Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

A Theorist's Take on LHC

Tilman Plehn

Universität Heidelberg

Jena, 6/2012

The LHC

Tilman Plehn

LHC

- Standard Model
- Jets
- Supersymmetry
- Fat jets
- Higgs

The LHC

Tilman Plehn

LHC

- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

The LHC

Tilman Plehn

LHC

- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Einstein: beam energy to particle mass $E = mc^2$

- smash 4 TeV protons onto 4 TeV protons [energy unit GeV: proton mass] produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, actual data, commuting to CERN → experiment field theory, strong opinions, working in villas → theory

The LHC

Tilman Plehn

LHC

- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Einstein: beam energy to particle mass $E = mc^2$

- smash 4 TeV protons onto 4 TeV protons [energy unit GeV: proton mass] produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, actual data, commuting to CERN → experiment field theory, strong opinions, working in villas → theory

life as an experimentalist

life as a theorist

The LHC

Tilman Plehn

LHC

- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Einstein: beam energy to particle mass $E = mc^2$

- smash 4 TeV protons onto 4 TeV protons [energy unit GeV: proton mass] produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, actual data, commuting to CERN → experiment field theory, strong opinions, working in villas → theory

life as an experimentalist

life as a theorist

The LHC

Tilman Plehn

LHC

- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Einstein: beam energy to particle mass $E = mc^2$

- smash 4 TeV protons onto 4 TeV protons [energy unit GeV: proton mass] produce anything that interacts with quarks and gluons search for it in decay products repeat every 25 ns
- huge detectors, actual data, commuting to CERN → experiment field theory, strong opinions, working in villas → theory

Things you never dared to ask...

- $N_{
 m events} = \sigma \cdot \mathcal{L}$ ['cross section [fb] times luminosity [1/fb]']
- signal: everything new, exciting and rare background: yesterday's signal
- Standard Model w/o Higgs: background theory QCD: evil background theory
- jet: everything except for leptons/photons crucial: what makes a jet [q, g, b, τ, W, H, t]
- always statistics: $\sigma_{b\bar{b}} \sim 10^7 \sigma_H$
- \Rightarrow discovery $\#\sigma \sim N_S/\sqrt{N_B} > 5$

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard-Model

Climbing up energy scales

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Climbing up energy scales

Standard-Model

- Fermi 1934: weak interactions $[n \rightarrow pe^{-\nu_e}]$ (2 \rightarrow 2) amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation $[\mathcal{E} < 600 \text{ GeV}]$ pre-80s effective theory
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ unitary fermion amplitude $\mathcal{A} \propto g^2 E^2/(E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ [E < 1.2 TeV] pre-2012 effective theory

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Climbing up energy scales

Standard-Model

- Fermi 1934: weak interactions $[n \rightarrow pe^{-\nu_e}]$ (2 \rightarrow 2) amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation $[\mathcal{E} < 600 \text{ GeV}]$ pre-80s effective theory
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ unitary fermion amplitude $\mathcal{A} \propto g^2 E^2/(E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ [E < 1.2 TeV] pre-2012 effective theory
- Higgs 1964: spontaneous symmetry breaking completely unitary particle masses allowed fundamental weak-scale scalar

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Climbing up energy scales

Standard-Model

- Fermi 1934: weak interactions $[n \rightarrow pe^{-\nu_e}]$ (2 \rightarrow 2) amplitude $\mathcal{A} \propto G_F E^2$ probability/ unitarity violation $[\mathcal{E} < 600 \text{ GeV}]$ pre-80s effective theory
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ unitary fermion amplitude $\mathcal{A} \propto g^2 E^2/(E^2 - M^2)$ unitarity violation in $WW \rightarrow WW$ [E < 1.2 TeV] pre-2012 effective theory
- Higgs 1964: spontaneous symmetry breaking completely unitary particle masses allowed fundamental weak-scale scalar
- 't Hooft & Veltman 1971: renormalizability no 1/M couplings allowed theory valid to high energy Standard Model with Higgs fundamental

