Tilman Plehn

self coupling

production

signatures

Higgs self coupling — some old man's memories

Tilman Plehn

Universität Heidelberg

Higgs Couplings, 11/2012

Tilman Plehn

self coupling

production

signatures

Higgs self coupling

The missing piece

- LHC measurements of g_{HXX} on the way LHC determination of coupling structure on the way

$$V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \quad \Rightarrow \quad \lambda = \frac{m_H^2}{2v^2}$$

Tilman Plehn

self coupling

production

signatures

Higgs self coupling

The missing piece

- LHC measurements of g_{HXX} on the way LHC determination of coupling structure on the way
- Higgs potential $V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \Rightarrow \lambda = \frac{m_H^2}{2v^2}$
- including D6 operators

$$\mathcal{O}_1 = rac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) \qquad \mathcal{O}_2 = -rac{1}{3} (\phi^\dagger \phi)^3$$

- modified self couplings

$$\begin{split} \mathscr{L}_{\text{self}} &= - \; \frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{1}v^{2}}{2\Lambda^{2}} + \frac{2f_{2}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{1}v^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu}H \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{1}v^{2}}{\Lambda^{2}} + \frac{4f_{2}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{1}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu}H \partial^{\mu}H \right] \\ \text{Feynman rule} \quad - i \frac{3m_{H}^{2}}{v} \left[1 - \frac{f_{1}v^{2}}{2\Lambda^{2}} + \frac{2f_{2}v^{4}}{3\Lambda^{2}m_{H}^{2}} + \frac{2f_{1}v^{2}}{3\Lambda^{2}m_{H}^{2}} \sum_{j < k}^{3} (p_{j}p_{k}) \right] \end{split}$$

Tilman Plehn

self coupling

production

signatures

Higgs self coupling

The missing piece

- LHC measurements of g_{HXX} on the way LHC determination of coupling structure on the way
- Higgs potential $V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \Rightarrow \lambda = \frac{m_H^2}{2v^2}$
- including D6 operators

$$\mathcal{O}_1 = rac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) \qquad \mathcal{O}_2 = -rac{1}{3} (\phi^\dagger \phi)^3$$

 \Rightarrow Higgs pair production

Tilman Plehn

self coupling

production

signatures

Higgs self coupling

The missing piece

- LHC measurements of g_{HXX} on the way LHC determination of coupling structure on the way
- Higgs potential $V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \Rightarrow \lambda = \frac{m_H^2}{2\nu^2}$
- including D6 operators

$$\mathcal{O}_{1} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \partial^{\mu} (\phi^{\dagger} \phi) \qquad \mathcal{O}_{2} = -\frac{1}{3} (\phi^{\dagger} \phi)^{3}$$

One-loop amplitude $gg \rightarrow HH$

- destructive interference: resonance-continuum
- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]

$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

- threshold behavior

$$\left[3m_{H}^{2} \ \frac{g_{ggH}}{s - m_{H}^{2}} + g_{ggHH}\right]^{2} \sim g_{ggH} \left[3m_{H}^{2} \ \frac{1}{3m_{H}^{2}} - 1\right]^{2} \rightarrow 0$$

⇒ kinematics relevant

Tilman Plehn

self coupling

production

signatures

Linear collider

Rate at linear collider: $e^+e^- \rightarrow ZHH$

- very limited number of events
- low Higgs mass, decays $H
 ightarrow b ar{b}$ [Keisuke Fuji's talk]
- measurement of λ through total rate ($m_h = 120 \text{ GeV}$)
- ⇒ hard measurement everywhere

Tilman Plehn

self coupling

production

signatures

Production process

- rates notorious at LHC [NLO: Dawson, Dittmaier, Spira]
- large top mass approximation wrong for distributions [Baur, TP, Rainwater]

Tilman Plehn

self coupling

production

signatures

Production process

- rates notorious at LHC [NLO: Dawson, Dittmaier, Spira]
- large top mass approximation wrong for distributions [Baur, TP, Rainwater]
- kinematics affected by self coupling

Tilman Plehn

self coupling

production

signatures

Production process

- rates notorious at LHC [NLO: Dawson, Dittmaier, Spira]
- large top mass approximation wrong for distributions [Baur, TP, Rainwater]
- kinematics affected by self coupling

