Tilman Plehn

Where we stand

Where we are going

Markov chains

Errors

SFitter

After Moriono

Hypotheses

To do

Measuring Higgs Couplings

Tilman Plehn

Universität Heidelberg

Eugene, 4/2012

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong'

[in many channels]

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Livesterer
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma \gamma$

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

If we really want to chase this ambulance...

Standard Model fine
 UV/IR fixed points right there

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [tons of papers] hypersphere in $m_{\tilde{t}_{L/R}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_i}, m_{\tilde{t}_2}) \gtrsim 1]$

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [tons of papers] hypersphere in $m_{\tilde{t}_{L/R}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_i}, m_{\tilde{t}_2}) \gtrsim 1]$
- strongly interacting light Higgs fine

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [tons of papers] hypersphere in $m_{\tilde{t}_{L/R}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_t}, m_{\tilde{t}_0}) \gtrsim 1]$
- strongly interacting light Higgs fine
- Higgs portal fine

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [tons of papers] hypersphere in $m_{\tilde{t}_{L/R}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_t}, m_{\tilde{t}_0}) \gtrsim 1]$
- strongly interacting light Higgs fine
- Higgs portal fine
- your Higgs model of course fine [except for Graham's]

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: 'exclusion gone wrong' [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H
 ightarrow \gamma \gamma$
- \Rightarrow way too early for model building

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine 0 1 2 3 4 5 MSSM one example [tons of papers] hypersphere in $m_{\tilde{t}_{L/R}}$, tan β , A_t , μ , m_A predicting little $[x_t^2/(m_{\tilde{t}_t}, m_{\tilde{t}_0}) \gtrsim 1]$
- strongly interacting light Higgs fine
- Higgs portal fine
- your Higgs model of course fine [except for Graham's]
- \Rightarrow but Graham wants technical details [skipping references, wrote the talk on plane]

Tilman Plehn

Where we stand

Where we are going

Markov chains

Errors

SFitter

After Moriond

Hypotheses

To do

Where we are going

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures self coupling out of reach [Baur et al]
- production & decay combinations

 \leftrightarrow

signal × trigger backgrounds Gauss/Poisson statistics systematics theory errors

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hupothoooo
- To do

Where we are going

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures self coupling out of reach [Baur et al]
- production & decay combinations

signal × trigger backgrounds Gauss/Poisson statistics systematics theory errors

Why 125 GeV is just perfect [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- parameters: Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like D4 operators]

$$\begin{array}{l} g_{HXX} = g_{HXX}^{SM} \ (1 + \Delta_X) \qquad g_{HWW} > 0 \\ \text{- measurements: } GF : H \rightarrow ZZ, WW, \gamma\gamma \\ WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau \\ VH : H \rightarrow b\bar{b} \\ t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b} \end{array}$$

⇒ perfect application for SFitter

Tilman Plehn

Where we stand Where we are going

Markov chains

- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Markov chains

Probability maps [statistics questions go to Kyle]

- honest LHC parameters: weak-scale Lagrangean [Higgs, MSSM, dark matter,...]
- likelihood map: data given a model $p(d|m) \sim |\mathcal{M}|^2(m)$
- Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [p(d) normalization, p(m) prejudice]

Markov chains

- problem in grid: huge phase space, find local best points? problem in fit: domain walls, find global best points?
- construct 'representative' poll
- classical: representative set of spin states compute average energy on this reduced sample
- BSM or Higgs: map p(d|m) of parameter points evaluate whatever you want
- Metropolis-Hastings starting probability p(d|m) vs suggested probability p(d|m')1- accept new point if p(d|m') > p(d|m)
 - 2- or accept with p(d|m')/p(d|m) < 1

Tilman Plehn

Where we stand Where we are going

Markov chains

- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

SFitter 1: Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

F

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Tilman Plehn

Where we stand Where we are going

Markov chains

- Errors
- SFitter
- After Moriond
- Hypothosos
- To do

SFitter 1: Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Cooling Markov chains [Lafaye, TP, Rauch, Zerwas]