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard–Model effective theory

Theory perspective

- massless SU(3) and U(1) gauge bosons massive W, Z bosons
- weak-scale Higgs scalar
- generation mixing of quark and lepton fermions
- Lagrangian $\mathcal{L} \supset -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + \frac{?}{\Lambda} \frac{g'}{\Lambda} H W_{\mu\nu} W^{\mu\nu}$
- \Rightarrow renormalizable \Leftrightarrow valid to high scales \Leftrightarrow fundamental

Tilman Plehn

LHC

Standard Model

- Jets
- Supersymmetry
- Fat jets
- Higgs

Standard–Model effective theory

Theory perspective

- massless SU(3) and U(1) gauge bosons massive W, Z bosons
- weak-scale Higgs scalar
- generation mixing of quark and lepton fermions
- Lagrangian $\mathcal{L} \supset -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + \frac{?}{\Lambda} \frac{g'}{\Lambda} H W_{\mu\nu} W^{\mu\nu}$
- \Rightarrow renormalizable \Leftrightarrow valid to high scales \Leftrightarrow fundamental

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard–Model effective theory

Theory perspective

- massless SU(3) and U(1) gauge bosons massive W, Z bosons
- weak-scale Higgs scalar
- generation mixing of quark and lepton fermions
- Lagrangian $\mathcal{L} \supset -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + \frac{?}{\Lambda} \frac{g'}{\Lambda} H W_{\mu\nu} W^{\mu\nu}$
- \Rightarrow renormalizable \Leftrightarrow valid to high scales \Leftrightarrow fundamental

Tilman Plehn

LHC

Standard Model

- Jets
- Supersymmetry
- Fat jets
- Higgs

Standard–Model effective theory

Theory perspective

- massless SU(3) and U(1) gauge bosons massive W, Z bosons
- weak-scale Higgs scalar
- generation mixing of quark and lepton fermions
- Lagrangian $\mathcal{L} \supset -m_W^2 W_\mu W^\mu m_f \overline{\Psi} \Psi + g H \overline{\Psi} \Psi + \frac{?}{\Lambda} \frac{g'}{\Lambda} H W_{\mu\nu} W^{\mu\nu}$
- \Rightarrow renormalizable \Leftrightarrow valid to high scales \Leftrightarrow fundamental

Experimental perspective

- dark matter? [solid evidence for low-scale new physics!?]
- quark mixing flavor physics? [new operators above 10⁴ GeV?]
- neutrino masses and mixing? [see-saw at 10¹¹ GeV?]
- matter-antimatter asymmetry? [universe mostly matter?]
- gauge coupling unification? [experimental fact]
- gravity missing? [negligible at LHC]
- ⇒ cut-off unavoidable

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard–Model and beyond

Theory problems

- Heisenberg: quantum corrections to Higgs mass... $[\Delta t \Delta E < 1]$

Н

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard–Model and beyond

Theory problems

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

Higgs mass pulled to cut-off Λ [where Higgs at Λ does not work]

⇒ hierarchy problem — Higgs scalar needs stabilization

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard-Model and beyond

Theory problems

 Heisenberg: quantum corrections to Higgs mass lead to effective theory desaster

$$m_H^2 \longrightarrow m_H^2 - rac{g^2}{(4\pi)^2} \frac{3}{2} \frac{\Lambda^2}{m_W^2} \left[m_H^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right] + \cdots$$

- Higgs mass pulled to cut-off $\Lambda \quad [{\tt where Higgs at Λ does not work]}$

⇒ hierarchy problem — Higgs scalar needs stabilization

Starting from data which ...

- easy solution: counter term but unethical tuning
- or new physics at TeV scale: sup

supersymmetry extra dimensions little Higgs composite Higgs, TopColor YourFavoriteNewPhysics...

 \Rightarrow beautiful concepts, not sure if true

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard–Model and beyond

Theory problems

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

- Higgs mass pulled to cut-off $\Lambda \quad [{\tt where Higgs at Λ does not work]}$

⇒ hierarchy problem — Higgs scalar needs stabilization

My LHC wish list

- fundamental Higgs?
- new physics stabilizing Higgs mass?
- dark matter candidate?

