Jet	Sca	lling
-----	-----	-------

Tilman Plehn

Counting jet:

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

From Jet Scaling to Jet Vetos

Tilman Plehn

Heidelberg

ATLAS Higgs-Tau Workshop, 3/2012

Counting jets

- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplin
- N.

Jet counting

Why count jets

- complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus \vec{p}_T]
- utilize tagging and recoil jets in Higgs searches
- reduce $t\bar{t}$ and $\tilde{g}\tilde{g}$ backgrounds
- identify decay jets in BSM searches
- $\Rightarrow d\sigma/dn_{\text{jets}}$ just another distribution to cut on?

Counting jets

- Poisson
- Staircase
- nterpolating
- Jet veto
- Higgs coupling
- New physics

Jet counting

Why count jets

- complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus \vec{p}_T]
- utilize tagging and recoil jets in Higgs searches
- reduce $t\bar{t}$ and $\tilde{g}\tilde{g}$ backgrounds
- identify decay jets in BSM searches
- $\Rightarrow d\sigma/dn_{\text{jets}}$ just another distribution to cut on?

Why not [intro: arXiv:0910.4182, Springer Lecture Notes]

- remember $qg \rightarrow qZ$
- collinear divergence from g
 ightarrow q ar q splitting [overlapping with soft divergence]

$$\int_{\rho_T^{\min}}^{\rho_T^{\max}} dp_T^2 \frac{C}{p_T^2} = 2 \int_{\rho_T^{\min}}^{\rho_T^{\max}} dp_T \ p_T \ \frac{C}{p_T^2} \simeq 2C \int_{\rho_T^{\min}}^{\rho_T^{\max}} dp_T \frac{1}{p_T} = 2C \ \log \frac{\rho_T^{\max}}{\rho_T^{\min}}$$

universal form following factorization

$$\sigma_{n+1} = \int \sigma_n \; \frac{dp_a^2}{p_a^2} dz \; \frac{\alpha_s}{2\pi} \; \hat{P}(z)$$

- universally divergent, fixed order poorly defined
- ⇒ find object to 'renormalize' [i.e. absorbe universal divergence]

Counting jets

- Poisson
- Staircase
- nterpolating
- Jet veto
- Higgs couplin
- New physics

Jet counting

Why count jets

- complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus \vec{p}_T]
- utilize tagging and recoil jets in Higgs searches
- reduce $t\bar{t}$ and $\tilde{g}\tilde{g}$ backgrounds
- identify decay jets in BSM searches
- $\Rightarrow d\sigma/dn_{\text{jets}}$ just another distribution to cut on?

DGLAP equation and jet-inclusive rates

- re-organize perturbation series [sum collinear logs]

$$\sigma_{n+1}(x,\mu) \sim \frac{1}{n!} \left(\frac{1}{2\pi b_0} \log \frac{\alpha_s(\mu_0^2)}{\alpha_s(\mu^2)} \right)^n \int_{x_0}^1 \frac{dx_n}{x_n} \hat{P}\left(\frac{x}{x_n}\right) \cdots \int_{x_0}^1 \frac{dx_1}{x_1} \hat{P}\left(\frac{x_2}{x_1}\right) \sigma_1(x_1,\mu_0)$$

- DGLAP equivalent to 'infrared RGE'
- factorization scale as inclusive momentum cutoff [vanishing at all orders]

$$\sigma_{\text{tot}}(\mu) = \int_0^1 dx_1 \int_0^1 dx_2 \sum_{ij} f_i(x_1, \mu) f_j(x_2, \mu) \hat{\sigma}_{ij}(x_1 x_2 S, \mu)$$

 \Rightarrow collinear jets automatically included [veto on hard jets ok only if $p_{T,j}^{\max} >$ hard scale]

Counting jets

- Poisson
- Staircase
- nterpolating
- Jet veto
- Higgs couplin
- New physics

Jet counting

Why count jets

- complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus \vec{p}_T]
- utilize tagging and recoil jets in Higgs searches
- reduce $t\bar{t}$ and $\tilde{g}\tilde{g}$ backgrounds
- identify decay jets in BSM searches
- $\Rightarrow d\sigma/dn_{\text{jets}}$ just another distribution to cut on?

