Tilman Plehn

Discovery

Higgs rate:

SFitter

Higgs

Hypothese

To do

Higgs Physics after the Discovery

Tilman Plehn

Universität Heidelberg

MPI-K, 7/2012

Tilman Plehn

Discovery

Higgs rate

SFitter

Higgs

Hypotheses

To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)

Tilman Plehn

Discovery

Higgs rate

SFitter

Higgs

Hypotheses

To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)

Tilman Plehn

Discovery

Higgs rate:

SFitter

Higgs

Hypotheses

To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$

local significance 3.4 σ (ATLAS), 3.2 σ (CMS)

Tilman Plehn

Discovery

Higgs rate:

SFitter

Higgs

Hypotheses

To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS)

Tilman Plehn

Discovery

Higgs rate:

SFitter

Higgs

Hypotheses

To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS)
- remaining WW and ττ, bb (CMS) adding nothing to final number (CMS)

Tilman Plehn

Discovery

- Higgs rates
- SFitter
- Higgs
- Hypotheses
- To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4 σ (ATLAS), 3.2 σ (CMS)
- remaining WW and ττ, bb (CMS) adding nothing to final number (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]
- \Rightarrow resonance at $m_H = 125.5$ GeV discovered

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H
ightarrow \gamma \gamma$

local significance 4.5 σ (ATLAS), 4.1 σ (CMS)

- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$

local significance 3.4 σ (ATLAS), 3.2 σ (CMS)

- remaining WW and ττ, bb (CMS)
 adding nothing to final number (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]
- \Rightarrow resonance at $m_H = 125.5$ GeV discovered

Tilman Plehn

Discovery

- Higgs rate:
- SFitter
- Higgs
- Hypotheses
- To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS)
- remaining WW and ττ, bb (CMS)
 adding nothing to final number (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]
- \Rightarrow resonance at $m_H = 125.5$ GeV discovered

So, what is this bump?

- spin-0 scalar likely and expected [P even?]
- spin-1 vector unlikely with $V
 ightarrow \gamma \gamma$ [Landau-Yang]
- spin-2 graviton unexpected
- \Rightarrow quantum numbers analysis needed

[TP, Rainwater, Zeppenfeld; Lykken etal; Melnikov etal]

Tilman Plehn

Discovery

- Higgs rates
- SFitter
- Higgs
- Hypotheses
- To do

Higgs discovery

Best of ATLAS and CMS [together over 100 subchannels]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS)
- remaining WW and ττ, bb (CMS) adding nothing to final number (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]
- \Rightarrow resonance at $m_H = 125.5$ GeV discovered

Any models ruled out?

- Standard Model fine [Holthausen, Lim, Lindner]
- reasonably decoupling theories all fine MSSM one example [tons of papers] hypersphere in $m_{\tilde{t}_{1/R}}$, tan β , A_t , μ , m_A predicting little [$x_t^2/(m_{\tilde{t}_1}m_{\tilde{t}_2}) \gtrsim 1$]
- strongly interacting light Higgs supposedly fine
- Higgs portal fine
- \Rightarrow coupling measurement the key

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Where we are going

The model

 assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures self coupling out of reach [Baur et al]

 \leftrightarrow

- production & decay combinations

- signal strength vs couplings?

plus a little problem

$$\begin{array}{l} H \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^+_{\ell h} \tau^-_{\ell} \\ H \rightarrow \gamma \gamma \\ H \rightarrow Z\gamma \\ \dots \end{array}$$

 \leftrightarrow

mm

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Where we are going

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures self coupling out of reach [Baur et al]
- production & decay combinations
- signal strength vs couplings?

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Where we are going

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures self coupling out of reach [Baur et al]
- production & decay combinations
- signal strength vs couplings?

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Where we are going

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures self coupling out of reach [Baur et al]
- production & decay combinations
- signal strength vs couplings?

Why 126 GeV is just perfect [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012]

- parameters: Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like D4 operators]

$$g_{HXX} = g^{ ext{SM}}_{HXX} ~(1+\Delta_X) ~~g_{HWW} > 0$$

- measurements:
$$GF : H \rightarrow ZZ, WW, \gamma\gamma$$

 $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$
 $VH : H \rightarrow b\bar{b}$
 $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

⇒ perfect application for SFitter

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

SFitter 1: Markov chains

Probability maps [statistics unexpectedly hard...]