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard–Model and beyond

Theory problems

 Heisenberg: quantum corrections to Higgs mass lead to effective theory desaster

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

Higgs mass pulled to cut-off Λ [where Higgs at Λ does not work]

 \Rightarrow hierarchy problem — Higgs scalar needs stabilization

My LHC wish list

- fundamental Higgs?
- new physics stabilizing Higgs mass?
- dark matter candidate?
- or something totally different? [Uli Baur: always new physics at new scales]

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs

Standard-Model and beyond

Theory problems

$$m_{H}^{2} \longrightarrow m_{H}^{2} - \frac{g^{2}}{(4\pi)^{2}} \frac{3}{2} \frac{\Lambda^{2}}{m_{W}^{2}} \left[m_{H}^{2} + 2m_{W}^{2} + m_{Z}^{2} - 4m_{t}^{2} \right] + \cdots$$

Higgs mass pulled to cut-off Λ [where Higgs at Λ does not work]

⇒ hierarchy problem — Higgs scalar needs stabilization

My LHC wish list

- fundamental Higgs?
- new physics stabilizing Higgs mass?
- dark matter candidate?
- or something totally different? [Uli Baur: always new physics at new scales]
- ⇒ Higgs discovery waiting since Fermi!

Tilman Plehn

- LHC
- Standard Mod
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we see plenty: jets

Need to count them [e.g. for Higgs searches]

- Peskin & Schroeder: soft photons with Poisson scaling

$$R_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

- 1 radiation matrix element \bar{n}^n photons fine, gluons tricky
- 2 phase space 1/n! only combinatorics, matrix element ordered
- 3 normalization $e^{-\bar{n}}$

Tilman Plehn

- LHC
- Standard Mo

Jets

- Supersymmetry
- Fat jets
- Higgs

Things we see plenty: jets

Need to count them [e.g. for Higgs searches]

- Peskin & Schroeder: soft photons with Poisson scaling

$$\mathsf{R}_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

- hadron colliders since UA1: staircase scaling

$$R_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} \sim 0.15$$

Tilman Plehn

LHC

Standard Mod

Jets

Supersymmetry

Fat jets

Higgs

Things we see plenty: jets

Need to count them [e.g. for Higgs searches]

- Peskin & Schroeder: soft photons with Poisson scaling

$$\mathsf{R}_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

- hadron colliders since UA1: staircase scaling

$$R_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} \sim 0.15$$

Tilman Plehn

- LHC
- Standard Mo
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we see plenty: jets

Need to count them [e.g. for Higgs searches]

- Peskin & Schroeder: soft photons with Poisson scaling

$$R_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

- hadron colliders since UA1: staircase scaling

$$R_{(n+1)/n} \equiv rac{\sigma_{n+1}}{\sigma_n} \sim 0.15$$

Modern QCD simulations

- inclusive: staircase scaling after cuts: Poisson scaling
- W, Z, γ +jets and QCD jets the same
- mostly an effect of gluon self coupling?
- \Rightarrow there still exist QCD puzzles

Tilman Plehn

LHC

Standard Mo

Jets

- Supersymmetry
- Fat jets
- Higgs

Things we see plenty: jets

Need to count them [e.g. for Higgs searches]

- Peskin & Schroeder: soft photons with Poisson scaling

$$R_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

- hadron colliders since UA1: staircase scaling

$$R_{(n+1)/n} \equiv \frac{\sigma_{n+1}}{\sigma_n} \sim 0.15$$

Modern QCD simulations

- inclusive: staircase scaling after cuts: Poisson scaling
- W, Z, γ +jets and QCD jets the same
- mostly an effect of gluon self coupling?
- \Rightarrow there still exist QCD puzzles

Tilman Plehn

- LHC
- Standard Mo
- Jets

Supersymmetry

- Fat jets
- Higgs

Things we'd like to see: supersymmetry

The best theorists can do: supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- assume dark matter, stable lightest partner
- ⇒ LHC: model for WIMP dark matter