DGLAP equation and jet-inclusive rates

- re-organize perturbation series [sum collinear logs]

$$\sigma_{n+1}(x,\mu) \sim \frac{1}{n!} \left(\frac{1}{2\pi b_0} \log \frac{\alpha_s(\mu_0^2)}{\alpha_s(\mu^2)} \right)^n \int_{x_0}^1 \frac{dx_n}{x_n} \hat{P}\left(\frac{x}{x_n}\right) \cdots \int_{x_0}^1 \frac{dx_1}{x_1} \hat{P}\left(\frac{x_2}{x_1}\right) \sigma_1(x_1,\mu_0)$$

- DGLAP equivalent to 'infrared RGE'
- factorization scale as inclusive momentum cutoff [vanishing at all orders]

$$\sigma_{\text{tot}}(\mu) = \int_0^1 dx_1 \int_0^1 dx_2 \sum_{ij} f_i(x_1, \mu) f_j(x_2, \mu) \hat{\sigma}_{ij}(x_1 x_2 S, \mu)$$

 $\Rightarrow \text{ collinear jets automatically included} \quad [veto on hard jets ok only if <math>\rho_{T,j}^{max} > hard scale]$ $\Rightarrow \text{ but still...}$

Counting jets

Poisson

- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Poisson scaling

Theory: soft gluon radiation [Peskin & Schroeder Ch 6]

- example: photons off hard electron only abelian diagrams, successive radiation
- eikonal approximation

$$\mathcal{M}_{n+1} = g_s T^a \epsilon^*_{\mu}(k) \ \bar{u}(q) \frac{q^{\mu} + \mathcal{O}(k)}{(qk) + \mathcal{O}(k^2)} \ \mathcal{M}_n$$

- factorization of 'hard process' and soft radiation factors
- Poisson distribution [normalized pdf for n if n expected]

$$\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \qquad \Longleftrightarrow \qquad \boxed{R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}}$$

Basis of Poisson distribution

- $\begin{array}{ll} \mbox{1-} \mbox{radiation matrix element } \bar{n}^n \\ \mbox{abelian fine, non-abelian a little tricky} & {}_{\mbox{[ISR-FSR, see loffe, Fadin, Lipatov]} \end{array} \\ \end{array}$
- 2- phase space factor 1/n!: only combinatorics, matrix element ordered [angular ordering, color suppression]
- 3– normalization factor $e^{-\bar{n}}$
 - just like parton shower in collinear regime

Tilman Plehn

Counting jets

Staircase

Interpolating

Jet veto

Higgs couplin

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

Volume 154B, number 5,6

PHYSICS LETTERS

9 May 1985

W's, Z's AND JETS

S.D. ELLIS^{1,2}, R. KLEISS and W.J. STIRLING CERN. CH 1211 Geneva 23, Switzerland

Received 24 January 1985

The process $p + \bar{p} \rightarrow W^{\pm}$, Z^0 plus 2 jets is discussed in the context of perturbative QCD. The magnitude of the expected rate for this process and the correlations anticipated between the jets are presented.

Jet Scaling Staircase scaling

Counting jets

Poisson

Staircase

- Interpolating
- Jet veto
- Higgs couplings
- New physics

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

- W/Z+jets production
- many equivalent descriptions

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

Counting jets

Staircase

- Interpolating
- Jet veto
- Higgs couplings
- New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

- W/Z+jets production
- many equivalent descriptions

$$R_{(n+1)/n} = rac{\sigma_{n+1}}{\sigma_n} = ext{const}$$

- same for inclusive and exclusive rates [Blackhat-Sherpa]

$$\mathbf{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \mathbf{R}_{(n+1)/n}^{\text{excl}}$$

Counting jets

Staircase

- Interpolating
- Jet veto
- Higgs couplings
- New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

- W/Z+jets production
- many equivalent descriptions

$$R_{(n+1)/n} = rac{\sigma_{n+1}}{\sigma_n} = ext{const}$$

- same for inclusive and exclusive rates [Blackhat-Sherpa]

$$\boldsymbol{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \boldsymbol{R}_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS/CMS

Counting jets

Staircase

- Interpolating
- Jet veto
- Higgs couplings
- New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

- W/Z+jets production
- many equivalent descriptions

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- same for inclusive and exclusive rates [Blackhat-Sherpa]

$$\boldsymbol{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \boldsymbol{R}_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS/CMS

Theoretical studies [Englert, TP, Schichtel, Schumann]

- CKKW/MLM merging [we used Sherpa]
- phase space effects? \rightarrow moderate
- α_s uncertainties? \rightarrow small
- scale uncertainties? → tuning parameter?