- honest LHC parameters: weak-scale Lagrangean [Higgs, MSSM, dark matter,...]
- likelihood map: data given a model $p(d|m) \sim |\mathcal{M}|^2(m)$
- Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [p(d) normalization, p(m) prejudice]

Markov chains

- problem in grid: huge phase space, find local best points? problem in fit: domain walls, find global best points?
- construct 'representative' poll
- classical: representative set of spin states compute average energy on this reduced sample
- BSM or Higgs: map p(d|m) of parameter points evaluate whatever you want
- Metropolis-Hastings starting probability p(d|m) vs suggested probability p(d|m')1- accept new point if p(d|m') > p(d|m)
 - 2- or accept with p(d|m')/p(d|m) < 1

Tilman Plehn

Discovery

Higgs rate

SFitter

Higgs

Hypotheses

To do

SFitter 1: Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Tilman Plehn

Discovery

Higgs rate

SFitter

- Higgs
- Hypotheses
- To do

SFitter 1: Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Cooling Markov chains [Lafaye, TP, Rauch, Zerwas]

- zoom in on peak structures [inspired by simulated annealing]
- modified condition
 Markov chain in partitions, numbered by j

$$\frac{p(m')}{p(m)} > r^{10/j} \qquad r \in [0, 1] \quad \text{random number}$$

- check for parameter coverage with many Markov chains
- \Rightarrow exclusive likelihood map first result

Tilman Plehn

Discovery

Higgs rate

SFitter

Higgs

Hypothese

To do

SFitter 2: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of m_t extraction]
- two ways to marginalize likelihood map
- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians

Tilman Plehn

- SFitter

SFitter 2: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters uninteresting parameters unphysical parameters [JES part of mt extraction]
- two ways to marginalize likelihood map _
- 1- integrate over probabilities normalization etc mathematically correct integration measure unclear noise accumulation from irrelevant regions classical example: convolution of two Gaussians
- 2- profile likelihood $\mathcal{L}(.., x_{i-1}, x_{i+1}...) \equiv \max_{x_i} \mathcal{L}(x_1, ..., x_n)_{so}$ no integration needed no noise accumulation not normalized, no comparison of structures classical example: best-fit point
 - one-dimensional distributions tricky

30

20 10

> 200 400 600 800 1000

> > m,

Tilman Plehn

- Discovery
- Higgs rate

SFitter

- Higgs
- Hypothese
- To do

SFitter 3: Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- simple argument
 LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 LHC rate 300% off: Standard Model wrong
- theory likelihood flat centrally and zero far away
- profile likelihood construction: RFit [CKMFitter]

$$-2\log \mathcal{L} = \chi^2 = \vec{\chi}_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Tilman Plehn

- Discovery
- Higgs rate
- SFitter
- Higgs
- Hypotheses
- To do

SFitter 3: Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- profile likelihood construction: RFit [CKMFitter]

$$2 \log \mathcal{L} = \chi^2 = \vec{\chi}_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Combination of errors

- Gaussian ⊗ Gaussian: half width added in quadrature Gaussian/Poisson ⊗ flat: RFit scheme Gaussian ⊗ Poisson: ??
- approximate formula

$$\frac{1}{\log \mathcal{L}_{\text{comb}}} = \frac{1}{\log \mathcal{L}_{\text{Gauss}}} + \frac{1}{\log \mathcal{L}_{\text{Poissor}}}$$

- modified Minuit gradient fit last step
- \Rightarrow error bars from toy measurements

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012; Contino et al]

- light Higgs around 126 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF : H \to ZZ$, WW, $\gamma\gamma$ [first analyses] $WBF : H \to ZZ$, WW, $\gamma\gamma$, $\tau\tau$ [just starting] $VH : H \to b\bar{b}$ [BDRS crucial] $t\bar{t}H : H \to \gamma\gamma$, WW, $b\bar{b}$... [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties

Higgs couplings

 $\begin{array}{l} (\textit{WBF}: \textit{H} \rightarrow \textit{WW})/(\textit{WBF}: \textit{H} \rightarrow \tau\tau) \\ (\textit{WBF}: \textit{H} \rightarrow \textit{WW})/(\textit{GF}: \textit{H} \rightarrow \textit{WW})... \end{array}$

Tilman Plehn

Discovery

Higgs rate

SFitter

Higgs

Hypotheses

To do

Higgs couplings

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012; Contino et al]

- light Higgs around 126 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF : H \to ZZ, WW, \gamma\gamma$ [first analyses] $WBF : H \to ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH : H \to b\bar{b}$ [BDRS crucial] $t\bar{t}H : H \to \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties
 - $\begin{array}{l} (WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau) \\ (WBF: H \rightarrow WW)/(GF: H \rightarrow WW)... \end{array}$

Total width

- myths about scaling

$$N = \sigma BR \propto rac{g_{
ho}^2}{\sqrt{\Gamma_{
m tot}}} \; rac{g_d^2}{\sqrt{\Gamma_{
m tot}}} \sim rac{g^4}{g^2 rac{\sum \Gamma_i(g^2)}{g^2} + \Gamma_{
m unobs}} \; \stackrel{g^2 o 0}{\longrightarrow} = 0$$

gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{\text{tot}} \to \Gamma_H|_{\text{min}}$

- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H |_{max}$
- SFitter assumption $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]

Tilman Plehn

Discovery

Higgs rate

SFitter

Higgs

Hypotheses

To do

Higgs couplings

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012; Contino et al]

- light Higgs around 126 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF : H \to ZZ, WW, \gamma\gamma$ [first analyses] $WBF : H \to ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH : H \to b\bar{b}$ [BDRS crucial] $t\bar{t}H : H \to \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties

 $\begin{array}{l} (\textit{WBF}: \textit{H} \rightarrow \textit{WW})/(\textit{WBF}: \textit{H} \rightarrow \tau\tau) \\ (\textit{WBF}: \textit{H} \rightarrow \textit{WW})/(\textit{GF}: \textit{H} \rightarrow \textit{WW})... \end{array}$

SFitter ansatz [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- couplings measurement $g_{HXX} = g_{HXX}^{SM} (1 + \Delta_X)$ D5 couplings $g_{ggH}, g_{\gamma\gamma H}$ free?
- experimental/theory errors on signal and backgrounds ATLAS and CMS both included
- exclusive likelihood map each coupling from profile likelihoods best-fit point with Minuit complete error analysis

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Basic checks

Marginalization procedures

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Basic checks

Marginalization procedures

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- $2- \ higher \ luminosity \ quantitatively \ different \quad \ [no \ effective \ couplings, \ 30 \ vs \ 300 \ fb^{-1}]$

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Basic checks

Marginalization procedures

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3- but not saving Bayesian statistics $[no effective couplings, 300 fb^{-1}]$

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Basic checks

Marginalization procedures

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3- but not saving Bayesian statistics $[no effective couplings, 300 fb^{-1}]$
- 4- theory errors not dominant for 30 fb^{-1} [with effective couplings, 30 fb^{-1}]

 \Rightarrow profile likelihood for now

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

7 TeV and 8 TeV results

Global view on 7 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions?
- (1) expected 2011 results: SM central values, measured error bars
 - large-coupling solution separable

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

7 TeV and 8 TeV results

Global view on 7 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions?
- (1) expected 2011 results: SM central values, measured error bars
 - large-coupling solution separable
- (2) measured 2011 results: measured central values and error bars
 - both solutions overlapping

Tilman Plehn

- Discovery
- Higgs rates
- SFitter

Higgs

- Hypotheses
- To do

7 TeV and 8 TeV results

Global view on 7 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions?
- (1) expected 2011 results: SM central values, measured error bars
 - large-coupling solution separable
- (2) measured 2011 results: measured central values and error bars
 - both solutions overlapping

Local view on 7 TeV/8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- focus on SM solution where possible
- five couplings from data
 - $g_W \sim 0$ while g_Z okay g_b and g_t hurt by secondary solution g_{τ} inconclusive in data g_a and g_{γ} requiring $t\bar{t}H$ analysis
- poor man's analysis great: $\Delta_j \equiv \Delta_H$
- ⇒ moving toward Standard Model?

Tilman Plehn

- Discovery
- Higgs rates
- SFitter
- Higgs
- Hypothese
- To do

7 TeV and 8 TeV results

Global view on 7 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions?
- (1) expected 2011 results: SM central values, measured error bars
 - large-coupling solution separable
- (2) measured 2011 results: measured central values and error bars
 - both solutions overlapping

Local view on 7 TeV/8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- focus on SM solution where possible
- five couplings from data $g_W \sim 0$ while g_Z okay g_b and g_t hurt by secondary solution g_{τ} inconclusive in data g_g and g_{γ} requiring $t\bar{t}H$ analysis
- poor man's analysis great: $\Delta_j \equiv \Delta_H$
- ⇒ moving toward Standard Model?

Tilman Plehn

- Discovery
- Higgs rates
- SFitter

Higgs

- Hypotheses
- To do

7 TeV and 8 TeV results

Global view on 7 TeV data [Klute, Lafaye, TP, Rauch, Zerwas, Dührssen]

- is there a SM-like solution? are there alternative solutions?
- (1) expected 2011 results: SM central values, measured error bars
 - large-coupling solution separable
- (2) measured 2011 results: measured central values and error bars
 - both solutions overlapping

2012, 2014, etc

– specifially Higgs:

dark side of the Higgs portal? new states in effective couplings?

- 2012: meaningful WBF measurements g_W and g_τ accessible
- 2014: $t\bar{t}H$ and $H \rightarrow b\bar{b}$ measurements g_g and g_γ accessible
- upgrades: systematics critical
- ⇒ exciting prospects!

