Tilman Plehn

Fat jets

Analyses

Higgs tagger

HEPTopTagger

Higgs couplings

Top and Higgs Tagging

Tilman Plehn

Universität Heidelberg

Bonn 06/2012

Tilman Plehn

Fat jets

- Analyses Higgs tagger HEPTopTagger
- Higgs couplings

Fat jets

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow 2$ jets from strongly interacting WW [YSplitter: Butterworth, Cox, Forshaw]

- 2008 boosted $t \rightarrow 3$ jets from heavy resonances [JH tagger: Kaplan, Rehermann, Schwartz, Tweedie]
- 2009 boosted $t \rightarrow 3$ jets in Higgs production [TP, Salam, Spannowsky]
- 2010 boosted $t \rightarrow 3$ jets from top partners [HEPTopTagger: TP, Spannowsky, Takeuchi, Zerwas]
- 2011 boosted $t \rightarrow j \ell \nu$ from top partners [HEPTopTagger]
 - • •

2010 first multi-author meta analysis review [BOOST proceedings, Ed: Karagoz, Spannowsky, Vos]

•••

- 2011 boosted $t \rightarrow j \ell \nu$ from top partners [HEPTopTagger]
- 2011 improvements for ATLAS-Heidelberg [HEPTopTagger; Kasieczka, Schätzel, Schöning]
- 2011 pedagogical review of top taggers [TP, Spannowsky]
- 2012 stop searches at 8 TeV [HEPTopTagger]

Tilman Plehn

Fat jets

- Analyses Higgs tagge
- HEPTopTagger

Fat jets

Boosted particles at the LHC

- 1994 boosted $W \rightarrow 2$ jets from heavy Higgs [Seymour]
- 1994 boosted $t \rightarrow 3$ jets [Seymour]
- 2002 boosted $W \rightarrow$ 2 jets from strongly interacting WW [YSplitter: Butterworth, Cox, Forshaw]
- 2006 boosted $t \rightarrow 3$ jets from heavy resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
- 2008 boosted $H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]
- 2008 boosted $t \rightarrow 3$ jets from heavy resonances [JH tagger: Kaplan, Rehermann, Schwartz, Tweedie]
- 2009 boosted $t \rightarrow 3$ jets in Higgs production [TP, Salam, Spannowsky]
- 2010 boosted $t \rightarrow 3$ jets from top partners [HEPTopTagger: TP, Spannowsky, Takeuchi, Zerwas]
- 2011 boosted $t \rightarrow j \ell \nu$ from top partners [HEPTopTagger]
 - ...

2010 first multi-author meta analysis review [BOOST proceedings, Ed: Karagoz, Spannowsky, Vos]

```
•••
```

- 2011 boosted $t \rightarrow j \ell \nu$ from top partners [HEPTopTagger]
- 2011 improvements for ATLAS-Heidelberg [HEPTopTagger; Kasieczka, Schätzel, Schöning]
- 2011 pedagogical review of top taggers [TP, Spannowsky]
- 2012 stop searches at 8 TeV [HEPTopTagger]

Tilman Plehn

Fat jets

- Analyses Higgs tagg
- HEPTopTagger
- Higgs couplings

Jet Algorithms

Definition of jets

- jet-parton duality \Leftrightarrow what are partons in detector?
- need algorithm to reconstruct what was one parton [IR save recombination algos]
- crucial for any LHC analysis

Different measures [FASTJET: Cacciari, Salam, Soyez]

- define jet-jet and jet-beam distance [and resolution ycut]

$$k_{T} \qquad y_{ij} = \frac{\Delta R_{ij}}{D} \min (p_{T,i}, p_{T,j}) \qquad y_{iB} = p_{T,i}$$

$$C/A \qquad y_{ij} = \frac{\Delta R_{ij}}{D} \qquad y_{iB} = 1$$

$$anti-k_{T} \qquad y_{ij} = \frac{\Delta R_{ij}}{D} \min \left(p_{T,i}^{-1}, p_{T,j}^{-1}\right) \qquad y_{iB} = p_{T,i}^{-1}.$$