Counting jets

Staircase

- Interpolating
- Jet veto
- Higgs couplings
- New physics

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

- W/Z+jets production

Staircase scaling

- many equivalent descriptions

$$R_{(n+1)/n} = \frac{\sigma_{n+1}}{\sigma_n} = \text{const}$$

- same for inclusive and exclusive rates [Blackhat-Sherpa]

$$\boldsymbol{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \boldsymbol{R}_{(n+1)/n}^{\text{excl}}$$

- confirmed by ATLAS/CMS

Theoretical studies [Englert, TP, Schichtel, Schumann]

- CKKW/MLM merging [we used Sherpa]
- phase space effects? \rightarrow moderate
- α_s uncertainties? \rightarrow small
- scale uncertainties? → tuning parameter?
- same for QCD jets
- correctly described by ME-PS merging!?

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplir
- New physics

Interpolating scaling patterns

Scaling for photon plus jets [Englert, TP, Schichtel, Schumann]

- naively, no scaling at all [CMS, private complaint]
- after appropriate cuts, great playground
- 1- staircase

 $\begin{array}{l} \text{democratic } \gamma \text{ and jet acceptance} \\ \text{large } \gamma \text{-jet separation} \quad [m \text{ or } \Delta \textit{R}, \text{ no large logs}] \\ \text{no reason for ordered emission} \quad [1 / nt \text{ in Poisson form}] \end{array}$

dominant: non-abelian splitting of ISR gluon helping: pdf effect shifting to high-n_{jets}

- Counting jet:
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplin
- New physics

Interpolating scaling patterns

Scaling for photon plus jets [Englert, TP, Schichtel, Schumann]

- naively, no scaling at all [CMS, private complaint]
- after appropriate cuts, great playground
- 1- staircase

democratic γ and jet acceptance large γ -jet separation [m or ΔR , no large logs] no reason for ordered emission [1/n] in Poisson form]

dominant: non-abelian splitting of ISR gluon helping: pdf effect shifting to high-n_{jets}

2- Poisson

generate 'hard process' $[m, p_T, \Delta R, ...]$ lower general p_T^{min} for soft-collinear logarithm rely on lot-enhanced radiation

dominant: successive ordered ISR remaining: high-*n* staircase tail

 \Rightarrow staircase–Poisson transition tunable!

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals [remove tt and Z+jets backgrounds]
- veto central (semi-hard) jets estimate P_{veto} apply as 'efficiency factor'

Table C.1: Summary of veto survival probabilities for $p_T^{reto} = 20$ GeV used in Chapters 3-5.

search	Hjj	$t\bar{t}$	$t\bar{t}j$,	QCD	EW	QCD	QCD	DPS
			$t\bar{t}jj$	V(V)jj	V(V)jj	W j j j	bībjj	$\gamma\gamma j j$
γγjj	0.89	-	-	0.30	0.75	-	-	0.30
$W^{(*)}W^{(*)}jj$	0.89	0.46	0.29	0.29	0.75	-	-	-
$\tau \tau j j$	0.87	-	-	0.28	0.80	0.28	0.28	-

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals [remove tt and Z+jets backgrounds]
- veto central (semi-hard) jets estimate P_{veto} apply as 'efficiency factor'
- implicit in LHC Higgs searches individual searches for exclusive fixed n_{iets}
- problem in Higgs phenomenology [mine for more than 10 years]

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals [remove tt and Z+jets backgrounds]
- veto central (semi-hard) jets estimate P_{veto} apply as 'efficiency factor'
- implicit in LHC Higgs searches individual searches for exclusive fixed n_{iets}
- problem in Higgs phenomenology [mine for more than 10 years]