- zoom in on peak structures [inspired by simulated annealing]

modified condition Markov chain in 100 partitions, numbered by j

 $\frac{p(m')}{p(m)} > r^{\frac{100}{j c}} \qquad \text{with} \quad c \sim 10, \qquad r \in [0, 1] \quad \text{random number}$

- check for parameter coverage with many Markov chains

 \Rightarrow exclusive likelihood map first result

Tilman Plehn

Where we stand Where we are going

Markov chains

Errors

SFitter

After Moriond

To do

SFitter 2: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of m_t extraction]
- two ways to marginalize likelihood map
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians

Tilman Plehn

Where we stand Where we are going

Markov chains

Errors

SFitter

- After Moriond
- Llumetheese

To do

SFitter 2: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of m_t extraction]
- two ways to marginalize likelihood map
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians
- 2- profile likelihood $\mathcal{L}(.., x_{j-1}, x_{j+1}...) \equiv \max_{x_j} \mathcal{L}(x_1, ..., x_n)_{\text{end}}$ no integration needed no noise accumulation not normalized, no comparison of structures classical example: best-fit point
 - one-dimensional parameter distributions second target

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains

Errors

- SFitter
- After Moriond
- Hypotheses
- To do

SFitter 3: Error analysis

_

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- simple argument
 LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 - LHC rate 300% off: Standard Model wrong
- theory likelihood flat centrally and zero far away
- profile likelihood construction: RFit [CKMFitter]

$$2 \log \mathcal{L} = \chi^2 = \vec{\chi}_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \bar{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \bar{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \bar{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains

Errors

- SFitter
- After Moriond
- To do

SFitter 3: Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- profile likelihood construction: RFit [CKMFitter]

$$-2\log \mathcal{L} = \chi^2 = \chi_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \bar{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \bar{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \bar{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Combination of errors

- Gaussian ⊗ Gaussian: half width added in quadrature Gaussian/Poisson ⊗ flat: RFit scheme Gaussian ⊗ Poisson: ??
- approximate formula

$$\frac{1}{\log \mathcal{L}_{comb}} = \frac{1}{\log \mathcal{L}_{Gauss}} + \frac{1}{\log \mathcal{L}_{Poisson}}$$

- modified Minuit gradient fit last step

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors

SFitter

- After Moriond
- Autor Monorio
- To do

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009; Contino et al]

- light Higgs around 125 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF : H \to ZZ, WW, \gamma\gamma$ [first analyses] $WBF : H \to ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH : H \to b\bar{b}$ [BDRS crucial] $t\bar{t}H : H \to \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties

Higgs couplings

- $\begin{array}{l} (WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau) \\ (WBF: H \rightarrow WW)/(GF: H \rightarrow WW)... \end{array}$
- all wrong because of exclusive *H* + *n* jets... [later]

Tilman Plehn

Where we stand

- Where we are going

SFitter

- To do

Higgs couplings

Higgs-sector analysis [Zeppenfeld et al: Dührssen et al: SFitter 2009: Contino et al]

- light Higgs around 125 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH: H \rightarrow b\bar{b}$ [BDBS crucial] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties
 - $(WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau)$ $(WBF: H \rightarrow WW)/(GF: H \rightarrow WW)...$

- all wrong because of exclusive H + n jets... [later]

Total width

mvths about scaling

$$N = \sigma BR \propto \frac{g_{\rho}^2}{\sqrt{\Gamma_{\text{tot}}}} \frac{g_d^2}{\sqrt{\Gamma_{\text{tot}}}} \sim \frac{g^4}{g^2 \frac{\sum \Gamma_i(g^2)}{g^2} + \Gamma_{\text{unobs}}} \xrightarrow{g^2 \to 0} = 0$$

gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{\text{tot}} \rightarrow \Gamma_H|_{\min}$

- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$
- assume in SFitter $\Gamma_{tot} = \sum_{obs} \Gamma_i$ [plus generation universality]