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to XX^*]}{\sigma[H_1 \to XX^*]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{II}}}} \stackrel{!}{\leq} \mathcal{R}$$

– two scenarios: ($m_H =$ 125, $\mathcal{R} \sim$ 1) and ($m_H =$ 155, $\mathcal{R} \sim$ 0.4)

⇒ invisible Higgs needed for final answer [Eboli & Zeppenfeld]

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to XX^*]}{\sigma[H_1 \to XX^*]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{SU},1}^{\text{SM}}}} \stackrel{!}{\prec} \mathcal{R}$$

⇒ invisible Higgs needed for final answer [Eboli & Zeppenfeld]

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter; Ellis & You]

- pretty much fundamental Higgs
- coupling analysis technically simple
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
 - one-parameter fit in SFitter
 - from 7 TeV data $\Delta_H = 0 \pm 0.20$
- 2– gauge couplings $g o g \sqrt{1-\xi}$ Yukawas $g o g(1-2\xi)/\sqrt{1-\xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \Gamma_{tot,1}^{SM} + \sin^2 \chi \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to XX^*]}{\sigma[H_1 \to XX^*]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}} \stackrel{!}{\leq} \mathcal{R}$$

⇒ invisible Higgs needed for final answer [Eboli & Zeppenfeld]

Hypotheses vs 7 TeV data [SFitter 2012]

- start from general analysis
- pick your favorite model as constraint

	χ^{2}_{2011} /dof
independent Δ_x	9.3/22
$\Delta_W = \Delta_Z$	12.3/23
$\Delta_W = \Delta_Z$ and $\Delta_b = \Delta_t = \Delta_\tau$	18.0/24
$\Delta_{x}\equiv\Delta_{H}$	18.6/26
gaugephobic	13.2/24
fermiophobic	16.0/25

 \Rightarrow easy once the general fit is done

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypothese

To do

To-do list

Problems in Higgs sector analyses

- 1- pile-up in Higgs analyses nothing I can do
- 2- channels for *bbH* and *ttH* couplings Higgs and top tagging: tools in good hands [thank you to Higgs workshop in 2009!]
- 3− N[∞]LO cross section predictions maybe I am not German enough
- 4- analyses not organized by production channels count recoil jets instead, jet vetos

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

To-do list

Higgs searches by recoil jets, not production processes

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- many analyses at odds with DGLAP [hard to predict at fixed order]
- \Rightarrow study exclusive n_{jets} distributions

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do

To-do list

Higgs searches by recoil jets, not production processes

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- many analyses at odds with DGLAP [hard to predict at fixed order]
- \Rightarrow study exclusive n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron $\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$ 1- radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color] 2- phase space factor 1/n! [only combinatorics effect, matrix element ordered]

3– normalization factor $e^{-\bar{n}}$

Tilman Plehn

- Discovery
- Higgs rate:
- SFitter
- Higgs
- Hypothese
- To do

To-do list

Higgs searches by recoil jets, not production processes

- 'soft' gluon radiation infinitely likely [like soft photons]
- parton densities including 'collinear' jets [intro: arXiv:0910.4182, Springer Lecture Notes]
- many analyses at odds with DGLAP [hard to predict at fixed order]
- \Rightarrow study exclusive n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron $\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$ 1- radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color] 2- phase space factor 1/n! [only combinatorics effect, matrix element ordered]
 - 3– normalization factor $e^{-\bar{n}}$

Staircase scaling [Ellis, Kleiss, Stirling]

- observed since UA2
- same for inclusive and exclusive rates

$$\mathbf{R}_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}}{\sigma_n^{(\text{excl})} + \sum_{j=n+1}^{\infty} \sigma_j^{(\text{excl})}} = \mathbf{R}_{(n+1)/n}^{\text{excl}} = \text{const}$$

Tilman Plehn

Discovery

Higgs rate:

SFitter

Higgs

Hypotheses

To do

Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Tilman Plehn

Discovery

Higgs rate:

SFitter

Higgs

Hypothe

To do

Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto

- count add'l jets to reduce backgrounds
 - $p_T^{\text{veto}} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$
- Poisson for QCD processes ['radiation' pattern]

Tilman Plehn

Discovery

- Higgs rate:
- SFitter
- Higgs
- Hypothes
- To do

Jet veto

Example: WBF $H \rightarrow au au$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto

count add'l jets to reduce backgrounds

 $p_T^{\text{veto}} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]
- (fairly) staircase for e-w processes [cuts keeping signal]
- QCD and n_{jets} at work

Tilman Plehn

- Discovery
- Higgs rates
- SFitter
- Higgs
- Hypotheses
- To do

Outlook

Higgs@LHC

- discovery from successful bump hunt
- many open questions in the details
- coupling analysis a major LHC goal
- naive guesstimate misleading
- many technical issues
- SFitter update imminent

\Rightarrow for Manfred: a case for a 250 GeV linear collider?

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work

Bundesministerium für Bildung und Forschung

Tilman Plehn

Discovery

Higgs rates

SFitter

Higgs

Hypotheses

To do