Using jet counting [Gerwick, TP, Schumann]

- avoid Pveto as single number
- study exclusive n_{jets} distribution:
 - understand basic features: staircase for inclusive samples Poisson for radiation processes
 - 2- predict from theory [including error]
 - 3- validate simulation
 - 4- estimate alowed parameter range
 - 5- extrapolate to Higgs

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

- particularly useful for WBF signals [remove tt and Z+jets backgrounds]
- veto central (semi-hard) jets estimate P_{veto} apply as 'efficiency factor'
- implicit in LHC Higgs searches individual searches for exclusive fixed n_{iets}
- problem in Higgs phenomenology [mine for more than 10 years]

Using jet counting [Gerwick, TP, Schumann]

- avoid Pveto as single number
- study exclusive n_{jets} distribution:
 - 1– understand basic features: staircase for inclusive samples Poisson for radiation processes
 - 2- predict from theory [including error]
 - 3– validate simulation
 - 4- estimate alowed parameter range
 - 5- extrapolate to Higgs

_			
		staircase scaling	Poisson scaling
	ση	$\sigma_0 e^{-bn}$	$\sigma_{\text{tot}} = \frac{e^{-\bar{n}}\bar{n}^n}{n!}$
	R ^{excl} (n+1)/n	e ^{-b}	$\frac{\overline{n}}{n+1}$
	R ^{incl} (n+1)/n	e ^{-b}	$\left(\frac{(n+1)e^{-\bar{n}}\bar{n}^{-(n+1)}}{\Gamma(n+1)-n\Gamma(n,\bar{n})}+1\right)^{-1}$
	$\langle n_{\rm jets} \rangle$	$\frac{1}{2} \frac{1}{\cosh b - 1}$	n
	P _{veto}	1 - e ^{-b}	e ^{- n}

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Jet veto in Higgs searches

Example: WBF $H \rightarrow \tau \tau$ [Gerwick, TP, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings

Jet veto in Higgs searches

Example: WBF $H \rightarrow \tau \tau$ [Gerwick, TP, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

Forward tagging jets

- count add'l veto jets to reduce backgrounds

 $p_T^{veto} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{veto} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings New physics

Jet veto in Higgs searches

Example: WBF $H \rightarrow au au$ [Gerwick, TP, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- first emission sensitive to cuts
- e-w Zjj production with too many structures

Forward tagging jets

- count add'l veto jets to reduce backgrounds

 $p_T^{\text{veto}} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]
- staircase-like for e-w processes [generic]
- features of n_{iets} distributions understood
- \Rightarrow cut on n_{jets} fine, your job now

Tilman Plehn

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

- theory: Higgs portal? [φ[†]φ gauge singlet] γγH and ggH couplings w/o naive decoupling SUSY or strongly interacting Higgs simple coupling measurements
- experiment: Higgs decays to fermions crucial associated Higgs-jet channels/WBF crucial
- current observables: $\sigma \times BR$ more relevant: g_{ijH}

Higgs couplings

Tilman Plehn

- Counting jet:
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

- theory:
 Higgs portal? [φ[†]φ gauge singlet]
 γγH and ggH couplings w/o naive decoupling
 SUSY or strongly interacting Higgs simple coupling measurements
- experiment: Higgs decays to fermions crucial associated Higgs-jet channels/WBF crucial
 - current observables: σ × BR more relevant: g_{jjH}

Dedicated parameter analysis in progress [SFitter+Dührssen, Klute]

$$g_{jj extsf{H}} = g_{jj extsf{H}}^{ extsf{SM}} \left(1 + \Delta_{j}
ight)$$

- prelim: SM central values, proper errors
- pre-Moriond

Tilman Plehn

- Counting jet:
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

- theory:
 Higgs portal? [φ[†]φ gauge singlet]
 γγH and ggH couplings w/o naive decoupling
 SUSY or strongly interacting Higgs simple coupling measurements
- experiment:
 Higgs decays to fermions crucial associated Higgs-jet channels/WBF crucial
 - current observables: $\sigma \times BR$ more relevant: g_{jjH}