- (1) find minimum $y_{\min} = \min_{kl}(y_{kl}, y_{kB})$ (2a) if $y_{\min} = y_{kl} < y_{cut}$ combine k and l, go to (1) (2b) if $y_{\min} = y_{kB} < y_{cut}$ remove k, go to (1) (2c) if $y_{\min} > y_{cut}$, done
- theoretical and experimental trade-off decisions
- fat jets: use clustering history

Tilman Plehn

Fat jets

Analyses

- Higgs tagger HEPTopTagger
- Higgs couplings

Analysis 1: $VH, H \rightarrow b\bar{b}$

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact SFitter-Higgs] but killed by continuum Vbb background
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb}\sim 2m_{H}/p_{T}\sim 0.8$ [like *b* tag for now]
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T} \gtrsim$ 300 GeV, few % of total rate]

Tilman Plehn

Fat jets

Analyses

- Higgs tagger HEPTopTagger
- Higgs couplings

Analysis 1: $VH, H \rightarrow b\bar{b}$

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact SFitter-Higgs] but killed by continuum Vbb background
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb}\sim 2m_{H}/p_{T}\sim 0.8$ [like *b* tag for now]
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T} \gtrsim$ 300 GeV, few % of total rate]
- \Rightarrow best performance: C/A algorithm

jet definition	$\sigma_S/{\rm fb}$	$\sigma_{B}/{\rm fb}$	S/\sqrt{B}_{30}
C/A, R = 1.2	0.57	0.51	4.4
$k_{\perp}, R = 1.0$	0.19	0.74	1.2
SISCone, R = 0.8	0.49	1.33	2.3

Tilman Plehn

Fat jets

Analyses

- Higgs tagger HEPTopTagger
- Higgs couplings

Analysis 1: $VH, H \rightarrow b\bar{b}$

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- desperately needed [2/3 of all light Higgses; impact SFitter-Higgs] but killed by continuum Vbb background
- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: go for large m_{bb} and small R_{bb} , so boost Higgs
- fat Higgs jet $R_{bb}\sim 2m_H/p_T\sim 0.8$ [like b tag for now]
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- \Rightarrow best performance: C/A algorithm

Bottom line, details later

- combined channels $V \to \ell \ell, \nu \nu, \ell \nu$
- NLO rates [bbV notorious, not from data alone]
- Z peak as sanity check
- checked by Freiburg [Piquadio] subjet *b* tag excellent [70%/1%] charm rejection challenging $m_H \pm 8$ GeV tough

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger

Analysis 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+ \nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\overline{t}b\overline{b}, t\overline{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger Higgs couplings

Analysis 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+ \nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\overline{t}b\overline{b}, t\overline{t}jj$ [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets idea [TP, Salam, Spannowsky]

- S/B: $R_{bb} < 1.2$; $b\bar{b}$ pair boosted [solves 1]
- boosted regime different for S and B [solves 2]
- see how far we get... [watch S/B for 3]
- cool: fat Higgs jet + fat top jet

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger Higgs couplings

Analysis 2: $t\bar{t}H, H \rightarrow b\bar{b}$

Sad story of $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn study, CMS-TDR even worse]

- trigger: $t \to bW^+ \to b\ell^+ \nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Bottom line, details later

- require tagged top and Higgs trigger on lepton
- remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD 3rd *b* tag in continuum [costing S/\sqrt{B}] only continuum $t\bar{t}b\bar{b}$ left

per 1 fb	signal	tīZ	tītbb	tt+jets
after acceptance	24.1	6.9	191	4160
one top tag	10.2	2.9	70.4	1457
m _{bb} window	2.9	0.44	12.6	116
two subjet b tags	1.0	0.08	2.3	1.4
third b tag	0.48	0.03	1.09	0.06

