Jet Scaling

Tilman Plehn

Exclusive jets

Staircase

Jet veto

New physics

From Jet Scaling to Jet Vetos

Tilman Plehn

Heidelberg

Madgraph Meeting, Rome, 9/2011

Exclusive jet counting

Jet Scaling Tilman Plehn

Exclusive jets

- Staircase
- Jet veto
- New physics

Remember qg ightarrow qZ [intro: arXiv:0910.4182, Springer Lecture Notes]

– collinear divergence from g
ightarrow q ar q splitting

$$\int_{\rho_T^{\min}}^{\rho_T^{\max}} dp_T^2 \frac{C}{\rho_T^2} = 2 \int_{\rho_T^{\min}}^{\rho_T^{\max}} dp_T \ p_T \ \frac{C}{\rho_T^2} \simeq 2C \int_{\rho_T^{\min}}^{\rho_T^{\max}} dp_T \frac{1}{p_T} = 2C \ \log \frac{\rho_T^{\max}}{\rho_T^{\min}}$$

universal form following factorization

$$\sigma_{n+1} = \int \sigma_n \; \frac{dp_a^2}{p_a^2} dz \; \frac{\alpha_s}{2\pi} \; \hat{P}(z)$$

- but still divergent, fixed order prediction poorly defined
- find object to 'renormalize' [i.e. absorbe universal divergence]

DGLAP equation and logarithms

- re-organize perturbation series [sum collinear logs]

$$\sigma_{n+1}(x,\mu) \sim \frac{1}{n!} \left(\frac{1}{2\pi b_0} \log \frac{\alpha_s(\mu_0^2)}{\alpha_s(\mu^2)} \right)^n \int_{x_0}^1 \frac{dx_n}{x_n} \hat{P}\left(\frac{x}{x_n}\right) \cdots \int_{x_0}^1 \frac{dx_1}{x_1} \hat{P}\left(\frac{x_2}{x_1}\right) \sigma_1(x_1,\mu_0)$$

- DGLAP equivalent to infrared RGE
- collinear jets included, only jet-inclusive observables

Exclusive jets

- Staircase
- Jet veto
- New physics

Successive radiation

Soft gluon radiation [Peskin & Schroeder]

- example: photons off hard electron only abelian diagrams, successive radiation
- eikonal approximation

$$\mathcal{M}_{n+1} = g_s T^a \epsilon^*_\mu(k) \ \bar{u}(q) rac{q^\mu + \mathcal{O}(k)}{(qk) + \mathcal{O}(k^2)} \ \mathcal{M}_n$$

- factorization of 'hard process' and soft radiation factors
- Poisson distribution [normalized pdf for n if n₀ expected]

$$f(n; n_0) = \frac{n_0^n e^{-n_0}}{n!} \iff \frac{f(n+1; n_0)}{f(n, n_0)} = \frac{n_0}{n+1}$$

Ingredients of Poisson distribution

- radiation matrix element n₀ⁿ: abelian fine, non-abelian fine for leading log
- 2– phase space factor 1/*n*!: only combinatorics effect, matrix element ordered
- 3- normalization factor e^{-n_0} : nothing to worry about...
 - anyone reminded of ISR parton shower?

Exclusive iets

Staircase

Jet veto

New physics

Staircase scaling: W+jets

From UA2 to ATLAS [Steve Ellis, Kleiss, Stirling]

Volume 154B, number 5,6

PHYSICS LETTERS

9 May 1985

W's, Z's AND JETS

S.D. ELLIS^{1,2}, R. KLEISS and W.J. STIRLING

CERN, CH 1211 Geneva 23, Switzerland

Received 24 January 1985

The process $p + \overline{p} \rightarrow W^{\pm}$, Z^0 plus 2 jets is discussed in the context of perturbative QCD. The magnitude of the expected rate for this process and the correlations anticipated between the jets are presented.