Production processes

 produce strongly interacting particles cascade decay to DM candidate

н

н

Tilman Plehn

- LHC
- Standard Mo
- Jets

Supersymmetry

- Fat jets
- Higgs

Things we'd like to see: supersymmetry

The best theorists can do: supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- assume dark matter, stable lightest partner
- ⇒ LHC: model for WIMP dark matter

Searches

- like-sign dileptons: $pp
 ightarrow { ilde g} { ilde g}$ [not yet]
- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$ [not yet]
- not very exciting exclusion limits

Tilman Plehn

- LHC
- Standard Mo
- Jets

Supersymmetry

- Fat jets
- Higgs

Things we'd like to see: supersymmetry

The best theorists can do: supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- assume dark matter, stable lightest partner
- ⇒ LHC: model for WIMP dark matter

Searches

- like-sign dileptons: $pp
 ightarrow { ilde g} { ilde g}$ [not yet]
- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$ [not yet]
- not very exciting exclusion limits
- \Rightarrow but only one signature and still early

Tilman Plehn

- LHC
- Standard Mo
- Jets

Supersymmetry

- Fat jets
- Higgs

Things we'd like to see: supersymmetry

The best theorists can do: supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- assume dark matter, stable lightest partner
- ⇒ LHC: model for WIMP dark matter

Anomalies

- look for 3-4 leptons with large $\sum p_T$
- count events away from $Z
 ightarrow \ell^+ \ell^-$
- \Rightarrow possibly interesting

Tilman Plehn

- LHC
- Standard Mo
- Jets

Supersymmetry

- Fat jets
- Higgs

Things we'd like to see: supersymmetry

The best theorists can do: supersymmetry

- partner for each Standard Model particle
- cancellation because of different spins
- assume dark matter, stable lightest partner
- ⇒ LHC: model for WIMP dark matter

Anomalies

- look for 3-4 leptons with large $\sum p_T$
- count events away from $Z \rightarrow \ell^+ \ell^-$
- \Rightarrow possibly interesting

Tilman Plehn

- LHC
- Standard Mod
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things some people have seen: fat jets

Fat top jets: $t \rightarrow bW^+ \rightarrow bjj$ [HEPTopTagger]

- boost likely at LHC: $R_{bjj}^2 \equiv \phi_{bjj}^2 + y_{bjj}^2 \sim (m_t/p_T)^2 \gtrsim 1.5^2$
- target hadronic tops with $p_T\gtrsim$ 250...800 GeV
- modify jet algorithm to top tagger
- no combinatorics, top momentum for free
- \Rightarrow new analysis tool at LHC

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things some people have seen: fat jets

Fat top jets: $t \rightarrow bW^+ \rightarrow bjj$ [HEPTopTagger]

- boost likely at LHC: $R_{bjj}^2 \equiv \phi_{bjj}^2 + y_{bjj}^2 \sim (m_t/p_T)^2 \gtrsim 1.5^2$
- target hadronic tops with $p_T\gtrsim$ 250...800 GeV
- modify jet algorithm to top tagger
- no combinatorics, top momentum for free
- \Rightarrow new analysis tool at LHC

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry

Fat jets

Higgs

Things some people have seen: fat jets

Fat top jets: $t \rightarrow bW^+ \rightarrow bjj$ [HEPTopTagger]

- boost likely at LHC: $R_{bjj}^2 \equiv \phi_{bjj}^2 + y_{bjj}^2 \sim (m_t/\rho_T)^2 \gtrsim 1.5^2$
- target hadronic tops with $p_T\gtrsim$ 250...800 GeV
- modify jet algorithm to top tagger
- no combinatorics, top momentum for free
- \Rightarrow new analysis tool at LHC

Fat Higgs jets: $H \rightarrow b\bar{b}$

- Higgs jet vs QCD:
 - S: large m_{bb} , boost-dependent separation B: large m_{bb} only for large separation S/B: large m_{bb} and small separation, boost Higgs
- $q\bar{q} \rightarrow WH$ revived $gg \rightarrow t\bar{t}H$ not dead?
- \Rightarrow top tag and Higgs tag like *b* tag

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry

Fat jets

Higgs

Things some people have seen: fat jets

Fat top jets: $t \rightarrow bW^+ \rightarrow bjj$ [HEPTopTagger]

