMS S/B \sim 1/80]
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- $q ar q \to V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]
- \Rightarrow non-trivial challenge to jet algorithms

Results and checks

- combined channels $V \rightarrow \ell \ell, \nu \nu, \ell \nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- checked by Freiburg [Piquadio] subjet *b* tag excellent [70%/1%] charm rejection challenging $m_H \pm 8$ GeV tough
- $\Rightarrow\,$ discovery channel for $\sim 40 {\rm fb}^{-1}$

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chain:

Higgs sector

WBF-SUSY

Saving ttH

Traditional $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$ reconstruction and rate: $\overline{t} \rightarrow \overline{b}W^- \rightarrow \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- no chance:
 - 1– combinatorics: m_{bb} from $pp
 ightarrow 4b_{tag}$ 2j $\ell
 u$

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Saving ttH

Traditional $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Saving ttH

Traditional $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

liggs sector

NBF-SUSY

Saving ttH

Traditional $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets analysis [TP, Salam, Spannowsky]

- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: large m_{bb} and small R_{bb}; correct bottom pair boosted [solves 1]
- $pp \rightarrow t_{\ell} t_h H_b$ even better than VH? also boost different for S and B [solves 2]
- cool: fat Higgs jet + fat top jet uncool: QCD [Dittmaier et al: K = 2.3 for tt
 t bb]
- see how far we get... [watch S/B for 3]

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

NBF-SUSY

Saving *t*tH

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1-combinatorics: m_H in $pp
 ightarrow 4b_{tag}$ 2j $\ell
 u$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Analysis

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum only continuum $t\overline{t}b\overline{b}$ left

per 1 fb^{-1}	signal	tīZ	tītbb	tt+jets
events after acceptance	24.1	6.9	191	4160
events with one top tag	10.2	2.9	70.4	1457
events with $m_{bb} = 110 - 130 \text{ GeV}$	2.9	0.44	12.6	116
corresponding to subjet pairings	3.2	0.47	13.8	121
subjet pairings two b tags	1.0	0.08	2.3	1.4
including a third <i>b</i> tag	0.48	0.03	1.09	0.06

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Saving *t*tH

Traditional $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Analysis

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum only continuum $t\bar{t}b\bar{b}$ left

m _H	S	S/B	$S/\sqrt{B}_{100 \text{fb}^{-1}}$
115	57	1/2.1	5.2 (5.7)
120	48	1/2.4	4.5 (5.1)
130	29	1/3.6	2.9 (3.0)

 \Rightarrow just a suggestion...

Tilman Plehn

Higgs Secto

Higgs to bottoms

Markov chains

Higgs sector

NBF-SUSY

Top and Higgs tagging

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$
 - 1– unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2
 - 2- soft m_{j_1} < 30 GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets decay plus one add'l jet at $R_{\rm filt} \sim R_{jj}/2$ reconstruct masses w/ QCD jet

Tilman Plehn

Higgs Sector

Higgs to bottoms

Markov chains

Higgs sector

NBF-SUSY

Top and Higgs tagging

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets decay plus one add'l jet at $R_{\rm filt} \sim R_{jj}/2$ reconstruct masses w/ QCD jet

HEPTopTagger [TP, Salam, Spannowsky, Takeuchi; cf Johns Hopkins, Princeton, Washington]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Michigan, Atlas,...]
- testable top tagger?
- start like Higgs tagger [R=1.5, filtering] $m_t^{\text{rec}} = 150...200 \text{ GeV}$ $m_W^{\text{rec}} = 60...95 \text{ GeV}$ additional m_{jb} constraint [new in public version]
- no side bands to check
- \Rightarrow tagger implemented by ATLAS

Tilman Plehn

Higgs Sector

Higgs to bottoms

Markov chains

Higgs sector

NBF-SUSY

Top and Higgs tagging

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets decay plus one add'l jet at $R_{\rm filt} \sim R_{\rm jj}/2$ reconstruct masses w/ QCD jet

