Tilman Plehn

Where we stand

Where we are going

First steps

In our way

Higgs Couplings from the LHC

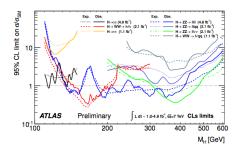
Tilman Plehn

Universität Heidelberg

Aspen, 2/2012

Tilman Plehn

Where we stand


- Where we are going
- First steps
- In our way

Where we stand

Experimental data pre-Moriond

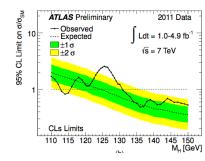
- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong'

[in many channels]

Tilman Plehn

Where we stand

Where we are going


First steps

In our way

Where we stand

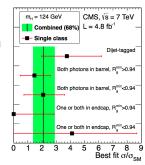
Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations

Tilman Plehn

Where we stand

Where we are going


First steps

In our way

Where we stand

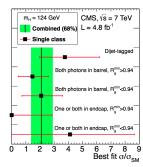
Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$ [Carena, Gori, Shah, Wagner]

Tilman Plehn

Where we stand

Where we are going


First steps

In our way

Where we stand

Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- \Rightarrow convincing case for 'too early for model building'

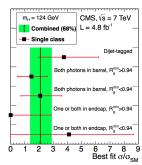
Tilman Plehn

Where we stand

Where we are going

First steps

In our way


Where we stand

Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- \Rightarrow convincing case for 'too early for model building'

If we really want to chase this ambulance...

- Standard Model fine [Lindner, etal] UV/IR fixed points right there [Shaposhnikov & Wetterich]

Tilman Plehn

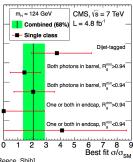
Where we stand

Where we are going

First steps

In our way

Where we stand


Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- ⇒ convincing case for 'too early for model building'

If we really want to chase this ambulance...

- Standard Model fine [Lindner, etal] UV/IR fixed points right there [Shaposhnikov & Wetterich]
- reasonably decoupling theories all fine 0 1 2
 MSSM one example [Heinemeyer, Stal, Weiglein; Draper, Meade, Reece, Shih]

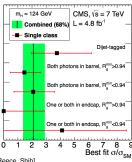
hypersphere in $m_{\tilde{t}_{L/R}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_1}, m_{\tilde{t}_2}) \gtrsim 1]$

Tilman Plehn

Where we stand

Where we are going

First steps


In our way

Where we stand

Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- ⇒ convincing case for 'too early for model building'

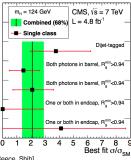
- Standard Model fine [Lindner, etal] UV/IR fixed points right there [Shaposhnikov & Wetterich]
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [Heinemeyer, Stal, Weiglein; Draper, Meade, Reece, Shih] hypersphere in $m_{\tilde{t}_{L/P}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_c}, m_{\tilde{t}_p}) \gtrsim 1]$
- strongly interacting light Higgs fine [Espinosa, Giudice, Grojean, Muhlleitner, Pomarol, Rattazzi]

Tilman Plehn

Where we stand

Where we are going

First steps


In our way

Where we stand

Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- ⇒ convincing case for 'too early for model building'

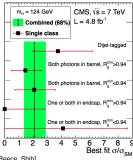
- Standard Model fine [Lindner, etal] UV/IR fixed points right there [Shaposhnikov & Wetterich]
- reasonably decoupling theories all fine MSSM one example [Heinemeyer, Stal, Weiglein; Draper, Meade, Reece, Shih] hypersphere in $m_{\tilde{l}_{L/P}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{l}_{L}},m_{\tilde{l}_{D}})\gtrsim 1]$
- strongly interacting light Higgs fine [Espinosa, Giudice, Grojean, Muhlleitner, Pomarol, Rattazzi]
- Higgs portal fine [Englert, TP, Rauch, Zerwas, Zerwas; Batell, Gori, Wang; Carlos et al; Paddy et al...]

Tilman Plehn

Where we stand

Where we are going

First steps


In our way

Where we stand

Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- ⇒ convincing case for 'too early for model building'

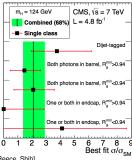
- Standard Model fine [Lindner, etal] UV/IR fixed points right there [Shaposhnikov & Wetterich]
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [Heinemeyer, Stal, Weiglein; Draper, Meade, Reece, Shih] hypersphere in $m_{\tilde{t}_{L/P}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_c}, m_{\tilde{t}_p}) \gtrsim 1]$
- strongly interacting light Higgs fine [Espinosa, Giudice, Grojean, Muhlleitner, Pomarol, Rattazzi]
- Higgs portal fine [Englert, TP, Rauch, Zerwas, Zerwas; Batell, Gori, Wang; Carlos et al; Paddy et al...]
- your favorite Higgs model of course fine...