- boost likely at LHC: $R_{bjj}^2\equiv\phi_{bjj}^2+y_{bjj}^2\sim(m_t/
 ho_T)^2\gtrsim1.5^2$
- target hadronic tops with $p_T\gtrsim$ 250...800 GeV
- modify jet algorithm to top tagger
- no combinatorics, top momentum for free
- \Rightarrow new analysis tool at LHC

Fat Higgs jets: $H \rightarrow b\bar{b}$

- Higgs jet vs QCD:
 - S: large m_{bb} , boost-dependent separation B: large m_{bb} only for large separation S/B: large m_{bb} and small separation, boost Higgs
- $q\bar{q} \rightarrow WH$ revived $gg \rightarrow t\bar{t}H$ not dead?
- \Rightarrow top tag and Higgs tag like *b* tag

Tilman Plehn

LHC

- Standard Model
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

- gives mass to photons, protons, and the universe!

Tilman Plehn

- LHC
- Standard Model
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

- gives mass to the W/Z bosons [finite weak force] allows for fermion masses makes gauge theories fundamental
 - is the most interesting part of Standard Model!

Tilman Plehn

- LHC
- Standard Mod
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

- gives mass to the W/Z bosons [finite weak force] allows for fermion masses makes gauge theories fundamental

is the most interesting part of Standard Model!

- all Higgs properties are fixed except: does it exist and what is its mass?
- Higgs mechanism: masses as g(v + H) [v = 246 GeV]
- \Rightarrow weak-scale scalar coupling proportional to mass [$m_H = 125 \text{ GeV ideal}$]

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

 gives mass to the W/Z bosons [finite weak force] allows for fermion masses makes gauge theories fundamental

is the most interesting part of Standard Model!

- all Higgs properties are fixed except: does it exist and what is its mass?
- Higgs mechanism: masses as g(v + H) [v = 246 GeV]
- \Rightarrow weak-scale scalar coupling proportional to mass [$m_H = 125 \text{ GeV ideal}$]

Tilman Plehn

- LHC
- Standard Mod
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

- gives mass to the W/Z bosons [finite weak force] allows for fermion masses makes gauge theories fundamental

is the most interesting part of Standard Model!

- all Higgs properties are fixed except: does it exist and what is its mass?
- \Rightarrow weak-scale scalar coupling proportional to mass [m_H = 125 GeV ideal]

Higgs signatures at LHC [7-8 TeV, 5-15/fb]

- no tree-level coupling to proton constituents
- gluon fusion production loop induced [$\sigma \sim 15000$ fb] weak boson fusion production with jets [$\sigma \sim 1200$ fb]

Tilman Plehn

- LHC
- Standard Mod
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

- gives mass to the W/Z bosons [finite weak force] allows for fermion masses makes gauge theories fundamental

is the most interesting part of Standard Model!

- all Higgs properties are fixed except: does it exist and what is its mass?
- \Rightarrow weak-scale scalar coupling proportional to mass [m_H = 125 GeV ideal]

Higgs signatures at LHC [7-8 TeV, 5-15/fb]

- no tree-level coupling to proton constituents
- gluon fusion production loop induced [$\sigma \sim 15000$ fb] weak boson fusion production with jets [$\sigma \sim 1200$ fb]
- easy channels 2011-2012

 $pp \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ fully reconstructed $pp \rightarrow H \rightarrow \gamma\gamma$ fully reconstructed $pp \rightarrow H \rightarrow WW \rightarrow (\ell^- \bar{\nu})(\ell^+ \nu)$ large BR

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Standard Model Higgs sector

 gives mass to the W/Z bosons [finite weak force] allows for fermion masses makes gauge theories fundamental

is the most interesting part of Standard Model!