HEPTopTagger [TP, Salam, Spannowsky, Takeuchi; cf Johns Hopkins, Princeton, Washington]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Michigan, Atlas,...]
- testable top tagger?
- start like Higgs tagger [R=1.5, filtering] $m_t^{\text{rec}} = 150...200 \text{ GeV}$ $m_W^{\text{rec}} = 60...95 \text{ GeV}$ additional m_{jb} constraint [new in public version]
- no side bands to check
- \Rightarrow tagger implemented by ATLAS

Tilman Plehn

Higgs Sector

Higgs to bottoms

Markov chains

Higgs sector

NBF-SUSY

Top and Higgs tagging

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin
- jets everywhere; underlying event and pileup deadly filter reconstruction jets decay plus one add'l jet at $R_{\rm filt} \sim R_{jj}/2$ reconstruct masses w/ QCD jet

HEPTopTagger [TP, Salam, Spannowsky, Takeuchi; cf Johns Hopkins, Princeton, Washington]

- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Michigan, Atlas,...]
- testable top tagger?
- start like Higgs tagger [R=1.5, filtering] $m_t^{\text{rec}} = 150...200 \text{ GeV}$ $m_W^{\text{rec}} = 60...95 \text{ GeV}$ additional m_{jb} constraint [new in public version]
- no side bands to check
- \Rightarrow tagger implemented by ATLAS

Tilman Plehn

Higgs Sector Higgs to bottom

Markov chains

- Higgs sector
- WBF-SUSY

Markov chains

Probability maps

- honest LHC parameters: weak-scale Lagrangean [Higgs, MSSM, dark matter,...]
- problem in grid: huge phase space, find local best points? problem in fit: domain walls, find global best points?
- likelihood map: data given a model $p(d|m) \sim |\mathcal{M}|^2(m)$
- Bayes' theorem: $p(m|d) = p(d|m) \ p(m)/p(d)$ [p(d) normalization, p(m) prejudice]
- \Rightarrow given measurements: 1- compute map p(d|m)
 - 2- rank local maxima
 - 3- derive probabilities for parameters

Markov chains

- classical: representative set of spin states compute average energy on this reduced sample
- BSM physics: map p(d|m) of parameter points evaluate same probability or additional function
- Metropolis-Hastings starting probability p(d|m) vs suggested probability p(d|m')
 - 1- accept new point if p(d|m') > p(d|m)
 - 2- or accept with p(d|m')/p(d|m) < 1

Tilman Plehn

Higgs Sector Higgs to bottom

Markov chains

Higgs sector

WBF-SUSY

Improving Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Tilman Plehn

Higgs Sector Higgs to bottom

Markov chains

Higgs sector

WBF-SUSY

Improving Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Cooling Markov chains [Lafaye, TP, Rauch, Zerwas]

- need to zoom in on peak structures
- modified condition [inspired by simulated annealing]
 Markov chain in 100 partitions, numbered by j

 $rac{p(m')}{p(m)} > r^{rac{100}{fc}}$ with $c \sim 10,$ $r \in [0,1]$ random number

- check for parameter coverage with many Markov chains

Tilman Plehn

Higgs Sector Higgs to bottom

Markov chains

Higgs sector

WBF-SUSY

Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of m_t extraction]
- two ways to marginalize likelihood map
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians

Tilman Plehn

- Higgs Sector Higgs to bottom
- Markov chains
- Higgs sector
- WBF-SUSY

Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of m_t extraction]
- two ways to marginalize likelihood map
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians
- 2- profile likelihood $\mathcal{L}(.., x_{j-1}, x_{j+1}...) \equiv \max_{x_j} \mathcal{L}(x_1, ..., x_n)_{\text{BO}}$ no integration needed no noise accumulation not normalized, no comparison of structures classical example: best-fit point
 - childish civil war if applied to same question frequentist: flavor, Higgs,...
 Bayesian: dark matter, new physics,...
 - simply: two questions, two answers