Tilman Plehn

Where we stand

- Where we are going

SFitter

- To do

Higgs couplings

Higgs-sector analysis [Zeppenfeld et al: Dührssen et al: SFitter 2009: Contino et al]

- light Higgs around 125 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH: H \rightarrow b\bar{b}$ (BDBS crucial) $t\bar{t}H: H \rightarrow \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties

$$(WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau)$$

 $(WBF: H \rightarrow WW)/(GF: H \rightarrow WW).$

- all wrong because of exclusive H + n iets... [later]

SFitter ansatz [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- couplings measurement $g_{HXX} = g_{HXX}^{SM} (1 + \Delta_X)$ D5 couplings $g_{qqH}, g_{\gamma\gamma H}$ free?
- experimental/theory errors on signal and backgrounds ATLAS and CMS both included
- exclusive likelihood map individual coupling measurements
- alternative parameters, e.g. coupling ratios?

Tilman Plehn

Where we stand

Where we are going

Markov chain:

Errors

SFitter

After Moriond

Hypotheses

To do

Basic checks

1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹] 0 2 3-5-3 -1 1 3-5-3 -1 -1 1 1 3 HWW Htt Hbb 2 3 -5 -3 -1 3 -5 -3 -1 0 1 -1 1 3 1 HWW Htt Hbb

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors

SFitter

- After Moriond
-
- To do

Basic checks

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- .. .
- To do

Basic checks

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3- but not saving Bayesian statistics [no effective couplings, 300 fb $^{-1}$]

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors

SFitter

- After Moriond
- Hypotheses
- To do

Basic checks

- $1- noisy \ environment \ preferring \ profile \ likelihoods \ [no \ effective \ couplings, \ 30 \ fb^{-1}]$
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3- but not saving Bayesian statistics $[no effective couplings, 300 fb^{-1}]$
- 4- theory errors not dominant for 30 fb^{-1} [with effective couplings, 30 fb^{-1}]

 \Rightarrow profile likelihood for now

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter

After Moriond

Hypotheses

To do

ATLAS and CMS data well documented [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- ATLAS: $\gamma\gamma$, $Z_{\ell}Z_{\ell}$, WW + 0/1 jets
- CMS: $\gamma\gamma + 0/2$ jets, $Z_{\ell}Z_{\ell}$, WW + 0/1/2 jets CMS: $\tau\tau + 0/1/2$ jets, $b\bar{b}$ with $W_{\ell}, Z_{\ell}, Z_{\nu}$
- central points on SM values everything preliminary

Results after Moriond

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter

After Moriond

Hypotheses

To do

Results after Moriond

ATLAS and CMS data well documented [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- ATLAS: $\gamma\gamma$, $Z_{\ell}Z_{\ell}$, WW + 0/1 jets
- CMS: $\gamma\gamma + 0/2$ jets, $Z_{\ell}Z_{\ell}$, WW + 0/1/2 jets CMS: $\tau\tau + 0/1/2$ jets, $b\bar{b}$ with $W_{\ell}, Z_{\ell}, Z_{\nu}$
- central points on SM values everything preliminary
- (7 TeV, 2.1 4.9 fb $^{-1}$)

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter

After Moriond

Hypotheses

To do

ATLAS and CMS data well documented [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- ATLAS: $\gamma\gamma$, $Z_{\ell}Z_{\ell}$, WW + 0/1 jets
- CMS: $\gamma\gamma + 0/2$ jets, $Z_{\ell}Z_{\ell}$, WW + 0/1/2 jets CMS: $\tau\tau + 0/1/2$ jets, $b\bar{b}$ with $W_{\ell}, Z_{\ell}, Z_{\nu}$
- central points on SM values everything preliminary
- (7 TeV, 2.1 4.9 fb⁻¹)
 - (7 TeV, 20 fb⁻¹)

Results after Moriond

- different projections 2012-2014

form factor already constrained gauge boson couplings promising fermion couplings a problem D5 operators wide open ratios actually better

comments welcome!