Tilman Plehn

self coupling

production

signatures

Production process

- rates notorious at LHC [NLO: Dawson, Dittmaier, Spira]
- large top mass approximation wrong for distributions [Baur, TP, Bainwater]
- kinematics affected by self coupling
- production process part of Madgraph [Frederix, from TP, Spira, Zerwas]
- \Rightarrow shape analysis necessary and possible

Tilman Plehn

self coupling

production

signatures

Production process

Signal Extraction [Baur etal; Dolan etal]

- rates notorious at LHC [NLO: Dawson, Dittmaier, Spira]
- large top mass approximation wrong for distributions [Baur, TP, Rainwater]
- kinematics affected by self coupling
- production process part of Madgraph [Frederix, from TP, Spira, Zerwas]
- \Rightarrow shape analysis necessary and possible

Analysis strategy [Baur etal]

- no 5σ signal for *HH* production
- assumption: Standard Model Higgs type scalar inducing coupling g_{ttH} from SFitter
- limits on 'anomalous' Higgs self coupling exclude $\lambda = 0$ with enhanced rate
- possibly including hard jet [Dolan etal]

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, b\bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?

m _h [GeV]	signal	$N^{2 \times 300}$	WWWjj	tīW	tīZ	tīj	WZ4j	WW4j	tītī
150	0.074	44	0.361	0.222	0.054	0.082	0.148	0.0052	0.0018
160	0.194	116	0.486						
180	0.177	106	0.404						
200	0.083	50	0.292						

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{j,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- \Rightarrow at least not as hard as 4*b*...

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- \Rightarrow at least not as hard as 4b...

New attempts: $HH
ightarrow bar{b} au^+ au^-, bar{b} W^+ W^-$ [Dolan etal, Papaefstathiou etal]

 $-b\bar{b}\tau^+\tau^-$: not very promising with usual analysis [Baur etai] but benefitting from fat jets tools [BDRS, Dolan etai]

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b}\tau\tau$	$b\bar{b}\tau \tau$ [ew]	b̄bW ⁺ W [−]	ratio to $\xi = 1$
before cuts	59.48	28.34	13.36	67.48	8.73	873000	3.2 · 10 ⁻⁵
reconstructed $m_{ au au}$	4.05	1.94	0.91	2.51	1.10	1507.99	1.9 · 10 ⁻³
fatjet cuts	2.27	1.09	0.65	1.29	0.84	223.21	4.8 · 10 ⁻³
reconstructed m _{bb}	0.41	0.26	0.15	0.104	0.047	9.50	2.3 · 10 ⁻²
double b-tag	0.148	0.095	0.053	0.028	0.020	0.15	0.48

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- \Rightarrow at least not as hard as 4*b*...

New attempts: $HH \rightarrow b\bar{b}\tau^+\tau^-, b\bar{b}W^+W^-$ [Dolan etal, Papaefstathiou etal]

- $-b\bar{b}\tau^+\tau^-$: not very promising with usual analysis [Baur etai] but benefitting from fat jets tools [BDRS, Dolan etai]
- further improved S/B with add'l jet

Tilman Plehn

self coupling

signatures

Signatures

Historic channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: tīj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim$ 1
- \Rightarrow at least not as hard as 4*b*...

New attempts: $HH \rightarrow b\bar{b}\tau^+\tau^-, b\bar{b}W^+W^-$ [Dolan etal, Papaefstathiou etal]

- $\begin{array}{ll} \ b\bar{b}\tau^+\tau^-\colon \text{not very promising with usual analysis} & \text{[Bauretal]} \\ & \text{but benefitting from fat jets tools} & \text{[BDRS, Dolan etal]} \end{array}$
- further improved S/B with add'l jet
- $b\bar{b}W^+W^-$: not very promising [Dolan etal] maybe possible [Papaefstathiou etal]
- $t\bar{t}$ background a big challenge
- \Rightarrow always a good idea to try again

Tilman Plehn

self coupling

production

signatures

Outlook

Boy, that looks really hard!

self coupling production

signatures

Discussion on couplings

Questions on Higgs couplings

- what parametrization should we use? what questions do we want to ask?
- how can we test BSM physics in the Higgs sector?
- is there space for theorists' fits? how should an ex-th collaboration be implemented?
- what can/should the experiments publish?

Questions on future analyses

- what channels do we want to see/probe?
- what are the experimental issues for 3000 fb^{-1} ?
- are there theory calculations/tools missing?
- do we want to talk about LC measurements?