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Higgs couplings

Higgs-sector analysis at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- optimistic LHC scenario: everything working and good data
- Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- light Higgs around 120 GeV: 10 main channels ($\sigma imes \textit{BR}$) [bb channel new]
- measurements: $GF : H \to ZZ, WW, \gamma\gamma$ $WBF : H \to ZZ, WW, \gamma\gamma, \tau\tau$ $VH : H \to b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H : H \to \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $\textit{W},\textit{Z},t,\textit{b},\tau,\textit{g},\gamma$ [plus Higgs mass]
- hope: cancel uncertainties

 $\begin{array}{l} (\textit{WBF}:\textit{H} \rightarrow \textit{WW})/(\textit{WBF}:\textit{H} \rightarrow \tau\tau) \\ (\textit{WBF}:\textit{H} \rightarrow \textit{WW})/(\textit{GF}:\textit{H} \rightarrow \textit{WW})... \end{array}$

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Higgs couplings

Higgs-sector analysis at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- optimistic LHC scenario: everything working and good data
- Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?
- light Higgs around 120 GeV: 10 main channels ($\sigma imes BR$) [bb channel new]
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties $(WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau)$ $(WBF: H \rightarrow WW)/(GF: H \rightarrow WW)...$

Total width

- degeneracy $\sigma BR \propto (g_{\rho}^2/\sqrt{\Gamma_H}) \; (g_d^2/\sqrt{\Gamma_H}) \equiv C > 0$
- inconsistent scaling $C = \lim_{g^2 \to 0} \frac{g^4}{\Gamma_H} = \lim_{g^2 \to 0} \frac{g^4}{g^2(\Gamma_{\text{vis}}/g^2) + \Gamma_x} = 0$

means constraint: $\sum \Gamma_i(g^2) < \Gamma_H \rightarrow \Gamma_H|_{min}$ - *WW* \rightarrow *WW* unitarity: $g_{WWH} \leq g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Higgs couplings

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- $\begin{array}{l} \mbox{ all couplings varied } g_{HXX} = g^{\rm SM}_{HXX} \left(1 + \delta_{HXX}\right) \\ \delta_{HXX} \sim -2 \mbox{ sign flip } {}_{[g_{HWW} > 0 \mbox{ fixed}]} \end{array}$
- loop-induced couplings $g_{ggH}, g_{\gamma\gamma H}$ free?
- likelihood map and local errors from SFitter
- experimental/theory errors on signal and backgrounds [do not ask theorists!]

luminosity measurement	5 %
detector efficiency	2 %
lepton reconstruction efficiency	2 %
photon reconstruction efficiency	2 %
WBF tag-jets / jet-veto efficiency	5 %
b-tagging efficiency	3 %
τ -tagging efficiency (hadronic decay)	3 %
lepton isolation efficiency $(H \rightarrow 4\ell)$	3 %

σ (gluon fusion)	13 %
σ (weak boson fusion)	7 %
σ (VH-associated)	7 %
σ ($t\bar{t}$ -associated)	13 %

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Higgs couplings

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- $\begin{array}{l} \mbox{ all couplings varied } g_{HXX} = g^{\rm SM}_{HXX} \left(1 + \delta_{HXX}\right) \\ \delta_{HXX} \sim -2 \mbox{ sign flip } {}_{[g_{HWW} > 0 \mbox{ fixed}]} \end{array}$
- loop-induced couplings $g_{ggH}, g_{\gamma\gamma H}$ free?
- likelihood map and local errors from SFitter
- experimental/theory errors on signal and backgrounds [do not ask theorists!]
- error bars for Standard Model hypothesis [smeared data point, 30fb⁻¹]