Tilman Plehn

Where we stand

Where we are going

First steps


In our way

Where we stand

Experimental data pre-Moriond

- ATLAS and CMS results published [ATLAS-CONF-2011-163, CMS-HIG-11-033]
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma\gamma$ [Carena, Gori, Shah, Wagner]
- ⇒ convincing case for 'too early for model building'

- Standard Model fine [Lindner, etal] UV/IR fixed points right there [Shaposhnikov & Wetterich]
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [Heinemeyer, Stal, Weiglein; Draper, Meade, Reece, Shih] hypersphere in $m_{\tilde{t}_{L/P}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_c}, m_{\tilde{t}_p}) \gtrsim 1]$
- strongly interacting light Higgs fine [Espinosa, Giudice, Grojean, Muhlleitner, Pomarol, Rattazzi]
- Higgs portal fine [Englert, TP, Rauch, Zerwas, Zerwas; Batell, Gori, Wang; Carlos et al; Paddy et al...]
- your favorite Higgs model of course fine...
- ⇒ completely justified over-excitement...

Tilman Plehn

Where we stand

Where we are going

First steps

In our way

Our paper for that Wednesday

Impact of current results on a Higgs portal [Englert, Rauch, TP, Zerwas, Zerwas]

- general standard-hidden ansatz [Schabinger & Wells, Patt & Wilzcek,...]

$$H_1 = \cos\chi H_s + \sin\chi H_h$$

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to F]}{\sigma[H_1 \to F]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}} \stackrel{!}{<} \mathcal{R}$$

Tilman Plehn

Where we stand

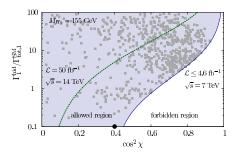
Where we are going

First steps

In our way

Our paper for that Wednesday

Impact of current results on a Higgs portal [Englert, Rauch, TP, Zerwas, Zerwas]


- general standard-hidden ansatz [Schabinger & Wells, Patt & Wilzcek,...]

$$H_1 = \cos\chi H_s + \sin\chi H_h$$

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to F]}{\sigma[H_1 \to F]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}} \stackrel{!}{<} \mathcal{R}$$

– two scenarios: ($m_H =$ 125, $\mathcal{R} \sim$ 1) and ($m_H =$ 155, $\mathcal{R} \sim$ 0.4)

Tilman Plehn

Where we stand

Where we are going

First steps

In our way

Our paper for that Wednesday

Impact of current results on a Higgs portal [Englert, Rauch, TP, Zerwas, Zerwas]

- general standard-hidden ansatz [Schabinger & Wells, Patt & Wilzcek,...]

$$H_1 = \cos\chi H_s + \sin\chi H_h$$

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to F]}{\sigma[H_1 \to F]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}} \stackrel{!}{<} \mathcal{R}$$

– two scenarios: (
$$m_H =$$
 125, $\mathcal{R} \sim$ 1) and ($m_H =$ 155, $\mathcal{R} \sim$ 0.4)

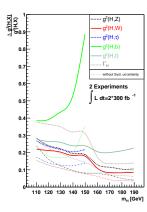
⇒ invisible Higgs needed for final answer [Eboli & Zeppenfeldl, Englert, Jäckel, Re, Spannowsly]

Tilman Plehn

Where we stand

Where we are going

First steps


In our way

Why 125 GeV is just perfect [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.; SFitter 2009]

- Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like operators]

- measurements: $GF : H \rightarrow ZZ, WW, \gamma\gamma$ $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH : H \rightarrow b\bar{b}$ $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

Where we are going

Tilman Plehn

Where we stand

Where we are going

First steps

In our way

Where we are going

Why 125 GeV is just perfect [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.; SFitter 2009]

- Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like operators]

- measurements: $GF : H \rightarrow ZZ, WW, \gamma\gamma$ $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH : H \rightarrow b\bar{b}$ $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings $g_{HXX} = g_{HXX}^{ ext{SM}} \; (1 + \Delta_{HXX}) \; \; \left[g_{HWW} > 0 \; ext{fixed}
 ight]$
- experimental/theoretical errors on signal and backgrounds
- Standard Model hypothesis [30fb⁻¹ at 14 TeV]

coupling	without eff. couplings			including eff. couplings		
	$\sigma_{\sf symm}$	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$	σ_{symm}	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$
Δ_{WWH}	± 0.23	- 0.21	+0.26	± 0.24	- 0.21	+ 0.27
Δ_{ZZH}	± 0.50	- 0.74	+0.30	± 0.44	- 0.65	+ 0.24
$\Delta_{t\bar{t}H}$	± 0.41	- 0.37	+0.45	± 0.53	- 0.65	+ 0.43
$\Delta_{b\bar{b}H}$	± 0.45	- 0.33	+0.56	± 0.44	- 0.30	+ 0.59
$\Delta_{\tau \bar{\tau} H}$	± 0.33	- 0.21	+0.46	± 0.31	- 0.19	+ 0.46
$\Delta_{\gamma\gamma H}$	_	_	_	± 0.31	- 0.30	+ 0.33
Δ_{ggH}	—	_	_	±0.61	- 0.59	+0.62