Tilman Plehn

Fat jets

Analyses

- Higgs tagger
- HEPTopTagger
- Higgs couplings

Analysis 3: stop pairs

Stop pairs including reconstruction [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem comparison to other top partners [Meade & Reece]

per 1 fb			ĩ ₁ ĩ	:* 1			tī	QCE	D W+jets	<i>Z</i> +jets	S/B	$S/\sqrt{B}_{10 \text{ fb}}-1$
m _ĩ [GeV]	340	390	440	490	540	640						340
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	728	447	292	187	124	46	87850	2.4 · 10	′1.6 · 10 ⁵	n/a	3.0 · 10 ⁻⁵	5
∉ _T > 150 GeV	283	234	184	133	93	35	2245	2.4 · 10 ⁵	5 1710	2240	1.2 · 10-3	3
first top tag	100	91	75	57	42	15	743	7590) 90) 114	$ 1.2 \cdot 10^{-2}$	2
second top tag	15	12.4	11	8.4	6.3	2.3	32	129	9 5.7	' 1.4	8.3 · 10 ⁻²	2
b tag	8.7	7.4	6.3	5.0	3.8	1.4	19	2.0	$5 \le 0.2$	$2 \leq 0.05$	0.40	5.9
$m_{T2} > 250 \text{GeV}$	4.3	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	6 ≲ 0.1	$\lesssim 0.03$	0.88	6. 1

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger Higgs couplings

Analysis 3: stop pairs

Stop pairs including reconstruction [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem comparison to other top partners [Meade & Reece]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]

$$m_{T2}(\hat{m}_{\chi}) = \min_{\substack{\phi_T = q_1 + q_2}} \left[\max_j m_{T,j}(q_j; \hat{m}_{\chi}) \right] \stackrel{!}{<} m_{\tilde{t}}$$

 \Rightarrow hadronic search as easy as $b\bar{b} + \not\!\!\! E_T$

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger Higgs couplings

Analysis 3: stop pairs

Stop pairs including reconstruction [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem comparison to other top partners [Meade & Reece]
- hadronic: $\tilde{t}\tilde{t}^* \rightarrow t \tilde{\chi}_1^0 \ \bar{t} \tilde{\chi}_1^0$ [CMS: leptons as spontaneous life guards]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]

$$m_{T2}(\hat{m}_{\chi}) = \min_{p_{T}=q_{1}+q_{2}} \left[\max_{j} m_{T,j}(q_{j}; \hat{m}_{\chi}) \right]^{!} < m_{\tilde{t}}$$

 \Rightarrow hadronic search as easy as $b\bar{b} + \not\!\!\! E_T$

Stop searches in 2012 [TP, Spannowsky, Takeuchi; Chicago, Hopkins,...]

- 1- two top tags: rate limited, really only for 14 TeV
- 2– top tag plus on bottom tag: better, but still no 5σ for 2012
- 3– top tag plus lepton: even better, maybe 5σ in 2012

per 1 fb	$\tilde{t}\tilde{t}^*$				tī	tīZ	W+jets	$S/B S/\sqrt{B}_{10\text{fb}-1}$		
m _ĩ	350	400	450	500					400	
ℓ and fat jet	145	76.5	40.6	22.1	$2.4 \cdot 10^{4}$	3.21	$3.7 \cdot 10^{4}$			
$\vec{p}_T > 100 \text{ GeV}$	104	61.5	34.8	19.5	5631	2.20	8547			
$n_{\rm tag} = 1$	13.1	9.02	5.80	3.60	789	0.33	80.5	0.01	1.0	
$m_T > 150 \text{ GeV}$	4.63	4.27	3.25	2.19	3.28	0.10	0.99	1.0	6.5	

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger Higgs couplings

Analysis 3: stop pairs

Stop pairs including reconstruction [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem comparison to other top partners [Meade & Reece]
- hadronic: $\tilde{t}\tilde{t}^* \to t \tilde{\chi}_1^0 \ \bar{t} \tilde{\chi}_1^0$ [CMS: leptons as spontaneous life guards]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]

$$m_{T2}(\hat{m}_{\chi}) = \min_{p_{T}'=q_{1}+q_{2}} \left[\max_{j} m_{T,j}(q_{j}; \hat{m}_{\chi}) \right] \stackrel{!}{<} m_{\tilde{t}}$$

 \Rightarrow hadronic search as easy as $b\bar{b} + \not\!\!\! E_T$

Stop searches in 2012 [TP, Spannowsky, Takeuchi; Chicago, Hopkins,...]