coupling	without eff. couplings		including eff. couplings			
	σ_{symm}	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$	σ_{symm}	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$
δ_{WWH}	± 0.23	- 0.21	+0.26	± 0.24	- 0.21	+0.27
δ_{ZZH}	± 0.50	- 0.74	+0.30	± 0.44	- 0.65	+0.24
$\delta_{t\bar{t}H}$	± 0.41	- 0.37	+0.45	± 0.53	- 0.65	+0.43
$\delta_{b\bar{b}H}$	± 0.45	-0.33	+0.56	± 0.44	-0.30	+0.59
$\delta_{\tau \bar{\tau} H}$	± 0.33	- 0.21	+0.46	± 0.31	- 0.19	+0.46
$\delta_{\gamma\gamma H}$	_	_	_	± 0.31	- 0.30	+0.33
δ_{qqH}	_	_	_	± 0.61	- 0.59	+0.62
m _H	± 0.26	- 0.26	+0.26	± 0.25	- 0.26	+0.25
m _b	± 0.071	- 0.071	+0.071	± 0.071	- 0.071	+0.072
m _t	± 1.00	- 1.03	+0.98	± 0.99	- 1.00	+0.98

Tilman Plehn

Higgs Sector Higgs to botton Markov chains

Higgs sector

WBF-SUSY

Higgs couplings

One-dimensional distributions to check....

1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹] -1 0 1 2 3 -5 -3 -1 1 3 -5 -3 -1 1 3 HWW Hbb Htt -1 0 2 3 -5 -3 -1 1 3 -5 -3 -1 3 1 1 HWW Hbb Htt

Higgs Sector Higgs to botton Markov chains

Higgs sector WBF-SUSY

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]

Higgs Sector Higgs to bottom Markov chains

Higgs sector WBF-SUSY

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- $\label{eq:2-higher luminosity quantitatively different $$ [no effective couplings, 30 vs 300 ~fb^{-1}]$ the second seco$
- 3– but not saving Bayesian statistics $[{\rm no}\ {\rm effective\ couplings,\ 300\ fb^{-1}}]$

Higgs Sector Higgs to bottom Markov chains Higgs sector

WBF-SUSY

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3– but not saving Bayesian statistics $[{\tt no effective couplings, 300 \ fb^{-1}}]$

 \Rightarrow profile likelihood for 30 fb⁻¹, local structures, pretty pictures in backup

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Refining Higgs hypotheses

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter + Bock, P Zerwas]

- looking like fundamental Higgs
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
 - one-parameter fit in SFitter
 - 30 fb⁻¹ and 120 GeV Higgs: $\Delta g/g \sim 10\%$ best around $m_H \sim 160$ GeV: $\Delta g/g \sim 5\%$

-liaas Sector

Higgs to bottom

Markov chains

Higgs sector

WBF-SUSY

Refining Higgs hypotheses

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter + Bock, P Zerwas]

- looking like fundamental Higgs
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
 - one-parameter fit in SFitter
 - 30 fb⁻¹ and 120 GeV Higgs: $\Delta g/g \sim 10\%$ best around $m_H \sim 160$ GeV: $\Delta g/g \sim 5\%$
- 2- gauge couplings $g o g \sqrt{1-\xi}$ Yukawas $g o g(1-2\xi)/\sqrt{1-\xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Higgs to bottom

Markov chains

Higgs sector

WBF-SUSY

Refining Higgs hypotheses

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter + Bock, P Zerwas]

- looking like fundamental Higgs
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
 - one-parameter fit in SFitter
 - 30 fb⁻¹ and 120 GeV Higgs: $\Delta g/g \sim 10\%$ best around $m_H \sim 160$ GeV: $\Delta g/g \sim 5\%$
- 2- gauge couplings $g o g \sqrt{1-\xi}$ Yukawas $g o g(1-2\xi)/\sqrt{1-\xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Higgs portal

- universal scaling $\sqrt{1-\xi}\equiv\cos\chi$
- invisible Higgs decay measurable <code>[Eboli & Zeppenfeld]</code> two-parameter fit Γ_{hid} vs cos χ
- \Rightarrow hypotheses testable with 30 fb⁻¹

