Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Higgs Couplings

Tilman Plehn

Universität Heidelberg

Standard Model@LHC, 4/2013

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Higgs physics 2013-20XX

Fundamental questions

1- What is the 'Higgs' Lagrangian? [Maggie's talk]

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Higgs physics 2013-20XX

Fundamental questions

1- What is the 'Higgs' Lagrangian? [Maggle's talk] psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Higgs physics 2013-20XX

Fundamental questions

 1- What is the 'Higgs' Lagrangian? [Maggie's talk] psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected
 2- What are the coupling values?

Tilman Plehn

Results

Channels

- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Higgs physics 2013-20XX

Fundamental questions

- 1– What is the 'Higgs' Lagrangian? [Maggle's talk] psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected
- 2- What are the coupling values?

couplings require operator basis [hard for spin-2] eventually renormalization [mass dimension] 'anomalous couplings' in addition

Tilman Plehn

Results

- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Higgs physics 2013-20XX

Fundamental questions

- 1– What is the 'Higgs' Lagrangian? [Maggie's talk] psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected
- 2- What are the coupling values?

couplings require operator basis [hard for spin-2] eventually renormalization [mass dimension] 'anomalous couplings' in addition

Elephant channel in the room

- inclusive searches = gluon fusion
- couplings discovered $g_{Hgg}, g_{H\gamma\gamma}, g_{HZZ}, g_{HWW}$
- eventually $H \rightarrow Z\gamma$ [Atlas-Conf-2013-009, CMS-Hig-13-006]
- \Rightarrow to amuse yourself:

Who would build this LHC+ATLAS+CMS to

- (1) discover a particle which couples to mass??
- (2) probe unitarity/renormalizability of the weak Lagrangian??

Tilman Plehn

Results

Channels

- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Additional production channels

WBF production

- + second-largest rate [small QCD corrections]
- + tagging jets to trigger and get $S/B \sim 1$ [m_{jj} very useful]
- sensitive to pile-up
- tricky jet veto
- \Rightarrow accessible $H \rightarrow WW, \tau\tau, \mu\mu$, invisible

Tilman Plehn

Results

Channels

- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Additional production channels

WBF production

- + second-largest rate [small QCD corrections]
- + tagging jets to trigger and get $S/B \sim 1$ [m_{jj} very useful]
- sensitive to pile-up
- tricky jet veto
- \Rightarrow accessible $H \rightarrow WW, \tau \tau, \mu \mu$, invisible

WH/ZH production

- + purely leptonic associate production [trigger, small QCD corrections]
- low rate, tricky QCD backgrounds [Vbb]
- missing energy in WH, few leptonic Z decays
- \Rightarrow accessible $H \rightarrow b \bar{b}$

Tilman Plehn

Results

Channels

- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Additional production channels

WBF production

- + second-largest rate [small QCD corrections]
- + tagging jets to trigger and get $S/B \sim 1$ [m_{jj} very useful]
- sensitive to pile-up
- tricky jet veto
- \Rightarrow accessible $H \rightarrow WW, \tau \tau, \mu \mu$, invisible

WH/ZH production

- + purely leptonic associate production [trigger, small QCD corrections]
- low rate, tricky QCD backgrounds [Vbb]
- missing energy in WH, few leptonic Z decays
- \Rightarrow accessible $H \rightarrow b \bar{b}$

$t\bar{t}H$ production [$b\bar{b}H$ only in 2HDM]

- low rate, complex final state
- $-~{
 m decays}~\gamma\gamma>WW>bar{b}$ at high luminosities [trying to change this]
- \Rightarrow accessible $gg \rightarrow t\bar{t}H$

Tilman Plehn

Higgs couplings

- Anomalous couplings

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael Dührssen

Higgs couplings

\Rightarrow straightforward except for width and theory errors

$$\begin{array}{c} H \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \end{array}$$

mm

Tilman Plehn

- Results
- Channels

Higgs couplings

- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael Dührssen

Higgs couplings

\Rightarrow straightforward except for width and theory errors

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \qquad \longleftrightarrow \qquad \left[g_x = g_x^{\rm SM} \ (1 + \Delta_x) \right] \qquad \longleftrightarrow \qquad \end{array}$$

$$\begin{array}{l} H \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \end{array}$$

Including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- six couplings from data g_b from width g_t and g_g not yet possible

[similar: Ellis etal, Djouadi etal, Pich etal, Strumia etal, Maggie etal]

- poor man's analyses great: $\Delta_H, \Delta_V, \Delta_f$
- moving towards Standard Model?