...

technical screwups? experimental misunderstandings? proper operator basis?

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond

Hypotheses

To do

Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to F]}{\sigma[H_1 \to F]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}} \stackrel{!}{\leq} \mathcal{R}$$

– two scenarios: ($m_H=$ 125, $\mathcal{R}\sim$ 1) and ($m_H=$ 155, $\mathcal{R}\sim$ 0.4)

 \Rightarrow invisible Higgs needed for final answer

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond

Hypotheses

To do

Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to F]}{\sigma[H_1 \to F]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}} \stackrel{!}{<} \mathcal{R}$$

 \Rightarrow invisible Higgs needed for final answer

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter; Ellis & You]

- pretty much fundamental Higgs
- coupling analysis technically simple
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
 - one-parameter fit in SFitter
 - (14 TeV, 30 fb $^{-1})$ and 120 GeV Higgs: $\Delta g/g \sim$ 10%
- 2- gauge couplings $g o g \sqrt{1-\xi}$ Yukawas $g o g(1-2\xi)/\sqrt{1-\xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

To-do list

Problems in Higgs sector analyses

- 1- pile-up in Higgs analyses nothing I can do
- 2- channels for *bbH* and *ttH* couplings Higgs and top tagging: tools in good hands [thank you to Higgs workshop in 20091]
- 3− N[∞]LO cross section predictions maybe I am not German enough
- 4- analyses not organized by production channels count recoil jets instead, jet vetos

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

To-do list

Higgs searches vs number of recoil jets?? [for Dave and Steve]

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- many analyses at odds with DGLAP [hard to predict at fixed order]
- \Rightarrow study exclusive n_{jets} distributions

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

To-do list

Higgs searches vs number of recoil jets?? [for Dave and Steve]

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- many analyses at odds with DGLAP [hard to predict at fixed order]
- \Rightarrow study exclusive n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron $\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$ 1- radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color] 2- phase space factor 1/n! [only combinatorics effect, matrix element ordered]
 - 3– normalization factor $e^{-\bar{n}}$

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriono
- Hypothosos
- To do

To-do list

Higgs searches vs number of recoil jets?? [for Dave and Steve]

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- many analyses at odds with DGLAP [hard to predict at fixed order]
- \Rightarrow study exclusive n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron $\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$ 1- radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color]
 - 2-phase space factor 1/n! [only combinatorics effect, matrix element ordered]

3– normalization factor
$$e^-$$

Staircase scaling [Ellis, Kleiss, Stirling]

- observed since UA2
- same for inclusive and exclusive rates

$$\mathbf{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \mathbf{R}_{(n+1)/n}^{\text{excl}} = \text{const}$$

Jet veto

Tilman Plehn

Where we stand

- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Example: WBF $H \rightarrow \tau \tau$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Tilman Plehn

- Where we stand
- Where we are going
- Markov chain:
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto

- count add'l jets to reduce backgrounds $p_T^{\text{veto}} > 20 \text{ GeV} \quad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$
- Poisson for QCD processes ['radiation' pattern]

Tilman Plehn

- Where we stand
- Where we are going
- Markov chain:
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Jet veto

Example: WBF $H \rightarrow au au$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto

count add'l jets to reduce backgrounds

 $p_T^{\text{veto}} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]
- (fairly) staircase for e-w processes [cuts keeping signal]
- n_{iets} features understood, go from here...