Exclusive jet:

Staircase

Jet veto

Staircase scaling: W+jets

From UA2 to ATLAS [Steve Ellis, Kleiss, Stirling]

- exclusive staircase scaling [Berends scaling???]
- many equivalent descriptions

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

Exclusive jets

Staircase

Jet veto

Staircase scaling: W+jets

From UA2 to ATLAS [Steve Ellis, Kleiss, Stirling]

- exclusive staircase scaling [Berends scaling???]
- many equivalent descriptions

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- same for inclusive and exclusive rates

$$\mathbf{R}_{(n+1)/n}^{\mathsf{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}}{\sigma_n^{(\mathsf{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}} = \mathbf{R}_{(n+1)/n}^{\mathsf{excl}}$$

Exclusive jets

Staircase

Jet veto

Staircase scaling: W+jets

From UA2 to ATLAS [Steve Ellis, Kleiss, Stirling]

- exclusive staircase scaling [Berends scaling???]
- many equivalent descriptions

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- same for inclusive and exclusive rates

$$R_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = R_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS and CMS

Exclusive jets

Staircase

Jet veto New physic

Staircase scaling: W+jets

From UA2 to ATLAS [Steve Ellis, Kleiss, Stirling]

- exclusive staircase scaling [Berends scaling???]
- many equivalent descriptions

$$\mathsf{R}_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \mathrm{const}$$

- same for inclusive and exclusive rates

$$\mathbf{R}_{(n+1)/n}^{\mathsf{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}}{\sigma_n^{(\mathsf{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}} = \mathbf{R}_{(n+1)/n}^{\mathsf{excl}}$$

- confirmed by ATLAS and CMS

Simulations with uncertainties [Englert, TP, Schichtel, Schu

- appropriate tool: CKKW/MLM [Sherpa]
- phase space effects? \rightarrow moderate
- α_s uncertainties? \rightarrow small
- scale uncertainties? \rightarrow tuning parameter?
- correctly described by ME-PS merging

Exclusive jets

Staircase

Jet veto New physic

Staircase scaling: W+jets

From UA2 to ATLAS [Steve Ellis, Kleiss, Stirling]

- exclusive staircase scaling [Berends scaling???]
- many equivalent descriptions

$$\mathsf{R}_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \mathrm{const}$$

- same for inclusive and exclusive rates

$$\mathbf{R}_{(n+1)/n}^{\mathsf{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}}{\sigma_n^{(\mathsf{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\mathsf{excl})}} = \mathbf{R}_{(n+1)/n}^{\mathsf{excl}}$$

- confirmed by ATLAS and CMS

Simulations with uncertainties [Englert, TP, Schichtel, Schumann]

- appropriate tool: CKKW/MLM [Sherpa]
- phase space effects? \rightarrow moderate
- α_s uncertainties? \rightarrow small
- scale uncertainties? \rightarrow tuning parameter?
- correctly described by ME-PS merging

Exclusive jets

Staircase

Jet veto

Staircase scaling: QCD jets

Democratic cuts

- absence of 'hard process' important?
- ATLAS/CMS studies available
- α_s uncertainties? \rightarrow small
- scale uncertainties? \rightarrow tuning parameter?
- phase space effects? \rightarrow none
- scaling only from 3 jets
- correctly described by ME-PS merging

Exclusive jets

Staircase

Jet veto

Staircase scaling: QCD jets

Democratic cuts

- absence of 'hard process' important?
- ATLAS/CMS studies available
- α_s uncertainties? \rightarrow small
- scale uncertainties? \rightarrow tuning parameter?
- phase space effects? \rightarrow none
- scaling only from 3 jets
- correctly described by ME-PS merging

Exclusive jets

Staircase

Jet veto New phys

Staircase scaling: Photon plus jets

Ensure scaling properties [Englert, TP, Schichtel, Schumann]

- naively, no scaling observed [CMS, private complaint]
- remove any logarithmic enhancement high separation requirement [compare m and ΔR] democratic γ and jet acceptance
- no phase space effects