Tilman Plehn

- Results
- Channels

Higgs couplings

- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael Dührssen

Higgs couplings

\Rightarrow straightforward except for width and theory errors

$$\begin{array}{c} H \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \end{array}$$

Including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- six couplings from data g_b from width g_t and g_g not yet possible

[similar: Ellis etal, Djouadi etal, Pich etal, Strumia etal, Maggie etal]

- poor man's analyses great: $\Delta_H, \Delta_V, \Delta_f$
- moving towards Standard Model?

Tilman Plehn

Higgs couplings

- Anomalous couplings

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael D
 ührssen

Higgs couplings

\Rightarrow straightforward except for width and theory errors

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \qquad \begin{array}{c} g_x = g_x^{\text{SM}} (1 + \Delta_x) \\ \end{array} \qquad \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WV \\ H \to b\bar{b} \\ H \to b\bar{c}^+ \\ H \to \gamma\gamma \end{array}$$

Including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- six couplings from data

 $a_{\rm b}$ from width g_t and g_a not yet possible

	ΔhVV	$\Delta h \overline{t} t$	$\Delta h \overline{b} b$
mixed-in singlet	6%	6%	6%
composite Higgs	8%	tens of %	tens of %
MSSM	< 1%	3%	depends

 $\rightarrow WW$ $\rightarrow b\bar{b}$ $\rightarrow \tau^+ \tau^ 1 \rightarrow \gamma \gamma$

[similar: Ellis etal, Djouadi etal, Pich etal, Strumia etal, Maggie etal]

- poor man's analyses great: $\Delta_H, \Delta_V, \Delta_f$
- moving towards Standard Model?
- ⇒ expected in BSM models [Gupta, Rzehak, Wells]

Tilman Plehn

Higgs couplings

- Anomalous couplings

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael D
 ührssen

\Rightarrow straightforward except for width and theory errors

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \qquad \begin{array}{c} g_x = g_x^{\mathrm{SM}} \ (1 + \Delta_x) \end{array} \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+ \tau^- \\ H \to \gamma\gamma \end{array}$$

⊦ bb $\tau^+ \tau^-$

Dinosaur extrapolation

Higgs couplings

- LHC extrapolations unclear [here: SFitter version]
- theory extrapolations tricky [here: SFitter version]

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

- Anomalous couplings
- Energy dependence

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael Dührssen

⇒ straightforward except for width and theory errors

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \qquad \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+\tau^- \\ H \to \gamma\gamma \end{array}$$

Dinosaur extrapolation

Higgs couplings

- LHC extrapolations unclear [here: SFitter version]
- theory extrapolations tricky [here: SFitter version]
- ILC case obvious [to me]
- interplay in loop-induced couplings

Tilman Plehn

Higgs couplings

- Anomalous couplings

Coupling for SM operators [Zeppenfeld et al; Dührssen et al; SFitter 2009]

- higher orders only in QCD [for weak corrections ask StefanD]
- couplings from production & decay rates [observables: S,B]
- setup by Michael D
 ührssen

\Rightarrow straightforward except for width and theory errors

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \qquad \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+ \tau \\ H \to \gamma\gamma \end{array}$$

Dinosaur extrapolation

Higgs couplings

- LHC extrapolations unclear [here: SFitter version]
- theory extrapolations tricky [here: SFitter version]
- ILC case obvious [to me]
- interplay in loop-induced couplings
- ttH important at LHC and ILC

 τ

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

- Anomalous couplings
- Energy dependence

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Example: $q \bar{q} ightarrow VH, H ightarrow b ar{b}$ and S/B

- backgrounds continuum $Vb\bar{b}$: $p_{T,bb} > m_H$ top pairs: jet veto - $qg \rightarrow Zg \rightarrow Z(b\bar{b})$ effectively $2 \rightarrow 2$

$$gg \rightarrow Zb\bar{b}$$
 really $2 \rightarrow 3$

$$qg \rightarrow Zqb\overline{b}$$
 really 2 \rightarrow 4

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

- Anomalous couplings
- Energy dependence

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Example: $q\bar{q} \rightarrow VH, H \rightarrow b\bar{b}$ and S/B

- backgrounds
 continuum Vbb: p_{T,bb} > m_H
 top pairs: jet veto
- $\begin{array}{l} \ qg \rightarrow Zg \rightarrow Z(b\bar{b}) \ \text{effectively } 2 \rightarrow 2 \\ gg \rightarrow Zb\bar{b} \ \text{really } 2 \rightarrow 3 \\ qg \rightarrow Zqb\bar{b} \ \text{really } 2 \rightarrow 4 \end{array}$