- all Higgs properties are fixed except: does it exist and what is its mass?
- \Rightarrow weak-scale scalar coupling proportional to mass [$m_H = 125 \text{ GeV ideal}$]

Higgs signatures at LHC [7-8 TeV, 5-15/fb]

- no tree-level coupling to proton constituents
- gluon fusion production loop induced [$\sigma \sim 15000 \text{ fb}$] weak boson fusion production with jets [$\sigma \sim 1200 \text{ fb}$]
- easy channels 2011-2012

 $pp \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ fully reconstructed $pp \rightarrow H \rightarrow \gamma\gamma$ fully reconstructed $pp \rightarrow H \rightarrow WW \rightarrow (\ell^- \bar{\nu})(\ell^+ \nu)$ large BR

- harder channels 2012-2015

 $pp \rightarrow H \rightarrow \tau \tau$ plus jets $pp \rightarrow ZH \rightarrow (\ell^+ \ell^-)(b\bar{b})$ boosted etc...

Tilman Plehn

LHC

- Standard Mod
- Jets
- Supersymmetry
- Fat jets

Higgs

Things we might have seen: Higgs

Best of ATLAS and CMS [CMS: 43 sub-channels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 2.8 σ (ATLAS), 3.0 σ (CMS)

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Best of ATLAS and CMS [CMS: 43 sub-channels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 2.8 σ (ATLAS), 3.0 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$

local significance 2.1 σ (ATLAS), 1.5 σ (CMS)

Tilman Plehn

- LHC
- Standard Mod
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Best of ATLAS and CMS [CMS: 43 sub-channels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 2.8 σ (ATLAS), 3.0 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 2.1 σ (ATLAS), 1.5 σ (CMS)
- remaining WW and ττ, bb (CMS)
 broad 1σ combined (CMS)
- ⇒ heavy SM Higgs ruled out
 - $m_H = 125 \text{ GeV}$ struggle in all channels

local 3.5 σ (ATLAS), 3.1 σ (CMS) [LEE 2.5 and 2.1]

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Best of ATLAS and CMS [CMS: 43 sub-channels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 2.8 σ (ATLAS), 3.0 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 2.1 σ (ATLAS), 1.5 σ (CMS)
- remaining WW and ττ, bb (CMS)
 broad 1σ combined (CMS)
- \Rightarrow heavy SM Higgs ruled out

 $m_H = 125 \text{ GeV}$ struggle in all channels local 3.5 σ (ATLAS), 3.1 σ (CMS) [LEE 2.5 and 2.1]

Higgs couplings

- all couplings free $g_x^{SM}(1 + \Delta_x)$
- compare to ATLAS and CMS data

$$N_{
m events} \sim \sigma_{p} imes rac{\Gamma_{d}}{\sum_{j} \Gamma_{j}}$$

- 2011 data fun exercise

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Things we might have seen: Higgs

Best of ATLAS and CMS [CMS: 43 sub-channels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 2.8 σ (ATLAS), 3.0 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 2.1 σ (ATLAS), 1.5 σ (CMS)
- remaining WW and ττ, bb (CMS)
 broad 1σ combined (CMS)
- \Rightarrow heavy SM Higgs ruled out

 $m_H = 125 \text{ GeV}$ struggle in all channels local 3.5 σ (ATLAS), 3.1 σ (CMS) [LEE 2.5 and 2.1]

Higgs couplings

- all couplings free $g_x^{SM}(1 + \Delta_x)$
- compare to ATLAS and CMS data

$$N_{\mathrm{events}} \sim \sigma_p imes rac{\Gamma_d}{\sum_j \Gamma_j}$$

- 2011 data fun exercise
- \Rightarrow 2012 data decisive

Tilman Plehn

- LHC
- Standard Mode
- Jets
- Supersymmetry
- Fat jets
- Higgs

Exciting times...

...for LHC physicists

- many things (some of us/we) (would like to see/(might) have seen) plenty of QCD jets probably no new physics (yet) first fat jets maybe a Higgs boson
- new ideas always high in demand
- \Rightarrow analyses moving fast, keep your fingers crossed for 2012

New Physics at the LHC, David Morrissey, TP, and Tim Tait, Phys Rept, arXiv 0912.3259 Lectures on LHC Physics, TP, Springer Lecture Notes, arXiv:0910.4182

Tilman Plehn

LHC

Standard Model

Jets

Supersymmetry

Fat jets

Higgs