- dominant diagram: FSR gluon splitting of single ISR jet

Exclusive jets

Staircase

Jet veto New physics

Staircase scaling: Photon plus jets

Ensure scaling properties [Englert, TP, Schichtel, Schumann]

- naively, no scaling observed [CMS, private complaint]
- remove any logarithmic enhancement high separation requirement [compare m and ΔR] democratic γ and jet acceptance
- no phase space effects
- dominant diagram: FSR gluon splitting of single ISR jet
- best process to test scaling

Exclusive jets

- Staircase
- Jet veto New physic

Staircase scaling: Photon plus jets

Ensure scaling properties [Englert, TP, Schichtel, Schumann]

- naively, no scaling observed [CMS, private complaint]
- remove any logarithmic enhancement high separation requirement [compare m and ΔR] democratic γ and jet acceptance
- no phase space effects
- dominant diagram: FSR gluon splitting of single ISR jet
- best process to test scaling

What about Poisson scaling?

- generate a 'hard process' many options: $m, p_T, \Delta R, ...$
- turns out $p_{T,j_1} > 100 \text{ GeV}$ works best lower standard p_T enhances logarithm
- high-n tail always staircase
- dominant diagram: successive ordered ISR
- scaling either staircase or Poisson and tunable!

Exclusive jets Staircase

Jet veto

Vew physics

Jet veto in Higgs searches

Jet veto as Higgs analysis tool [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals
- remove $t\bar{t}$ and Z+jets backgrounds
- count central (semi-hard) jets apply survival probability

Table C.1: Summary of veto survival probabilities for $p_T^{ueto}=20~{\rm GeV}$ used in Chapters 3-5.

search	H j j	$t\bar{t}$	$t\bar{t}j$,	QCD	EW	QCD	QCD	DPS
			$tar{t}jj$	V(V)jj	V(V)jj	W j j j	$b\bar{b}jj$	$\gamma\gamma j j$
$\gamma\gamma j j$	0.89	-	-	0.30	0.75	-	-	0.30
$W^{(*)}W^{(*)}jj$	0.89	0.46	0.29	0.29	0.75	-	-	-
au au j j	0.87	-	-	0.28	0.80	0.28	0.28	-

Exclusive jets

Jet veto

New physics

Jet veto in Higgs searches

Jet veto as Higgs analysis tool [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals
- remove $t\bar{t}$ and Z+jets backgrounds
- count central (semi-hard) jets apply survival probability
- implicit in LHC Higgs searches individual searches for exclusive fixed n_{iets}
- pressing theory problem

Exclusive jets

Jet veto

New physics

Jet veto in Higgs searches

Jet veto as Higgs analysis tool [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals
- remove $t\bar{t}$ and Z+jets backgrounds
- count central (semi-hard) jets apply survival probability
- implicit in LHC Higgs searches individual searches for exclusive fixed n_{iets}
- pressing theory problem

In terms of jet counting [Gerwick, TP, Schumann]

- avoid survival probability as one number
- study exclusive n_{jets} distribution:
 - 1- predict from theory including error
 - 2- validate by experiments
 - 3- extrapolate to interesting regimes
- understand basic features:
 - staircase scaling for inclusive samples Poisson scaling for hard processes

Exclusive jets

Jet veto

New physics

Jet veto in Higgs searches

Jet veto as Higgs analysis tool [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals
- remove $t\bar{t}$ and Z+jets backgrounds
- count central (semi-hard) jets apply survival probability
- implicit in LHC Higgs searches individual searches for exclusive fixed n_{iets}
- pressing theory problem

In terms of jet counting [Gerwick, TP, Schumann]