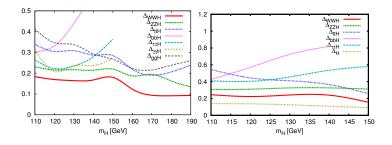
Tilman Plehn

Where we stand

Where we are going

First steps

In our way


Where we are going

Why 125 GeV is just perfect [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.; SFitter 2009]

- Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like operators]
- measurements: $GF : H \rightarrow ZZ, WW, \gamma\gamma$ $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH : H \rightarrow b\bar{b}$ $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings $g_{HXX} = g^{\text{SM}}_{HXX} \left(1 + \Delta_{HXX}
 ight) ~$ [g_{HWW} > 0 fixed]
- experimental/theoretical errors on signal and backgrounds
- Standard Model hypothesis [30fb⁻¹ at 14 TeV, 20fb⁻¹ at 7 TeV,]

Tilman Plehn

Where we stand

Where we are going

First steps

In our way

Where we are going

Why 125 GeV is just perfect [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.; SFitter 2009]

- Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like operators]

- measurements:
$$GF : H \rightarrow ZZ, WW, \gamma\gamma$$

 $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$
 $VH : H \rightarrow b\bar{b}$
 $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

Total width

- myths about scaling

$$N = \sigma BR \propto rac{g_p^2}{\sqrt{\Gamma_{
m tot}}} \; rac{g_d^2}{\sqrt{\Gamma_{
m tot}}} \sim rac{g^4}{g^2 rac{\Gamma_{
m vis}(g^2)}{g^2} + \Gamma_{
m unobs}} \; \stackrel{g^2
ightarrow 0}{
ightarrow 0} = 0$$

gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{tot} \rightarrow \Gamma_H|_{min}$

- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{
 m SM} \rightarrow \Gamma_H |_{
 m max}$ [Falkowski, Rychkov, Urbano]
- assume in SFitter $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]
- \Rightarrow general Higgs couplings to at best 20% from LHC

Tilman Plehn

Where we stand

Where we are going

First steps

In our way

Where we are going

Why 125 GeV is just perfect [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.; SFitter 2009]

- Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like operators]

- measurements:
$$GF : H \rightarrow ZZ, WW, \gamma\gamma$$

 $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$
 $VH : H \rightarrow b\bar{b}$
 $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

Total width

- myths about scaling

$$N = \sigma BR \propto rac{g_p^2}{\sqrt{\Gamma_{
m tot}}} \; rac{g_d^2}{\sqrt{\Gamma_{
m tot}}} \sim rac{g^4}{g^2 rac{\Gamma_{
m vis}(g^2)}{g^2} + \Gamma_{
m unobs}} \; \stackrel{g^2
ightarrow 0}{
ightarrow 0} = 0$$

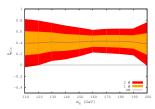
gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{\text{tot}} \to \Gamma_H|_{\text{min}}$

- $WW \rightarrow WW$ unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H |_{max}$ [Falkowski, Rychkov, Urbano]
- assume in SFitter $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]
- ⇒ general Higgs couplings to at best 20% from LHC

boosted channel vital, operators known, assumption about width necessary, linear collider will do better

Tilman Plehn

Where we stand Where we are going


First steps

In our way

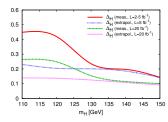
First steps: testing dreams

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter + Bock, P Zerwas]

- looking like fundamental Higgs
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
- one-parameter fit in SFitter essentially Higgs portal without invisible decay
- 30 fb⁻¹ and 120 GeV Higgs: $\Delta g/g \sim 10\%$ best would have been $m_H \sim 160$ GeV: $\Delta g/g \sim 5\%$

Tilman Plehn

Where we stand Where we are going


First steps

In our way

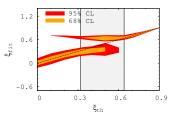
First steps: testing dreams

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter + Bock, P Zerwas]

- looking like fundamental Higgs
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
- one-parameter fit in SFitter essentially Higgs portal without invisible decay
- 30 fb⁻¹ and 120 GeV Higgs: $\Delta g/g \sim 10\%$ best would have been $m_H \sim 160$ GeV: $\Delta g/g \sim 5\%$
- additional channels help [preliminary, ATLAS WW, ZZ, $\gamma \gamma$]