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Outlook

Confirming Higgs@LHC

- hope there were enough details, you can wake up now
- coupling analysis the main LHC goal
- many technical issues
- Higgs tagger vital
- SFitter paper imminent
- ⇒ case for a 250 GeV linear collider

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work

Bundesministerium für Bildung und Forschung

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypothosos
- To do

Pretty colorful pictures

Two-dimensional correlations and effective coupings

 $\begin{array}{l} \mbox{1-} \mbox{ including effective } g_{Hgg} \\ \mbox{ sign of } g_{Htt} \mbox{ fixed by } g_{HWW} > 0 \\ \mbox{ correlation of } g_{Hbb} \mbox{ and } g_{HWW} \mbox{ [loops and width]} \\ g_{Hgg} \mbox{ accessible} \end{array}$

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypothosos
- To do

Pretty colorful pictures

Two-dimensional correlations and effective coupings

 $\begin{array}{l} \mbox{1- including effective g_{Hgg}} \\ \mbox{sign of g_{Htt} fixed by $g_{HWW} > 0$} \\ \mbox{correlation of g_{Hbb} and g_{HWW} [loops and width]$} \\ \mbox{$g_{Hgg}$ accessible} \end{array}$

2– only effective $g_{H\gamma\gamma}$ correlated g_{Htt} and g_{HWW} on both branches $g_{H\gamma\gamma}$ structure more complex

3

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Pretty colorful pictures

Two-dimensional correlations and effective coupings

 $\begin{array}{l} \mbox{1-} \mbox{ including effective } g_{Hgg} \\ \mbox{ sign of } g_{Htt} \mbox{ fixed by } g_{HWW} > 0 \\ \mbox{ correlation of } g_{Hbb} \mbox{ and } g_{HWW} \mbox{ [loops and width]} \\ g_{Hgg} \mbox{ accessible} \end{array}$

- 2– only effective $g_{H\gamma\gamma}$ correlated g_{Htt} and g_{HWW} on both branches $g_{H\gamma\gamma}$ structure more complex
- 3- both effective couplings discrete structures getting out of hand

2 3

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Weak boson fusion and supersymmetry

Higgs analysis beyond the Standard Model

- extension of Higgs analysis to BSM scenarios comparison SM-MSSM [no-lose: TP, Rainwater, Zeppenfeld]
- define hypothesis known particles: known corrections new particles: theory error
- general: heavy additional states at one loop example: MSSM sectors Higgs-weak-strong

Technical questions [Hollik, TP, Rauch, Rzehak]

- vertex corrections dominant? [Djouadi & Spira]
- which one larger: QCD vs EW? [similar for Standard Model: Ciccolini, Denner, Dittmaier]
- corrections from Higgs sector? [renormalization scheme/higher orders]
- general phase space generator?
- Germans: we can do 52504 diagrams [Hadcalc: automized IR-finite one-loop 2 \rightarrow 3]
- \Rightarrow input for MSSM-Higgs analysis

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$

SUSY corrections

- QCD corrections suppressed: color flow and forward jets [no interference, like SM] mass suppression of one-loop $q_L q_L W$ vertex $[1/m_{\tilde{g}}]$ up-down concellation in one-loop duWh vertex $[T_3 - Qs_w^2 = -1/3, +5/16]$
- electroweak corrections as expected

diagram	$\Delta \sigma / \sigma$ [%]	diagram	$\Delta\sigma/\sigma$ [%]
$\Delta \sigma \sim \mathcal{O}(lpha)$		$\Delta \sigma \sim \mathcal{O}(lpha_s)$	
self energies	0.199		
qqW + qqZ	-0.392	qqW + qqZ	-0.0148
qqh	-0.0260	qqh	0.00545
WWh + ZZh	-0.329		
box	0.0785	box	-0.00518
pentagon	0.000522	pentagon	-0.000308

⇒ electroweak corrections dominant

Tilman Plehn

- Where we stand
- Where we are going
- Markov chains
- Errors
- SFitter
- After Moriond
- Hypotheses
- To do

Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams [FeynHiggs] consistent self couplings \rightarrow effective potential [SubH]
- check identical limit: effective angle $\alpha_{\rm eff}$

SUSY corrections

- SPS1b with variable mass scale m_{1/2}
- perfect decoupling at one loop
- typical corrections around 1% maximum corrections below 4%

Tilman Plehn

Where we stand

Where we are going

Markov chains

Errors

SFitter

After Moriond

Hypotheses

To do