- 1- two top tags: rate limited, really only for 14 TeV
- 2– top tag plus on bottom tag: better, but still no 5σ for 2012
- 3– top tag plus lepton: even better, maybe 5σ in 2012
- 4– two leptons: magic cut $m_{T2}^{\ell\ell}$

per 1 fb	Ĩť.	*	tī	tīΖ	S/B	$S/\sqrt{B}_{10\text{fb}}-1$
m _ĩ	350 400	450 500				400
$n_\ell = 2$	31.0 14.3	7.07 3.58	7651	n.a.		
<i>i</i> ∕¢ _T > 100 GeV	19.0 9.99	5.40 2.94	1313	0.35		
$m_{T2}^{\ell\ell} > 100 \mathrm{GeV}$	6.05 4.30	2.70 1.65	0.65	0.09	5.8	15.8

Tilman Plehn

Fat jets

Analyses

Higgs tagger HEPTopTagger Higgs couplings

Analysis 3: stop pairs

Stop pairs including reconstruction [TP, Spannowsky, Takeuchi, Zerwas]

- stop crucial for hierarchy problem comparison to other top partners [Meade & Reece]
- stop mass from m_{T2} endpoint [like sleptons or sbottoms]

$$m_{T2}(\hat{m}_{\chi}) = \min_{\not p_T = q_1 + q_2} \left[\max_j m_{T,j}(q_j; \hat{m}_{\chi}) \right] \stackrel{!}{<} m_{\tilde{t}}$$

 \Rightarrow hadronic search as easy as $b\bar{b} + \not\!\!\! E_T$

Stop searches in 2012 [TP, Spannowsky, Takeuchi; Chicago, Hopkins,...]

- 1- two top tags: rate limited, really only for 14 TeV
- 2– top tag plus on bottom tag: better, but still no 5σ for 2012
- 3– top tag plus lepton: even better, maybe 5σ in 2012
- 4– two leptons: magic cut $m_{T2}^{\ell\ell}$
- \Rightarrow there is hope!

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Higgs tagger

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- − uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1− unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2− soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}
- $-\,$ no mass constraint side bin typical mis-tag probability $< 10^{-5}$
- underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam, of pruning, trimming] zoomed-in C/A analysis with $R_{\text{filt}} = \min(0.3, R_{bb}/2)$
- reconstruct m_H w/ one QCD jet

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Higgs tagger

Higgs tag for busy QCD environment [BDRS; TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double *b* tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}
- $-\,$ no mass constraint side bin typical mis-tag probability $< 10^{-5}$
- underlying event and pileup deadly filter reconstruction jets [Butterworth-Salam, of pruning, trimming] zoomed-in C/A analysis with $R_{\text{filt}} = \min(0.3, R_{bb}/2)$
- reconstruct m_H w/ one QCD jet

Better than traditional b jets

- no combinatorial choices
- more soft partons included in m_H
- b tagging easier than in continuum
- QCD features useful [Soper & Spannowsky]

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim$ 800 GeV isolation and *b* tagging challenging
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

- start with C/A jet [R = 1.5]
- − uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1− unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2− soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- 1- reconstruct $m_W = 60...95$ GeV reconstruct $m_t = 150...200$ GeV helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed
- 2– HEPTopTagger for $t\bar{t}$ [TP, Salam, Spannowsky, Takeuchi] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim$ 800 GeV isolation and *b* tagging challenging
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

- start with C/A jet [R = 1.5]
- − uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1− unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2− soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- 1- reconstruct $m_W = 60...95$ GeV reconstruct $m_t = 150...200$ GeV helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed
- 2– HEPTopTagger for $t\bar{t}$ [TP, Salam, Spannowsky, Takeuchi] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim 800~{\rm GeV}$ isolation and b tagging challenging
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

- start with C/A jet [R = 1.5]
- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- 1- reconstruct $m_W = 60...95$ GeV reconstruct $m_t = 150...200$ GeV helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed
- 2– HEPTopTagger for $t\bar{t}$ [TP, Salam, Spannowsky, Takeuchi] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$
 - momentum reconstruction for free

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim$ 800 GeV isolation and *b* tagging challenging
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

- start with C/A jet [R = 1.5]
- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- 1- reconstruct $m_W = 60...95$ GeV reconstruct $m_t = 150...200$ GeV helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed
- 2– HEPTopTagger for $t\bar{t}$ [TP, Salam, Spannowsky, Takeuchi] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$
 - momentum reconstruction for free

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Top tagger

Highly boosted top quarks [Kaplan, Rehermann, Schwartz, Tweedie; Princeton, Seattle...]