Tilman Plehn

- Higgs Sector Higgs to bottom Markov chains
- nggs sector
- WBF-SUSY

Weak boson fusion and supersymmetry

Higgs analysis beyond the Standard Model

- extension of Higgs analysis to BSM scenarios comparison SM-MSSM [no-lose: TP, Rainwater, Zeppenfeld]
- define hypothesis known particles: known corrections new particles: theory error
- general: heavy additional states at one loop example: MSSM sectors Higgs-weak-strong

Technical questions [Hollik, TP, Rauch, Rzehak]

- vertex corrections dominant? [Djouadi & Spira]
- which one larger: QCD vs EW? [similar for Standard Model: Ciccolini, Denner, Dittmaier]
- corrections from Higgs sector? [renormalization scheme/higher orders]
- general phase space generator?
- Germans: we can do 52504 diagrams $\ensuremath{\mbox{[Hadcalc: automized IR-finite one-loop 2 <math display="inline">\rightarrow \ensuremath{\mbox{3]}}$
- \Rightarrow input for MSSM-Higgs analysis

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

WBF-SUSY

Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$

Tilman Plehn

- Higgs Sector Higgs to bottom Markov chains
- WBF-SUSY

Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$

SUSY corrections

- QCD corrections suppressed: color flow and forward jets [no interference, like SM] mass suppression of one-loop $q_L q_L W$ vertex $[1/m_{\tilde{g}}]$ up-down concellation in one-loop duWh vertex $[7_3 - \alpha s_w^2 = -1/3, +5/16]$
- electroweak corrections as expected

diagram	$\Delta\sigma/\sigma$ [%]	diagram	$\Delta\sigma/\sigma$ [%]	
$\Delta \sigma \sim$	$\mathcal{O}(\alpha)$	$\Delta \sigma \sim \mathcal{O}(\alpha_s)$		
self energies	0.199			
qqW + qqZ	-0.392	qqW + qqZ	-0.0148	
qqh	-0.0260	qqh	0.00545	
WWh + ZZh	-0.329			
box	0.0785	box	-0.00518	
pentagon	0.000522	pentagon	-0.000308	

⇒ electroweak corrections dominant

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains Higgs sector

WBF-SUSY

Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$

SUSY corrections

- SPS1b with variable mass scale m_{1/2}
- perfect decoupling at one loop
- typical corrections around 1% maximum corrections below 4%

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains Higgs sector

WBF-SUSY

Outlook

Trying to understand Higgs@LHC

- not a talk about first searches [ask experimenters]
- many LHC search channels, let's see for when
- decay to bottoms part of them
- parameter analysis the final goal
- open questions: jet veto, recoil uncertainties,... not the time for BSM parameter studies let's go and solve real problems!
- \Rightarrow Higgs phenomenology at LHC still progressing

Tilman Plehn

Higgs Sector

Higgs to bottoms

Markov chains

Higgs sector

WBF-SUSY

Tilman Plehn

Higgs Sector Higgs to botton Markov chains

Higgs sector

WBF-SUSY

Analysis errors

Worries about $H
ightarrow \gamma \gamma$ etc [Anastasiou, Dissertori, Grazzini, Stockli, Webber; Anastasiou, Melnikov Petriello]

- used to be easy: double side-bin analysis
- learning from Tevatron $H \rightarrow WW$: $p_{T,H}$, $\phi_{\ell\ell}$ and $N_{\rm jets}$ in NN combine 'slices' of side-bins
- typical tool to improve 3σ to 5σ

- NN training tool for signal/background and theory uncertainties? sensitive to p_T resummation tricky sensitive to first jet challenging sensitive to *n* jets a nightmare

Tilman Plehn

Higgs Sector Higgs to botton Markov chains

Higgs sector

WBF-SUSY

Analysis errors

Worries about $H
ightarrow \gamma
m etc$ [Anastasiou, Dissertori, Grazzini, Stockli, Webber; Anastasiou, Melnikov Petriello]