- ATLAS:
$$\sigma/\sigma_{
m SM}$$
 > 1.9 [ATLAS-CONF-2012-161]

(e) $p_T^W > 200 \text{ GeV}$

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

- Anomalous couplings
- Energy dependence

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Example: $q\bar{q} \rightarrow VH, H \rightarrow b\bar{b}$ and S/B

- backgrounds
 continuum Vbb: p_{T,bb} > m_H
 top pairs: jet veto
- $\begin{array}{l} \ qg \rightarrow Zg \rightarrow Z(b\bar{b}) \ \text{effectively } 2 \rightarrow 2 \\ gg \rightarrow Zb\bar{b} \ \text{really } 2 \rightarrow 3 \\ qg \rightarrow Zqb\bar{b} \ \text{really } 2 \rightarrow 4 \end{array}$
- ATLAS: $\sigma/\sigma_{\rm SM} > 1.9$ [ATLAS-CONF-2012-161]

(b) $\sqrt{s} = 8 \text{ TeV}$

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Example: $q\bar{q} \rightarrow VH, H \rightarrow b\bar{b}$ and S/B

- backgrounds
 continuum Vbb: p_{T,bb} > m_H
 top pairs: jet veto
- $\begin{array}{l} \ qg \rightarrow Zg \rightarrow Z(b\bar{b}) \ \text{effectively } 2 \rightarrow 2 \\ gg \rightarrow Zb\bar{b} \ \text{really } 2 \rightarrow 3 \\ qg \rightarrow Zqb\bar{b} \ \text{really } 2 \rightarrow 4 \end{array}$
- ATLAS: $\sigma/\sigma_{\rm SM}$ > 1.9 [ATLAS-CONF-2012-161]

Tilman Plehn

- Bottom Yukawa

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Example: $q\bar{q} \rightarrow VH, H \rightarrow b\bar{b}$ and S/B

- backgrounds continuum Vb \bar{b} : $p_{T,bb} > m_H$ top pairs: jet veto
- $qq \rightarrow Zq \rightarrow Z(b\bar{b})$ effectively $2 \rightarrow 2$ $gg \rightarrow Zb\bar{b}$ really 2 \rightarrow 3 $aq \rightarrow Zab\bar{b}$ really $2 \rightarrow 4$
- ATLAS: $\sigma/\sigma_{\rm SM}$ > 1.9 [ATLAS-CONF-2012-161]
- CMS: $\sigma/\sigma_{SM} > 2.5$ [CMS-HIG-12-044]

Variable

p_{Ti}: transverse momentum of each Higgs daughter m(jj): dijet invariant mass $p_{T}(jj)$: dijet transverse momentum $p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$) CSV_{max}: value of CSV for the Higgs daughter with largest CSV value CSVmin: value of CSV for the Higgs daughter with second largest CSV value $\Delta \phi(V, H)$: azimuthal angle between V (or E_T^{miss}) and dijet $|\Delta n(ij)|$: difference in *n* between Higgs daughters $\Delta R(ij)$: distance in $\eta - \phi$ between Higgs daughters Nai: number of additional jets $\Delta \phi(E_T^{miss}, jet)$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$) $\Delta \theta_{\text{pull}}$: color pull angle [35]

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Bottom Yukawa

Challenges in additional channels

- WBF production and jet veto tough
- VH limited by S/B
- ttH problems all over [Jochen Cammin's ATLAS thesis]
- \Rightarrow lots of space for new ideas by young people

Example: $q \bar{q} ightarrow VH, H ightarrow b ar{b}$ and S/B

- backgrounds continuum $Vb\bar{b}$: $p_{T,bb} > m_H$ top pairs: jet veto
- $\begin{array}{l} \ qg \rightarrow Zg \rightarrow Z(b\bar{b}) \ \text{effectively } 2 \rightarrow 2 \\ gg \rightarrow Zb\bar{b} \ \text{really } 2 \rightarrow 3 \\ qg \rightarrow Zqb\bar{b} \ \text{really } 2 \rightarrow 4 \end{array}$
- ATLAS: $\sigma/\sigma_{\rm SM} > 1.9$ [Atlas-conf-2012-161]
- CMS: $\sigma/\sigma_{\rm SM}>2.5~$ [CMS-HIG-12-044]
- \Rightarrow need to target boosted MC studies and tools [BDRS, Piquadio]

Tilman Plehn

Results

- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings

Energy dependence

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} (\Phi^{\dagger} \Phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^2} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ &+ \frac{f_W}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) + \frac{f_B}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr}(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_b}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{Q}_3 \Phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{L}_3 \Phi e_{R,3}) \end{split}$$