- identify hadronic tops with $p_T\gtrsim$ 800 GeV isolation and *b* tagging challenging
- ATLAS studies for semileptonic top pairs [adapted Y-splitter, full sim, ATLAS-2010-008]

- start with C/A jet [R = 1.5]
- − uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1− unbalanced $m_{j_1} > 0.8m_j$ means QCD; discard j_2 2− soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- 1- reconstruct $m_W = 60...95$ GeV reconstruct $m_t = 150...200$ GeV helicity angle $\cos \theta_{t,j_1} > 0.7$ no *b* tag needed
- 2– HEPTopTagger for $t\bar{t}$ [TP, Salam, Spannowsky, Takeuchi] kinematic selection: $m_{jjj}, m_{jj}^{(1)}, m_{jj}^{(2)}$
 - momentum reconstruction for free
- \Rightarrow hadronic top like tagged b [used by ATLAS-HD]

Tilman Plehn

Fat jets

Analyses

Higgs tagger

HEPTopTagger

Higgs couplings

Higgs 2011 and beyond

Why a 125 GeV Higgs needs SFitter [Zeppenfeld et al; Dührssen et al; SFitter 2009 & 2012]

- many parameters: Higgs couplings to $W, Z, t, b, au + (g, \gamma)$ [SM-like operators]

$$g_{Hxx}\equiv g_x=g_x^{\mathrm{SM}}~(1+\Delta_x)$$

- many measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [already 2011] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [mostly 2012] $VH: H \rightarrow b\bar{b}$ [tagger, 2014] $t\bar{t}H: H \rightarrow \gamma\gamma, b\bar{b}$ [tagger, 2014]

Tilman Plehn

Fat jets

Analyses

Higgs tagger

HEPTopTagger

Higgs couplings

Higgs 2011 and beyond

Why a 125 GeV Higgs needs SFitter [Zeppenfeld et al; Dührssen et al; SFitter 2009 & 2012]

- many parameters: Higgs couplings to $W, Z, t, b, au + (g, \gamma)$ [SM-like operators]

$$g_{Hxx}\equiv g_x=g_x^{\mathrm{SM}}~(1+\Delta_x)$$

- many measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [already 2011] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [mostly 2012] $VH: H \rightarrow b\bar{b}$ [tagger, 2014] $t\bar{t}H: H \rightarrow \gamma\gamma, b\bar{b}$ [tagger, 2014]

Global view of 2011 data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

 is there a SM-like solution? are there alternative solutions (no bbH measurement)?

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Higgs 2011 and beyond

Why a 125 GeV Higgs needs SFitter [Zeppenfeld et al; Dührssen et al; SFitter 2009 & 2012]

– many parameters: Higgs couplings to $\textit{W},\textit{Z},t,\textit{b},\tau+(\textit{g},\gamma)$ [SM-like operators]

$$g_{H_{XX}} \equiv g_{\scriptscriptstyle X} = g_{\scriptscriptstyle X}^{\sf SM} ~(1+\Delta_{\scriptscriptstyle X})$$

- many measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [already 2011] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [mostly 2012] $VH: H \rightarrow b\bar{b}$ [tagger, 2014] $t\bar{t}H: H \rightarrow \gamma\gamma, b\bar{b}$ [tagger, 2014]

Global view of 2011 data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions (no bbH measurement)?
- (1) expected 2011: SM central values, measured error bars
 - large-coupling solution separable

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Higgs 2011 and beyond

Why a 125 GeV Higgs needs SFitter [Zeppenfeld et al; Dührssen et al; SFitter 2009 & 2012]

– many parameters: Higgs couplings to $\textit{W},\textit{Z},t,\textit{b},\tau+(\textit{g},\gamma)$ [SM-like operators]

$$g_{H_{XX}} \equiv g_{\scriptscriptstyle X} = g_{\scriptscriptstyle X}^{\sf SM} ~(1+\Delta_{\scriptscriptstyle X})$$