- used to be easy: double side-bin analysis
- learning from Tevatron $H \rightarrow WW$: $p_{T,H}$, $\phi_{\ell\ell}$ and $N_{\rm jets}$ in NN combine 'slices' of side-bins
- typical tool to improve 3σ to 5σ

- NN training tool for signal/background and theory uncertainties? sensitive to p_T resummation tricky sensitive to first jet challenging sensitive to *n* jets a nightmare

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Analysis errors

Worries about $H \rightarrow \gamma \gamma$ etc [Anastasiou, Dissertori, Grazzini, Stockli, Webber; Anastasiou, Melnikov Petriello]

- used to be easy: double side-bin analysis
- learning from Tevatron $H \rightarrow WW$: $p_{T,H}$, $\phi_{\ell\ell}$ and $N_{\rm jets}$ in NN combine 'slices' of side-bins
- typical tool to improve 3σ to 5σ
- NN training tool for signal/background and theory uncertainties? sensitive to p_T resummation tricky sensitive to first jet challenging sensitive to n jets a nightmare
- combination of scale uncertainties [Tevatron]

$$\frac{\Delta N}{N} = 60\% \cdot \binom{+5\%}{-9\%} + 29\% \cdot \binom{+24\%}{-23\%} + 11\% \cdot \binom{+91\%}{-44\%} = \binom{+20.0\%}{-16.9\%}$$

- adding stat'l significance at high p_T pull degrading from theory error dangerously small individual S/B
- advanced analyses finally getting me scared...

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains

Higgs sector

WBF-SUSY

Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- simple argument
 LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 LHC rate 300% off: Standard Model wrong
- theory likelihood flat centrally and zero far away
- profile likelihood construction: RFit [CKMFitter]

$$\begin{split} &\mathcal{L} \log \mathcal{L} = \chi^2 = \vec{\chi}_d^T \; \mathcal{C}^{-1} \; \vec{\chi}_d \\ &\chi_{d,i} = \begin{cases} 0 & |d_i - \bar{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \bar{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \bar{d}_i| > \sigma_i^{\text{(theo)}} \;, \end{cases} \end{split}$$

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains Higgs sector

WBF-SUSY

Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- profile likelihood construction: RFit [CKMFitter]

$$\begin{aligned} -2\log\mathcal{L} &= \chi^2 = \vec{\chi}_d^T \ \mathcal{C}^{-1} \ \vec{\chi}_d \\ \chi_{d,i} &= \begin{cases} 0 & |d_i - \vec{q}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{q}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}, \end{aligned}$$

(Inconsistent) combination of errors

- Gaussian ⊗ Gaussian: half width added in quadrature Gaussian ⊗ flat: RFit scheme Gaussian ⊗ Poisson: ??
- approximate formula

$$\frac{1}{\log \mathcal{L}_{\text{comb}}} = \frac{1}{\log \mathcal{L}_{\text{Gauss}}} + \frac{1}{\log \mathcal{L}_{\text{Poissor}}}$$

- good to 5% for 5 events with 10% Gaussian

Tilman Plehn

Higgs Sector Higgs to bottoms Markov chains Higgs sector

WBF-SUSY

Pretty colorful pictures

Two-dimensional correlations and effective coupings

 $\begin{array}{l} \mbox{1-} \mbox{ including effective } g_{Hgg} \\ \mbox{ sign of } g_{Htt} \mbox{ fixed by } g_{HWW} > 0 \\ \mbox{ correlation of } g_{Hbb} \mbox{ and } g_{HWW} \mbox{ [loops and width]} \\ g_{Hgg} \mbox{ accessible} \end{array}$