- plus e-w precision data and triple gauge couplings

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} (\Phi^{\dagger} \Phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^{2}} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ &+ \frac{f_{W}}{\Lambda^{2}} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{B}}{\Lambda^{2}} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{WWW}}{\Lambda^{2}} \operatorname{Tr}(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_{b}}{\Lambda^{2}} (\Phi^{\dagger} \Phi) (\overline{Q}_{3} \Phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^{2}} (\Phi^{\dagger} \Phi) (\overline{L}_{3} \Phi e_{R,3}) \end{split}$$

- plus e-w precision data and triple gauge couplings

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} (\Phi^{\dagger} \Phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^2} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ &+ \frac{f_W}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) + \frac{f_B}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr}(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_b}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{Q}_3 \Phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{L}_3 \Phi e_{R,3}) \end{split}$$

- plus e-w precision data and triple gauge couplings

⇒ remember what your operators are!

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings

Energy dependence

Consistent models beyond spin-0 [e.g. Alwall, TP, Rainwater]

- WBF $\chi^+\chi^+$ vs W^+W^+ production

Energy dependence

- problem with UV behavior for spin-1

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Energy dependence

Consistent models beyond spin-0 [e.g. Alwall, TP, Rainwater]

- WBF $\chi^+\chi^+$ vs W^+W^+ production
- problem with UV behavior for spin-1

Energy dependent spin-2 couplings

- unitarization affecting energy variables [Alboteanu, Kilian, Reuter]
- WBF cutoff $p_{T,j} < 100 \text{ GeV}$ [Englert, Mawatari, Netto, TP]

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Energy dependence

Consistent models beyond spin-0 [e.g. Alwall, TP, Rainwater]

- WBF $\chi^+\chi^+$ vs W^+W^+ production
- problem with UV behavior for spin-1

Energy dependent spin-2 couplings

- unitarization affecting energy variables [Alboteanu, Kilian, Reuter]
- WBF cutoff $p_{T,j} < 100 \text{ GeV}$ [Englert, Mawatari, Netto, TP]
- Gottfried-Jackson or similar angles [$\hat{p}_{X,lab}$ vs $\hat{p}_{d,X}$; Frank, Rauch, Zeppenfeld; Schumacher]

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Energy dependence

Consistent models beyond spin-0 [e.g. Alwall, TP, Rainwater]

- WBF $\chi^+\chi^+$ vs W^+W^+ production
- problem with UV behavior for spin-1

Energy dependent spin-2 couplings

- unitarization affecting energy variables [Alboteanu, Kilian, Reuter]
- WBF cutoff $p_{T,j} < 100 \text{ GeV}$ [Englert, Mawatari, Netto, TP]
- Gottfried-Jackson or similar angles [$\hat{p}_{X,lab}$ vs $\hat{p}_{d,X}$; Frank, Rauch, Zeppenfeld; Schumacher]
- \Rightarrow solvable issues beyond spin-0

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Outlook

Higgs@LHC

- discovery an amazing experimental success
- weakly interacting field theory established
- coupling measurements established
- do not listen too much to theorists, for now straightforward
- additional channels will make the difference [where are the great papers by youngsters??]
- \Rightarrow Higgs moved on from discovery to precision studies

Part of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work

Bundesministerium für Bildung und Forschung

Theory games

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f$ [little Higgs $v \sim g^2 f/(2\pi)$]

Tilman Plehn

Theory games

Results

- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f$$
 [little Higgs $v \sim g^2 f/(2\pi)$]

- postulate new $f\gtrsim v$ and $m_
ho o 4\pi f_{[c_j \ \sim \ 1]}$ [assume custodial symmetry]

$$\begin{split} \mathcal{L}_{\mathrm{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_Y y_f}{f^2} H^{\dagger} H \vec{I}_L H f_R + \mathrm{h.c.} \right) \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_H w g}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_H g g'}{16\pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu} \\ &+ \frac{c_\gamma g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_f^2}{g_{\rho}^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu} . \end{split}$$

Tilman Plehn

Theory games

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f$$
 [little Higgs $v \sim g^2 f/(2\pi)$]

- postulate new $f\gtrsim v$ and $m_
 ho o 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strength

$$\begin{split} \mathcal{L}_{\text{SILH}} &\sim \frac{c_H}{f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{f^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overrightarrow{D}_{\mu} H \right) \\ &- \frac{c_6}{(3f)^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \vec{h}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W}{(16f)^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B}{(16f)^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW}}{(16f)^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB}}{(16f^2)} \left(D^{\mu} H \right)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g}{(256f)^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu}. \end{split}$$

