Higgs decays Higgs tagger

HEPTopTagge

Stop pairs

Leptonic tag

Top and Higgs Tagging and Where it Helps

Tilman Plehn

Universität Heidelberg

Mainz 02/2011

Fat jets

Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Fat jets

. . .

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [YSplitter: Butterworth, Cox, Forsnaw]
- 2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
- 2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]
- 2008 boosted $t \rightarrow 3$ jets from heavy resonances [JH tagger: Kaplan, Rehermann, Schwartz, Tweedie]
- 2009 boosted $t \rightarrow 3$ jets in Higgs production [TP, Salam, Spannowsky]
- 2010 boosted $t \rightarrow 3$ jets from top partners [HEPTopTagger: TP, Spannowsky, Takeuchi, Zerwas]
- 2011 boosted $t \rightarrow j \ell \nu$ from top partners [HEPTopTagger: TP, Spannowsky, Takeuchi]

2010 first multi-author meta analysis review [BOOST proceedings, Ed: Karagoz, Spannowsky, Vos]

Fat jets

Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Fat jets

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [YSplitter: Butterworth, Cox, Forsnaw]
- 2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
- 2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]
- 2008 boosted $t \rightarrow 3$ jets from heavy resonances [JH tagger: Kaplan, Rehermann, Schwartz, Tweedie]
- 2009 boosted $t \rightarrow 3$ jets in Higgs production [TP, Salam, Spannowsky]
- 2010 boosted $t \rightarrow 3$ jets from top partners [HEPTopTagger: TP, Spannowsky, Takeuchi, Zerwas]
- 2011 boosted $t \rightarrow j \ell \nu$ from top partners [HEPTopTagger: TP, Spannowsky, Takeuchi]

2010 first multi-author meta analysis review [BOOST proceedings, Ed: Karagoz, Spannowsky, Vos]

Fat jets

Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Jet Algorithms

Definition of jets

- jet–parton duality \Leftrightarrow what are partons in detector?
- need algorithm to reconstruct what was one parton
- stable w.r.t inclusion of soft radiation [IR save]
- crucial for any LHC analysis

Different measures [tool: FASTJET; ask Hubert]

- define jet-jet and jet-beam distance [and resolution ycut]

$$k_{T} \qquad y_{ij} = \frac{\Delta R_{ij}}{D} \min (p_{T,i}, p_{T,j}) \qquad y_{iB} = p_{T,i}$$

$$C/A \qquad y_{ij} = \frac{\Delta R_{ij}}{D} \qquad y_{iB} = 1$$

$$anti-k_{T} \qquad y_{ij} = \frac{\Delta R_{ij}}{D} \min \left(p_{T,i}^{-1}, p_{T,j}^{-1}\right) \qquad y_{iB} = p_{T,i}^{-1}.$$

- (1) find minimum $y_{\min} = \min_{kl}(y_{kl}, y_{kB})$ (2a) if $y_{\min} = y_{kl} < y_{cut}$ combine k and l, go to (1) (2b) if $y_{\min} = y_{kB} < y_{cut}$ remove k, go to (1) (2c) if $y_{\min} > y_{cut}$, done
- theoretical and experimental trade-off decisions
- fat jets: use clustering history

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 1: $VH, H \rightarrow b\bar{b}$

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter] but killed by continuum Vbb background
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb}\sim 2m_{H}/p_{T}\sim 0.8$ [like *b* tag for now]
- $q ar q o V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 1: $VH, H \rightarrow b\bar{b}$

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter] but killed by continuum Vbb background
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$ [like *b* tag for now]
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- \Rightarrow best performance: C/A algorithm

jet definition	$\sigma_{\mathcal{S}}/fb$	σ_{B} /fb	S/\sqrt{B}_{30}
C/A, R = 1.2	0.57	0.51	4.4
$k_{\perp}, R = 1.0$	0.19	0.74	1.2
SISCone, R = 0.8	0.49	1.33	2.3

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 1: $VH, H \rightarrow b\bar{b}$

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact Dührssen & SFitter] but killed by continuum Vbb background
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$ [like b tag for now]
- $q ar q o V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]
- \Rightarrow best performance: C/A algorithm