- many measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [already 2011] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [mostly 2012] $VH: H \rightarrow b\bar{b}$ [tagger, 2014] $t\bar{t}H: H \rightarrow \gamma\gamma, b\bar{b}$ [tagger, 2014]

Global view of 2011 data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions (no bbH measurement)?
- (1) expected 2011: SM central values, measured error bars
 - large-coupling solution separable
- (2) measured 2011: measured central values and error bars
 - solutions overlapping

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger

Higgs couplings

Higgs 2011 and beyond

Local view of 2011 data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- focus on SM solution where possible
- five couplings from data
 - $g_W \sim 0$ while $g_Z > 0$ g_b through total width g_b and g_t hurt by secondary solution g_{τ} inconclusive g_g and g_{γ} requiring $t\bar{t}H$ analysis
- poor man's analysis great: $\Delta_j \equiv \Delta_H$

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger

Higgs couplings

Higgs 2011 and beyond

Local view of 2011 data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- focus on SM solution where possible
- five couplings from data
 - $g_W \sim 0$ while $g_Z > 0$ g_b through total width
 - g_b and g_t hurt by secondary solution g_{τ} inconclusive
 - g_g and g_γ requiring $t\bar{t}H$ analysis
- poor man's analysis great: $\Delta_j \equiv \Delta_H$

2012, 2014, etc

- specifially Higgs:
 - dark side of the Higgs portal? new states in effective couplings?
- 2012: meaningful WBF measurements g_W and g_{τ} accessible
- 2014: $t\bar{t}H$ and $H \rightarrow b\bar{b}$ measurements g_g and g_γ accessible
- ⇒ exciting prospects!

Tilman Plehn

- HEPTopTagger

Higgs couplings

Outlook

Fat jets — the most QCD fun in a long time

- VH: bringing back 2/3 of light Higgses
- $t\bar{t}H$: curing combinatorics and backgrounds
- impact on Higgs coupling analysis obvious [SFitter]
- $\tilde{t}\tilde{t}^*$: curing backgrounds
- Z': improving mass resolution ...
- HEPTopTagger code as FASTJET add-on [www.thphys.uni-heidelberg.de/~plehn/HEPTopTagger] implemented and tested by ATLAS, improvements welcome

Notes on LHC physics: Springer and arXiv:0910.4182

Some of this work was funded by the BMBF Theorie-Verbund which is great for LHC phenomenology

esministerium

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Crucial: dealing with pileup

Filtering [BDRS, also used in HEPTopTagger]

- designed for C/A algorithm
- reduce effective fat-jet area zoom in on relevant final subjets
- number of jets and size negotiable

Pruning [Ellis, Vermillion, Walsh]

- designed for k_T algorithm
- extract relevant collinear splittings in splitting history
- soft/collinearity condition negotiable

Trimming [Krohn, Thaler, Wang]

- designed for anti- k_T algorithm
- remove soft fat jet regions [inverse to filtering] slightly different interpretation for k_T algo
- filtering + pruning useful [Spannowsky & Soper]
- should we use more/less of the clustering history?
- and can we do this with pileup?

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane components $(p_{\nu}^{\parallel}, p_{\nu}^{\perp})$

[orthogonal approx $p_{\nu}^{\parallel} = 0$] [decay plance approx $p_{\nu}^{\perp} = 0$]

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: *E_b*, *E_ℓ*, *m_{bℓ}* [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{\parallel}=0$] [decay plance approx $p_{
u}^{\perp}=0$]

- semileptonic top partners at LHC:

At the LHC, combinatorics make it unlikely that we will be able to observe stop pair production with a decay to a semileptonic top pair and missing energy.'

[TP, Spannowsky, Takeuchi, Zerwas]

Tilman Plehn

Fat jets

- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: $E_b, E_\ell, m_{b\ell}$ [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates leading in $b - \ell$ direction sub-leading in $b - \ell$ decay plane sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{\parallel}=0$] [decay plance approx $p_{
u}^{\perp}=0$]

- semileptonic top partners at LHC:

At the LHC, combinatorics make it unlikely that we will be able to observe stop pair production with a decay to a semileptonic top pair and missing energy.'

[TP, Spannowsky, Takeuchi, Zerwas]

wrong!