Tilman Plehn

Theory games

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f$ [little Higgs $v \sim g^2 f/(2\pi)$]
- postulate new $f\gtrsim v$ and $m_
 ho o 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strength

$$\begin{split} \mathcal{L}_{\text{SILH}} &\sim \frac{c_H}{f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{f^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overrightarrow{D}_{\mu} H \right) \\ &- \frac{c_6}{(3f)^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \vec{h}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W}{(16f)^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B}{(16f)^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW}}{(16f)^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB}}{(16f^2)} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g}{(256f)^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu}. \end{split}$$

- leading terms in wave function renormalization and Hⁿ
- \Rightarrow collider phenomenology of mostly ($H^{\dagger}H$) terms [Mühlleitner etal]

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence

Uncertainties

SFitter details [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

production	decay	S + B	В	S	$\Delta S^{(exp)}$	$\Delta S^{(\text{theo})}$
$gg \rightarrow H$	ZZ	13.4	6.6 (× 5)	6.8	3.9	0.8
qqH	ZZ	1.0	0.2 (× 5)	0.8	1.0	0.1
$gg \rightarrow H$	WW	1019.5	882.8 (× 1)	136.7	63.4	18.2
qqH	WW	59.4	37.5 (× 1)	21.9	10.2	1.7
tīH	WW(3ℓ)	23.9	21.2 (× 1)	2.7	6.8	0.4
tīH	<i>WW</i> (2ℓ)	24.0	19.6 (× 1)	4.4	6.7	0.6
inclusive	$\gamma\gamma$	12205.0	11820.0 (× 10)	385.0	164.9	44.5
qqH	$\gamma\gamma$	38.7	26.7 (× 10)	12.0	6.5	0.9
tīH	$\gamma\gamma$	2.1	0.4 (× 10)	1.7	1.5	0.2
WH	$\gamma\gamma$	2.4	0.4 (× 10)	2.0	1.6	0.1
ZH	$\gamma\gamma$	1.1	0.7 (× 10)	0.4	1.1	0.1
qqH	$\tau \tau (2\ell)$	26.3	10.2 (× 2)	16.1	5.8	1.2
qqH	$\tau \tau (1\ell)$	29.6	11.6 (× 2)	18.0	6.6	1.3
tīH	bb	244.5	219.0 (× 1)	25.5	31.2	3.6
WH/ZH	bĐ	228.6	180.0 (× 1)	48.6	20.7	4.0

luminosity measurement	5 %
detector efficiency	2 %
lepton reconstruction efficiency	2 %
photon reconstruction efficiency	2 %
WBF tag-jets / jet-veto efficiency	5%
b-tagging efficiency	3 %
τ -tagging efficiency (hadronic decay)	3 %
lepton isolation efficiency $(H \rightarrow 4\ell)$	3 %

	ΔB ^(syst)	corr.
$H \rightarrow ZZ$	1%	yes
$H \rightarrow WW$	5%	no
$H \rightarrow \gamma \gamma$	0.1%	yes
$H \rightarrow \tau \tau$	5%	yes
$H ightarrow bar{b}$	10%	no

plus: $t\bar{t}H$ with $S \rightarrow S/2$ and ZH subjet analysis a la Piquadio

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; Bernaciak, Buschmann, Butter, TP]

- originally alternative to event shapes

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start

	$H_\ell < 0.3$	$0.3 < H_{\ell} < 0.7$	$0.7 < H_{\ell} < 1$
even ℓ	forbidden	democratic	ordered, collinear, back-to-back
odd ℓ	back-to-back	democratic	collinear, ordered

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings

Energy dependence

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [m_{jj} > 600 GeV]

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings

Energy dependence

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [m_{jj} > 600 GeV]
- applied to all jets in WBF

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [m_{jj} > 600 GeV]
- applied to all jets in WBF
- applied to all jets after WBF cuts

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [mji > 600 GeV]
- applied to all jets in WBF
- applied to all jets after WBF cuts
- useful information left tuned resolution via variable $\ell \pmod{\text{correlated}}$
- adjust weight factor? adjust objects entering FWMs?

Tilman Plehn

- Results
- Channels
- Higgs couplings
- Bottom Yukawa
- Anomalous couplings
- Energy dependence

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [mji > 600 GeV]
- applied to all jets in WBF
- applied to all jets after WBF cuts
- useful information left tuned resolution via variable $\ell \pmod{\text{correlated}}$
- adjust weight factor? adjust objects entering FWMs?
- \Rightarrow might be useful eventually

Tilman Plehn

Results

Channels

Higgs couplings

Bottom Yukawa

Anomalous couplings

Energy dependence