- avoid survival probability as one number
- study exclusive n_{jets} distribution:
 - 1- predict from theory including error
 - 2- validate by experiments
 - 3- extrapolate to interesting regimes
- understand basic features: staircase scaling for inclusive samples Poisson scaling for hard processes

	staircase scaling	Poisson scaling
σn	$\sigma_0 e^{-bn}$	$\sigma_{\rm tot} \frac{e^{-n}\bar{n}^n}{n!}$
$R_{(n+1)/n}^{excl}$	e ^{-b}	$\frac{\overline{n}}{n+1}$
$R_{(n+1)/n}^{incl}$	e ^{-b}	$\left(\frac{(n+1)e^{-\bar{n}}\bar{n}^{-(n+1)}}{\Gamma(n+1)-n\Gamma(n,\bar{n})}+1\right)^{-1}$
$\langle n_{\rm jets} \rangle$	$\frac{1}{2} \frac{1}{\cosh b - 1}$	īn
Pveto	$1 - e^{-b}$	e ^{- n}

Exclusive jets

Jet veto

New physics

Jet veto in Higgs searches

Staircase scaling [Gerwick, TP, Schumann]

- example: WBF $H \rightarrow au au$ [plus GF Hjj and Zjj]
- jet scaling before WBF cuts staircase, as expected [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

Exclusive jets Staircase

Jet veto

New physics

Jet veto in Higgs searches

Staircase scaling [Gerwick, TP, Schumann]

- example: WBF $H \rightarrow au au$ [plus GF Hjj and Zjj]
- jet scaling before WBF cuts staircase, as expected [QCD and e-w processes]
 - first emission sensitive to cuts
- e-w Zjj production with too many structures

Poisson scaling

- apply WBF jet cuts [tagging jets] $p_{T,j} > 20 \text{ GeV}$ $|y_j| < 4.5$ $y_1y_2 < 0$ $|y_1 - y_2| > 4.4$ $m_{jj} > 600 \text{ GeV}$
- count add'l jets with: $p_T^{veto} > 20$ GeV, min $y_{1,2} < y^{veto} < \max y_{1,2}$
- kind-of-staircase for e-w processes

Jet veto

Jet veto in Higgs searches

Staircase scaling [Gerwick, TP, Schumann]

- example: WBF $H \rightarrow \tau \tau$ [plus GF Hij and Zij]
- jet scaling before WBF cuts staircase, as expected [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

Poisson scaling

apply WBF jet cuts [tagging jets]

 $p_{T,j} > 20 \text{ GeV} |y_j| < 4.5$ $|y_1 y_2 < 0$ $|y_1 - y_2| > 4.4$ $m_{jj} > 600$ GeV

- count add'l jets with: $p_{\tau}^{\text{veto}} > 20 \text{ GeV}$, min $y_{1,2} < y^{\text{veto}} < \max y_{1,2}$
- kind-of-staircase for e-w processes

Exclusive jets

Jet veto

New physics

Jet veto in Higgs searches

Staircase scaling [Gerwick, TP, Schumann]

- example: WBF $H \rightarrow \tau \tau$ [plus GF Hjj and Zjj]
- jet scaling before WBF cuts staircase, as expected [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

Poisson scaling

- apply WBF jet cuts [tagging jets]

$$p_{T,j} > 20 \text{ GeV}$$
 $|y_j| < 4.5$
 $y_1y_2 < 0$ $|y_1 - y_2| > 4.4$ $m_{jj} > 600 \text{ GeV}$

- count add'l jets with: $p_T^{veto} > 20$ GeV, min $y_{1,2} < y^{veto} < \max y_{1,2}$
- kind-of-staircase for e-w processes
- Poisson for QCD processes

Exclusive jets

Jet veto

New physics

Jet veto in Higgs searches

Staircase scaling [Gerwick, TP, Schumann]

- example: WBF $H \rightarrow au au$ [plus GF Hjj and Zjj]
- jet scaling before WBF cuts staircase, as expected [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

Poisson scaling

- apply WBF jet cuts [tagging jets]

 $p_{T,j} > 20 \text{ GeV}$ $|y_j| < 4.5$ $y_1y_2 < 0$ $|y_1 - y_2| > 4.4$ $m_{ij} > 600 \text{ GeV}$

- count add'l jets with: $p_T^{veto} > 20$ GeV, min $y_{1,2} < y^{veto} < \max y_{1,2}$
- kind-of-staircase for e-w processes
- Poisson for QCD processes
- veto on first jet very efficient against QCD
- inclusive n_{jets} distribution key to predictions
- try it and tell us if we are wrong ...