Bottom line, details later

- combined channels $V \rightarrow \ell \ell, \nu \nu, \ell \nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- checked by Freiburg [Piquadio] subjet *b* tag excellent [70%/1%] charm rejection challenging $m_H \pm 8 \text{ GeV}$ tough

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$ reconstruction and rate: $\overline{t} \rightarrow \overline{b}W^- \rightarrow \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets idea [TP, Salam, Spannowsky]

- $-pp \rightarrow t_{\ell}t_{h}H_{b}$ even harder than VH
- S/B: R_{bb} < 1.2; $b\bar{b}$ pair boosted [solves 1]
- boosted regime different for S and B [solves 2]
- see how far we get... [watch S/B for 3]
- cool: fat Higgs jet + fat top jet

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\overline{t}b\overline{b}, t\overline{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Another bottom line

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum [costing S/\sqrt{B}] only continuum $t\bar{t}b\bar{b}$ left

per 1 fb ⁻¹	signal	tīZ	tībb	tī+jets
events after acceptance	24.1	6.9	191	4160
events with one top tag	10.2	2.9	70.4	1457
events with m _{bb} = 110 - 130 GeV	2.9	0.44	12.6	116
corresponding to subjet pairings	3.2	0.47	13.8	121
subjet pairings two b tags	1.0	0.08	2.3	1.4
including a third b tag	0.48	0.03	1.09	0.06

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Example 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$ reconstruction and rate: $\overline{t} \rightarrow \overline{b}W^- \rightarrow \overline{b}jj$
- continuum background $t\overline{t}b\overline{b}, t\overline{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp
 ightarrow 4b_{tag}$ 2j $\ell
 u$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Another bottom line

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum [costing S/\sqrt{B}] only continuum $t\bar{t}b\bar{b}$ left

m _H	S	S/B	$S/\sqrt{B}_{100 \text{ fb}^{-1}}$
115	57	1/2.1	5.2 (5.7)
120	48	1/2.4	4.5 (5.1)
130	29	1/3.6	2.9 (3.0)

Fat jets

Higgs decays

Higgs tagger HEPTopTagger Stop pairs

Example 3: $H \rightarrow b\bar{b}$ in SUSY cascades

Higgs in cascade decays [Kribs, Martin, Roy, Spannowsky]

- idea: find Higgs in cascade decays [Cambridge]
- BSM sample after missing energy or hard γ cut
- blind Higgs tag over remaining event [QCD rejection?]
- side bin analysis in m_{bb}
- more to follow ...

Fat jets

Higgs decays

Higgs tagger

IEPTopTagger Stop pairs

Higgs tagger

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$
 - 1– unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2– soft $m_{i_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}
- no mass constraint side bin typical mis-tag probability $< 10^{-5}$
- underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam, of pruning, trimming] zoomed-in C/A analysis with $R_{filt} = min(0.3, R_{bb}/2)$
- reconstruct m_H w/ one QCD jet

Fat jets

Higgs decays

Higgs tagger

HEPTopTagger Stop pairs Leptonic tag

Higgs tagger

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$
 - 1– unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2– soft $m_{i_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}
- no mass constraint side bin typical mis-tag probability $< 10^{-5}$
- underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam, of pruning, trimming] zoomed-in C/A analysis with $R_{filt} = min(0.3, R_{bb}/2)$
- reconstruct m_H w/ one QCD jet

Better than traditional b jets

- no combinatorial choices
- more soft partons included in m_H
- b tagging easier than in continuum
- QCD features useful [Soper & Spannowsky]

Fat jets Higgs decays Higgs tagger HEPTopTagger

Stop pairs

Leptonic tag

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion [Hopkins tagger, no b tag]
- top mass included, no sidebins
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

Fat jets Higgs decays Higgs tagger HEPTopTagger

Stop pairs Leptonic tag

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion [Hopkins tagger, no b tag]
- top mass included, no sidebins
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

Out first top tag [TP, Salam, Spannowsky, Takeuchi]

- start with C/A jet [R = 1.5] [Johns Hopkins]
- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- top decay kinematics in relevant substructures reconstruct $m_W = 60...95 \text{ GeV}$ reconstruct $m_t = 150...200 \text{ GeV}$ helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed

Fat jets Higgs decays Higgs tagger HEPTopTagger

Stop pairs Leptonic tag

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- C/A algorithm with p_T drop criterion [Hopkins tagger, no b tag]
- top mass included, no sidebins
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

Out first top tag [TP, Salam, Spannowsky, Takeuchi]

- start with C/A jet [R = 1.5] [Johns Hopkins]
- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- top decay kinematics in relevant substructures reconstruct $m_W = 60...95 \text{ GeV}$ reconstruct $m_t = 150...200 \text{ GeV}$ helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed
- filtering w/ 2 QCD jets

Fat jets Higgs decays Higgs tagger

HEPTopTagger

Stop pairs

Leptonic tag

HEPTopTagger

Applicable: HEPTopTagger [TP, Salam, Spannowsky, Takeuchi]

- extend lower $p_T\gtrsim$ 250 GeV testable in Standard Model $t\overline{t}$ events

Fat jets Higgs decays Higgs tagger HEPTopTagger

Stop pairs

Leptonic tag

HEPTopTagger

- extend lower $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- new kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no boost]

Fat jets Higgs decays Higgs tagger

HEPTopTagger

Stop pairs

Leptonic tag

HEPTopTagger

- extend lower $p_T\gtrsim 250~{\rm GeV}$ testable in Standard Model $t\bar{t}$ events
- new kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no boost]

Fat jets Higgs decays Higgs tagger HEPTopTagger

Stop pairs

Leptonic tag

HEPTopTagger

- extend lower $p_T \gtrsim 250 \text{ GeV}$ testable in Standard Model $t\bar{t}$ events
- new kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no boost]
- momentum reconstruction for free

Fat jets Higgs decays Higgs tagger HEPTopTagger

Stop pairs

Leptonic tag

HEPTopTagger

- extend lower $p_T\gtrsim$ 250 GeV testable in Standard Model $t\overline{t}$ events
- new kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$ [no boost]
- momentum reconstruction for free
- USE COlor activity [Baryakthar, Hook, Janowiak, Wacker]
- tested by ATLAS Heidelberg [Kasieczka & Schätzel]
- hadronic top like tagged b

		tī		QCD	W+jets	
$p_{T,t}^{\min}$ [GeV]	0	200	300			
one fat jet	100%	100%	100%	100%	100%	
two fat jets	44%	57%	70%	53%	50%	rel to one fat jet
one top tag	23%	37%	51%	2.0%	3.9%	rel to one fat jet
two top tags	2.0%	4.5%	8.5%	0.027%	0.07%	rel to one fat jet
	4.5%	8.0%	12%	0.05%	0.15%	rel to two fat jets

Fat jets Higgs decays Higgs tagger HEPTopTagge

Stop pairs

Leptonic tag

Stops pairs

Stop pairs as the first application [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem [review: Morrissey, TP, Tait] comparison to other top partners [Meade & Reece]
- dark matter means difficult semi-leptonic channel [possibly impossible]
- hadronic: $\tilde{t}\tilde{t}^* \rightarrow t\tilde{\chi}_1^0 \ t\tilde{\chi}_1^0$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]

events in 1 fb-1			Ĩ1	ť* 1			tī		QCD	W+jets	Z+jets		S/B	S/\sqrt{B}_{10}	fb-1
m _{t̃} [GeV]	340	390	440	490	540	640								340	
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	728	447	292	187	124	46	87850	2.4	· 10 ⁷	1.6 · 10 ⁵	n/a	3.0	0.10^{-5}		
$\not\!$	283	234	184	133	93	35	2245	2.4	· 10 ⁵	1710	2240	1.2	$2 \cdot 10^{-3}$		
first top tag	100	91	75	57	42	15	743		7590	90	114	1.2	$2 \cdot 10^{-2}$		
second top tag	15	12.4	11	8.4	6.3	2.3	32		129	5.7	1.4	8.3	$3 \cdot 10^{-2}$		
b tag	8.7	7.4	6.3	5.0	3.8	1.4	19		2.6	$\lesssim 0.2$	≤ 0.05		0.40		5.9
$m_{T2} > 250 \text{GeV}$	4.3	5.0	4.9	4.2	3.2	1.2	4.2	<	5 0.6	$\lesssim 0.1$	$\lesssim 0.03$		0.88		6. 1