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: $E_b, E_\ell, m_{b\ell}$ [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane

- semileptonic top partners at LHC: use approximate $\Delta \Phi(p_T, \hat{p}_t)$ [orthogonal approx $p_{\nu}^{\parallel} = 0$] [decay plance approx $p_{\nu}^{\perp} = 0$]

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

Leptonic top tag

Leptonic tag [Thaler & Wang; Rehermann & Tweedie; TP, Spannowsky, Takeuchi]

- known: masses of top decay products unknown: 3-momentum of neutrino measured: $E_b, E_\ell, m_{b\ell}$ [rest frame]
- W and t mass constraints third parameter elsewhere do not use measured p_T vector
- neutrino coordinates
 leading in b − ℓ direction
 sub-leading in b − ℓ decay plane
 sub-leading orthogonal to decay plane

[orthogonal approx $p_{
u}^{\parallel}=0$] [decay plance approx $p_{
u}^{\perp}=0$]

- semileptonic top partners at LHC: use approximate $\Delta \Phi(p_T, \hat{p}_t)$
- top partner decays observable

		ort	hogo	nal a	pproxim	ation	decay plane approximation							
		$\tilde{t}_1 \tilde{t}_1$	ĸ		tī	W+jets	S/B		τ ₁ τ.	*		tī	W+jets	S/B
m _ĩ [GeV]	340	440	540	640			440	340	440	540	640			440
15. base cuts	27.38	13.71	6.33	2.89	642.72	2.63	0.021							
approximation	14.81	7.69	3.61	1.66	285.16	1.41	0.027	27.33	13.67	6.31	2.89	642.37	2.63	0.021
7. $p_T^{\text{est}} > 200 \text{GeV}$	8.61	4.53	2.41	1.24	215.62	0.60	0.021	9.13	5.16	2.87	1.61	242.21	0.54	0.021
8. p_T' vs. $\Delta \phi$ cut	0.97	1.52	1.23	0.76	0.72	0.02	2.06	1.22	1.82	1.53	1.02	1.31	0.06	1.33

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger

Higgs couplings

SFitter: Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- simple argument
 LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 LHC rate 300% off: Standard Model wrong
- theory likelihood flat centrally and zero far away
- profile likelihood construction: RFit [CKMFitter]

$$2 \log \mathcal{L} = \chi^2 = \vec{\chi}_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \bar{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \bar{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \bar{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

SFitter: Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- profile likelihood construction: RFit [CKMFitter]

$$-2 \log \mathcal{L} = \chi^2 = \vec{\chi}_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Combination of errors

- Gaussian ⊗ Gaussian: half width added in quadrature Gaussian/Poisson ⊗ flat: RFit scheme Gaussian ⊗ Poisson: ??
- approximate formula

$$\frac{1}{\log \mathcal{L}_{\text{comb}}} = \frac{1}{\log \mathcal{L}_{\text{Gauss}}} + \frac{1}{\log \mathcal{L}_{\text{Poisson}}}$$

- modified Minuit gradient fit last step

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

SFitter: Markov chains

Cooling Markov chains [Lafaye, TP, Rauch, Zerwas]

- zoom in on peak structures [inspired by simulated annealing]
- modified condition
 Markov chain in 100 partitions, numbered by j

 $rac{p(m')}{p(m)} > r^{rac{100}{jc}}$ with $c \sim 10,$ $r \in [0, 1]$ random number

- check for parameter coverage with many Markov chains
- \Rightarrow exclusive likelihood map first result

Tilman Plehn

- Fat jets
- Analyses
- Higgs tagger
- HEPTopTagger
- Higgs couplings

SFitter: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of m_t extraction]
- two ways to marginalize likelihood map
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians

Tilman Plehn

- HEPTopTagger
- Higas couplings

SFitter: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of mt extraction]
- two ways to marginalize likelihood map _
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians
- 2- profile likelihood $\mathcal{L}(.., x_{j-1}, x_{j+1}...) \equiv \max_{x_j} \mathcal{L}(x_1, ..., x_n)_{so}$ no integration needed no noise accumulation not normalized, no comparison of structures classical example: best-fit point
 - one-dimensional parameter distributions second target

(E