Exclusive jet Staircase

Jet veto

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $m_{
 m eff} \sim \langle p_T
 angle imes n_{
 m jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and α_s uncertainties

Exclusive jets Staircase Jet veto

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $m_{
 m eff} \sim \langle p_T \rangle imes n_{
 m jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and $\alpha_{\rm s}$ uncertainties
- estimate SUSY significance as function of ment

Exclusive jet: Staircase

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $m_{
 m eff} \sim \langle p_T
 angle imes n_{
 m jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and α_s uncertainties
- estimate SUSY significance as function of ment
- multijet studies helping with meff

Exclusive jets Staircase Jet veto

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $m_{
 m eff} \sim \langle p_T
 angle imes n_{
 m jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and $\alpha_{\rm s}$ uncertainties
- estimate SUSY significance as function of ment
- multijet studies helping with meff

Mass vs color charge

- now, significance as function of n_{jets}

Exclusive jets Staircase Jet veto

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $m_{
 m eff} \sim \langle p_T
 angle imes n_{
 m jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and α_s uncertainties
- estimate SUSY significance as function of $m_{\rm eff}$
- multijet studies helping with meff

Mass vs color charge

- now, significance as function of n_{jets}
- representing new physics color charge gluino does not decay via gluon

- compute exclusive 2D likelihood

- Exclusive jets Staircase Jet veto
- New physics

Understanding many jets

Exclusive jet counting

- either staircase (non-abelian) or Poisson (ordered)
- do not call it Berends scaling [Ellis, Kleiss, Stirling]
- described by ME-PS merging [Sherpa]
- nothing changing with NLO [Blackhat]
- both regimes fully testable at LHC
- photon+jets best laboratory
- key to jet vetos
- key to SUSY signal and backgrounds

Jet Scaling

Tilman Plehn

Exclusive jets Staircase

Jet veto

New physics

New physics at the LHC

								1					
	missing	cascade	mono-	lepton	di-jet	top	WW/ZZ	W'	top	charged	displ.	multi-	spherical
	energy	decays	jets/photon	resnce	resnce	resnce	resnce	resnce	partner	tracks	vertex	photons	events
	(p.89)	(p.91)	(p.15)	(p.109)	(p.109)	(p.120)	(p.15)	(p.93)	(p.116)	(p.123)	(p.123)	(p.29)	(p.47,76)
SUSY (heavy grav.)	11	11							1				
(p.17,26)	v v	• •							v				
SUSY (light grav.)	1	1	(1	1		
(p.17,27)	• •	• •	· ·						v	· ·	· ·		
large extra dim	11		11										1
(p.39)	~ ~		\checkmark										V
universal extra dim	11	11		1	1	1	1	1	1				
(p.47)	v v	• •		v	v	v	v	v	v				
technicolor (vanilla)				1	1		1	11					
(p.51)				~	v	v	v	v v					
topcolor/top seesaw					1	11	1						
(p.53,54)					v	vv	· ·						
little Higgs (w/o T)				1	/	/	1	1					
(p.55,58)				V	V	√	✓	▼					
little Higgs (w T)	11	11	(/	1	1	(1					
(p.55,58)			v 🗸	v	v	v	v 🗸	v	v				
warped extra dim (IR SM)				1	1		1						
(p.61,63)				v	v	v	v 🗸						
warped extra dim (bulk SM)				/	1	11	1	1					
(p.61,64)				~	v	~ ~	v	v					
Higgsless/comp. Higgs				/	1	11	11						
(p.69,73)				v	v	v v	× •						
hidden valleys	1	1		1	1	1		1	1		1	1	
(p.75)	↓ 	✓	↓ ↓	v	~	 ✓ 	✓	↓	√	↓ ✓	▼	~	↓ ↓

[arXiv:0912.3259, Morrissey, TP, Tait]