Dedicated parameter analysis in progress [SFitter+Dührssen, Klute]

$$g_{jjH}=g_{jjH}^{ ext{SM}}\left(1+\Delta_{j}
ight)$$

- prelim: SM central values, proper errors
- pre-Moriond end of 2012

Tilman Plehn

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings

Higgs couplings

- Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]
 - theory: Higgs portal? [$\phi^{\dagger} \phi$ gauge singlet] $\gamma \gamma H$ and ggH couplings w/o naive decoupling SUSY or strongly interacting Higgs simple coupling measurements
 - experiment: Higgs decays to fermions crucial associated Higgs-jet channels/WBF crucial
 - current observables: $\sigma \times BR$ more relevant: g_{jjH}

Dedicated parameter analysis in progress [SFitter+Dührssen, Klute]

$$g_{jjH}=g_{jjH}^{ ext{SM}}\left(1+\Delta_{j}
ight)$$

- prelim: SM central values, proper errors
- pre-Moriond end of 2012 assuming $m_H = 125 \text{ GeV}$

Tilman Plehn

- Counting jet
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

- theory: Higgs portal? [$\phi^{\dagger} \phi$ gauge singlet] $\gamma \gamma H$ and *ggH* couplings w/o naive decoupling SUSY or strongly interacting Higgs simple coupling measurements
- experiment: Higgs decays to fermions crucial associated Higgs-jet channels/WBF crucial
- current observables: $\sigma \times BR$ more relevant: g_{jjH}

Higgs couplings

Dedicated parameter analysis in progress [SFitter+Dührssen, Klute]

$$g_{jjH}=g_{jjH}^{ ext{SM}}\left(1+\Delta_{j}
ight)$$

- prelim: SM central values, proper errors
- pre-Moriond end of 2012 assuming $m_H = 125 \text{ GeV}$
- \Rightarrow LHC task for coming years

- Counting je Poisson
- Staircase
- Interpolating
- Jet veto
- 001 1010
- Higgs couplings
- New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $\textit{m}_{eff} \sim \langle \textit{p}_T
 angle imes \textit{n}_{jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and α_s uncertainties

- Counting je Poisson
- Staircase
- Interpolating
- Jet veto
- Hiaas coupline

```
New physics
```

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $\textit{m}_{eff} \sim \langle \textit{p}_T \rangle \times \textit{n}_{jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and $\alpha_{\rm s}$ uncertainties
- estimate SUSY significance as function of m_{eff}

- Counting je Poisson
- Staircase
- Interpolating
- Jet veto
- Higas couplin
- New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $\textit{m}_{eff} \sim \langle \textit{p}_T
 angle imes \textit{n}_{jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and α_s uncertainties
- estimate SUSY significance as function of $m_{\rm eff}$
- multijet studies establishing meff

- Counting jet Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

- obviously sensitive to new physics masses but awful variable, after theory uncertainty
- correlation $\textit{m}_{eff} \sim \langle \textit{p}_T
 angle imes \textit{n}_{jets}$
- use merged sample for $m_{\rm eff}$ estimate scale and α_s uncertainties
- estimate SUSY significance as function of $m_{\rm eff}$
- multijet studies establishing m_{eff}

Mass vs color charge

- now, significance as function of n_{jets}
- representing new physics color charge [gluino does not decay via gluon]
- exclusive 2D likelihood including all information

- Counting je
- Poisson
- Staircase
- Interpolating
- Jet veto
- Higgs couplings
- New physics

Exclusive jet counting

staircase (non-abelian) vs Poisson (ordered)

- start by measuring $d\sigma/dn_{\rm jets}$
- test both regimes in photon+jets
- test ME-PS merging [CKKW/MLM, unchanged by NLO]
- key to jet vetos
- key to coupling measurements [SFitter+friends]

Understanding Jet Scaling and Jet Vetos in Higgs Searches E Gerwick, TP, S Schumann PRL 108 (2012)

Establishing Jet Scaling Patterns with a Photon C Englert, TP, P Schichtel, S Schumann arXiv:1108.5473, JHEP in print

Jets plus Missing Energy with an Autofocus C Englert, TP, P Schichtel, S Schumann PRD83 (2011)

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work

Bundesministerium für Bildung und Forschung