Tilman Plehn

Where we stand Where we are going


First steps

In our way

First steps: testing dreams

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter + Bock, P Zerwas]

- looking like fundamental Higgs
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
- one-parameter fit in SFitter essentially Higgs portal without invisible decay
- 30 fb⁻¹ and 120 GeV Higgs: $\Delta g/g \sim 10\%$ best would have been $m_H \sim 160$ GeV: $\Delta g/g \sim 5\%$
- additional channels help [preliminary, ATLAS WW, ZZ, $\gamma \gamma$]
- 2- gauge couplings $g o g \sqrt{1-\xi}$ Yukawas $g o g(1-2\xi)/\sqrt{1-\xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Tilman Plehn

- Where we stand
- Where we are going
- First steps
- In our way

In the way of Higgs analyses

Problems in Higgs sector analyses

- 1- pile-up in Higgs analyses nothing I can do
- 2– channels for *bbH* and *ttH* couplings Higgs and top tagging: tools in good hands [HEPTopTagger]
- 3– $N^\infty LO$ cross section predictions too hard for me, ask Matthias
- 4- cuts on recoil jets, jet vetos triggered during Aspen 2011, now ready

Tilman Plehn

Where we stand Where we are going

First steps

In our way

In the way of Higgs analyses

Higgs searches vs number of recoil jets?? [Englert, Gerwick, TP, Schichtel, Schumann]

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- 'A jet or not a jet' ill defined in perturbative QCD [fiducial volume vs soft/collinear]
- \Rightarrow study two types of n_{jets} distributions

Tilman Plehn

Where we stand Where we are going

First steps

In our way

In the way of Higgs analyses

Higgs searches vs number of recoil jets?? [Englert, Gerwick, TP, Schichtel, Schumann]

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- 'A jet or not a jet' ill defined in perturbative QCD [fiducial volume vs soft/collinear]
- \Rightarrow study two types of n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron $\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$ 1- radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color] 2- phase space factor 1/n! [only combinatorics effect, matrix element ordered]
 - 3– normalization factor $e^{-\bar{n}}$

Tilman Plehn

Where we stand Where we are going

First steps

In our way

In the way of Higgs analyses

Higgs searches vs number of recoil jets?? [Englert, Gerwick, TP, Schichtel, Schumann]

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- 'A jet or not a jet' ill defined in perturbative QCD [fiducial volume vs soft/collinear]
- \Rightarrow study two types of n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron $\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$ 1- radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color]
 - 2-phase space factor 1/n! [only combinatorics effect, matrix element ordered]

3– normalization factor
$$e^-$$

Staircase scaling [Steve Ellis, Kleiss, Stirling]

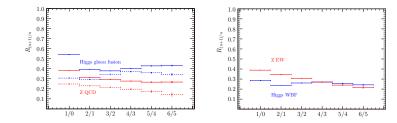
- observed since UA2
- same for inclusive and exclusive rates

$$\mathbf{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \mathbf{R}_{(n+1)/n}^{\text{excl}} = \text{const}$$

Tilman Plehn

Where we stand

Where we are going


First steps

In our way

Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Gerwick, TP, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

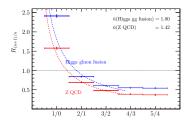
Tilman Plehn

Where we stand

Where we are going

First steps

In our way


Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Gerwick, TP, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

WBF cuts: two forward tagging jets

- count add'l jets to reduce backgrounds
 - $p_T^{\text{veto}} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$
- Poisson for QCD processes ['radiation' pattern]

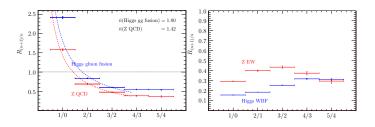
Tilman Plehn

Where we stand

- Where we are going
- First steps
- In our way

Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Gerwick, TP, Schumann]

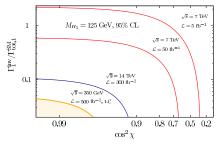

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

WBF cuts: two forward tagging jets

count add'l jets to reduce backgrounds

 $p_T^{\text{veto}} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]
- (fairly) staircase for e-w processes [cuts keeping signal]
- n_{jets} distributions understood


Tilman Plehn

- Where we stand
- Where we are going
- First steps
- In our way

Outlook

Confirming Higgs@LHC

- not a talk about first searches [ask experimenters]
- coupling analysis the main goal
- list of issues statistial setup reliable boosted channels needed and on track jet counting/vetos understood
- \Rightarrow case for a 250 GeV linear collider

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work

Bundesministerium für Bildung und Forschung

Tilman Plehn

Where we stand

Where we are going

First steps

In our way