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs

Leptonic tag

Stops pairs

Stop pairs as the first application [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem [review: Morrissey, TP, Tait] comparison to other top partners [Meade & Reece]
- dark matter means difficult semi-leptonic channel [possibly impossible]
- hadronic: $\tilde{t}\tilde{t}^* \to t\tilde{\chi}_1^0 \ t\tilde{\chi}_1^0$ [CMS: leptons as spontaneous life guards; Meade & Reece overly optimistic]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]

$$m_{T2}(\hat{m}_{\chi}) = \min_{\not p_{T}=q_{1}+q_{2}} \left[\max_{j} m_{T,j}(q_{j}; \hat{m}_{\chi}) \right]^{!} < m_{\tilde{t}}$$

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector

components $(p_{\nu}^{\parallel}, p_{\nu}^{\perp})$

- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{\parallel} = 0$] [decay plance approx $p_{
u}^{\perp} = 0$]

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane

[orthogonal approx $p_{\nu}^{\parallel} = 0$] [decay plance approx $p_{\nu}^{\perp} = 0$]

- semileptonic top partners at LHC:

At the LHC, combinatorics make it unlikely that we will be able to observe stop pair production with a decay to a semileptonic top pair and missing energy.

[TP, Spannowsky, Takeuchi, Zerwas]

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{\parallel} = 0$] [decay plance approx $p_{
u}^{\perp} = 0$]

- semileptonic top partners at LHC:

At the LHC, combinatorics make it unlikely that we will be able to observe stop pair production with a decay to a semileptonic top pair and missing energy.

[TP, Spannowsky, Takeuchi, Zerwas]

wrong!

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane

semileptonic top partners at LHC:
 use approximate ΔΦ(𝑘_T, 𝑘_t)

[orthogonal approx $p_{
u}^{\parallel} = 0$] [decay plance approx $p_{
u}^{\perp} = 0$]

Fat jets Higgs decays Higgs tagger HEPTopTagge Stop pairs Leptonic tag

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane
- semileptonic top partners at LHC: use approximate $\Delta \Phi(p_T, \hat{p}_t)$
- top partner decays observable

		ort	hogo	nal a	pproxim	ation	decay plane approximation							
	$\tilde{t}_1 \tilde{t}_1^*$			tī	W+jets	S/B	$\tilde{t}_{1} \tilde{t}_{1}^{*}$			tī	W+jets	S/B		
m _j [GeV]	340	440	540	640			440	340	440	540	640			440
15. base cuts	27.38	13.71	6.33	2.89	642.72	2.63	0.021							
approximation	14.81	7.69	3.61	1.66	285.16	1.41	0.027	27.33	13.67	6.31	2.89	642.37	2.63	0.021
7. $p_T^{\text{est}} > 200 \text{GeV}$	8.61	4.53	2.41	1.24	215.62	0.60	0.021	9.13	5.16	2.87	1.61	242.21	0.54	0.021
8. p_T vs. $\Delta \phi$ cut	0.97	1.52	1.23	0.76	0.72	0.02	2.06	1.22	1.82	1.53	1.02	1.31	0.06	1.33

[orthogonal approx $p_{
u}^{\parallel} = 0$] [decay plance approx $p_{
u}^{\perp} = 0$]

Fat jets Higgs decays Higgs tagger HEPTopTagger Stop pairs Leptonic tag

Outlook

Fat jets — Aspirin of LHC phenomenology

- VH: bringing back 2/3 of light Higgses
- $t\bar{t}H$: curing combinatorics and backgrounds
- SUSY cascades: curing lack of analysis idea
- Z' etc: improving mass resolution
- *t*t*: curing backgrounds
- HEPTopTagger code as FASTJET add-on [www.thphys.uni-heidelberg.de/~plehn/HEPTopTagger] implemented and tested by ATLAS, improvements welcome leptonic tagger soon public

LHC lecture notes arXiv:0910.4182 BOOST review arXiv:1012.5412

Stuff Tagging

Tilman Plehn

Fat jets

Higgs decays

Higgs tagger

HEPTopTagger

Stop pairs

Leptonic tag