Higgs Sector Higgs to bottoms Markov chains Higgs sector

WBF-SUSY

Pretty colorful pictures

Two-dimensional correlations and effective coupings

 $\begin{array}{l} \mbox{1-} \mbox{ including effective } g_{Hgg} \\ \mbox{ sign of } g_{Htt} \mbox{ fixed by } g_{HWW} > 0 \\ \mbox{ correlation of } g_{Hbb} \mbox{ and } g_{HWW} \quad \mbox{ [loops and width]} \\ g_{Hgg} \mbox{ accessible} \end{array}$

2– only effective $g_{H\gamma\gamma}$

correlated g_{Htt} and g_{HWW} on both branches $g_{H\gamma\gamma}$ structure more complex

3

Tilman Plehn

Higgs Sector Higgs to bottoms Markov chains Higgs sector

WBF-SUSY

Pretty colorful pictures

Two-dimensional correlations and effective coupings

 $\begin{array}{l} \mbox{1-} \mbox{ including effective } g_{Hgg} \\ \mbox{ sign of } g_{Htt} \mbox{ fixed by } g_{HWW} > 0 \\ \mbox{ correlation of } g_{Hbb} \mbox{ and } g_{HWW} \mbox{ [loops and width]} \\ g_{Hgg} \mbox{ accessible} \end{array}$

3

- 2– only effective $g_{H\gamma\gamma}$ correlated g_{Htt} and g_{HWW} on both branches $g_{H\gamma\gamma}$ structure more complex
- 3- both effective couplings discrete structures getting out of hand

Tilman Plehn

Higgs Sector Higgs to botton Markov chains

WBF-SUSY

Unobserved vs invisible

Invisible Higgs

- two channels at LHC
 - $pp \rightarrow qqH$: tagging jets plus nothing [Eboli & Zeppenfeld]
 - $pp \rightarrow ZH$: recoil against nothing [Atlas CSC notes]
- $-g_{inv}$ another parameter

Tilman Plehn

Higgs Sector Higgs to botton Markov chains Higgs sector

WBF-SUSY

Unobserved vs invisible

Invisible Higgs

- two channels at LHC
 - $pp \rightarrow qqH$: tagging jets plus nothing [Eboli & Zeppenfeld]
 - $pp \rightarrow ZH$: recoil against nothing [Atlas CSC notes]
- ginv another parameter

Unobservable Higgs

- unobserved Higgs decay into backgrounds $H \rightarrow$ jets promising, increase g_{Hcc} to simulate naturally occuring in all models [charming buried Higgses]
- see scaled-down couplings

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains Higgs sector

WBF-SUSY

Unobserved vs invisible

Invisible Higgs

- two channels at LHC
 - $pp \rightarrow qqH$: tagging jets plus nothing [Eboli & Zeppenfeld]
 - $pp \rightarrow ZH$: recoil against nothing [Atlas CSC notes]
- ginv another parameter

Unobservable Higgs

- unobserved Higgs decay into backgrounds $H \rightarrow$ jets promising, increase g_{Hcc} to simulate naturally occuring in all models [charming buried Higgses]
- see scaled-down couplings

1– fit only $\Gamma \to \Gamma(1+\Delta_{\Gamma})$

Tilman Plehn

Higgs Sector Higgs to bottom Markov chains Higgs sector

WBF-SUSY

Unobserved vs invisible

Invisible Higgs

- two channels at LHC
 - $pp \rightarrow qqH$: tagging jets plus nothing [Eboli & Zeppenfeld]
 - $pp \rightarrow ZH$: recoil against nothing [Atlas CSC notes]
- ginv another parameter

Unobservable Higgs

- unobserved Higgs decay into backgrounds $H \rightarrow$ jets promising, increase g_{Hcc} to simulate naturally occuring in all models [charming buried Higgses]
- see scaled-down couplings
- 1– fit only $\Gamma \to \Gamma(1+\Delta_{\Gamma})$
- 2– include $\Delta\Gamma$ and fix g_{HWW}

 \Rightarrow not as unobservable as people think...