Higgs Discovery Tilman Plehn

Weak interaction

...55- ----

Lagrangia

Discovery

Lagrangia

Couplings

Meaning

A Theorist's Take on the Higgs Discovery

Tilman Plehn

Universität Heidelberg

Graduate Days, 10/2013

Weak interaction

- -

Lagrangi

DISCOVE

Lagrangian

Coupiin

IVICALIIII

Weak interaction

Massive exchange bosons

- Fermi 1934: weak interactions $_{[n \rightarrow pe^- \nu_e]}$ point-like (2 \rightarrow 2) amplitude $_{\mathcal{A}} \propto G_F E^2$ unitarity violation $_{[\mathcal{E} < 600 \, \text{GeV}]}$ pre-80s effective theory
- Yukawa 1935: massive particles Fermi's theory for $E \ll M$ modified amplitude $\mathcal{A} \propto g^2 E^2/(E^2 M^2)$ unitarity violation in $WW \to WW$ [$E < 1.2 \, \text{TeV}$] pre-LHC effective theory
- Schwinger, Tomonaga 1942: QED consistent and applicable quantum field theory massless role model of Standard Model
- Higgs 1964: spontaneous symmetry breaking unitary through Higgs particle particle masses allowed fundamental weak-scale scalar
- 't Hooft & Veltman 1971: renormalizability no 1/M couplings allowed theory valid to high energy Standard Model with Higgs fundamental

Tilman Plehn

Weak interaction

Higgs boson

i liggs busul

---5----5--

. .

Coupling

IVICUIIII

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Tilman Plehn

Weak interaction

Higgs boson

Higgs boson

Discover

Lagrangian

Coupling

ooup....g

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 ≠ 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

1964: combining two problems to one predictive solution

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

19 OCTOBER 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

In a recent note it was shown that the Goldstone theorem, that Lorentz-covariant field theories in which spontaneous breakdown of symmetry under an internal Lie group occurs contain zero-mass particles, fails if and only if the conserved currents associated with the internal group are coupled to gauge fields. The purpose of the present note is to report that, as a consequence of this coupling, the spin-one quanta of some of the gauge fields acquire mass; the longitudinal degrees of freedom of these par-

about the "vacuum" solution $\varphi_1(x) = 0$, $\varphi_2(x) = \varphi_0$:

$$\partial^{\mu} \{ \partial_{\mu} (\Delta \varphi_1) - e \varphi_0 A_{\mu} \} = 0, \tag{2a}$$

$$\{\partial^2 - 4\varphi_0^2 V''(\varphi_0^2)\}(\Delta \varphi_2) = 0,$$
 (2b)

$$\partial_{\nu}F^{\mu\nu} = e\varphi_0\{\partial^{\mu}(\Delta\varphi_1) - e\varphi_0A_{\mu}\}.$$
 (2c)

Equation (2b) describes waves whose quanta have (bare) mass $2\varphi_0\{V''(\varphi_0^2)\}^{1/2}$; Eqs. (2a) and (2c)

Higas Discovery Higgs boson Tilman Plehn

Higgs boson

Lagrangian

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_I \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and $3 \neq 2$

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

1964: combining two problems to one predictive solution

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

19 OCTOBER 1964

(2a)

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

A detailed discussion of these questions will be presented elsewhere. It is worth noting that an essential feature of

the type of theory which has been described in this note is the prediction of incomplete multiplets of scalar and vector bosons.8 It is to be expected that this feature will appear also in theories in which the symmetry-breaking scalar fields are not elementary dynamic variables but

bilinear combinations of Fermi fields.9

 $\{\partial^2 - 4\varphi_0^2 V''(\varphi_0^2)\}(\Delta \varphi_0) = 0.$ (2b)

 $\partial_{\nu}F^{\mu\nu} = e\varphi_{0}\{\partial^{\mu}(\Delta\varphi_{1}) - e\varphi_{0}A_{\nu}\}.$ (2c) Equation (2b) describes waves whose quanta have (bare) mass $2\varphi_0\{V''(\varphi_0^2)\}^{1/2}$; Eqs. (2a) and (2c)

about the "vacuum" solution $\varphi_1(x) = 0$, $\varphi_2(x) = \varphi_0$:

 $\partial^{\mu} \{ \partial_{\mu} (\Delta \varphi_1) - e \varphi_0 A_{\mu} \} = 0,$

¹P. W. Higgs, to be published. ²J. Goldstone, Nuovo Cimento 19, 154 (1961);

Tilman Plehn

eak intera

Higgs boson

Lagrangia

DISCOVE

Lagrangi

Coupling

Mooning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and $3 \neq 2$

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology

PHYSICAL REVIEW

VOLUME 145, NUMBER 4

27 MAY 1966

Spontaneous Symmetry Breakdown without Massless Bosons*

PETER W. HIGGS†

Department of Physics, University of North Carolina, Chapel Hill, North Carolina

(Received 27 December 1965)

We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of apontaneous breakdown of U(1) symmetry one of the scalar bosons is massless, in conformity with the Goldstone theorem. When the symmetry group of the Lagrangian is extended from global to local U(1) transformations by the introduction of coupling with a vector gauge field, the Goldstone boson becomes the longitudinal state of a massive vector boson whose transverse states are the quanta of the transverse gauge field. A perturbative treatment of the model is developed in which the major features of these phenomena are present in zero order. Transition amplitudes for decay and scattering processes are evaluated in lowest order, and it is shown that they may be oblimate more directly from an equivalent Lagrangian in which the original symmetry is no longer manifest. When the system is coupled to other systems in a U(1) invariant Lagrangian in such that they may be obtained more directly from an equivalent Lagrangian in statistic When the experiment is a coupled to other systems in a U(1) invariant Lagrangian in statistic works of the experiment is a coupled to other systems in a U(1) invariant Lagrangian in statistic works of the experiment is a coupled to other systems in a U(1) invariant Lagrangian in scattling conserved and the contracts with itself via the massive vector boson.

I. INTRODUCTION

THE idea that the apparently approximate nature of the internal symmetries of elementary-particle physics is the result of asymmetries in the stable solutions of exactly symmetric dynamical equations, rather than a middle story of the properties of the stable story.

appear have been used by Coleman and Glashow³ to account for the observed pattern of deviations from SU(3) symmetry.

The study of field theoretical models which display spontaneous breakdown of symmetry under an internal Lie group was initiated by Nambu, who had noticed

Tilman Plehn

leak inter

Higgs boson

Lagrangia

DISCOVCI

Lagrangia

Coupling

Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_I \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 ≠ 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology

PHYSICAL REVIEW

VOLUME 145, NUMBER 4

27 MAY 1966

Spontaneous Symmetry Breakdown without Massless Bosons*

Peter W. Higgs†

Department of Physics, University of North Carolina, Chapel Hill, North Carolina (Received 27 December 1965)

nassive vector boson.

II. THE MODEL We are mine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a symmetry one of the scalar bosons is massless, in conformity with

The Lagrangian density from which we shall work is given by²⁹

$$\mathcal{L} = -\frac{1}{4}g^{\epsilon\mu}g^{\lambda\nu}F_{\epsilon\lambda}F_{\mu\nu} - \frac{1}{2}g^{\mu\nu}\nabla_{\mu}\Phi_{a}\nabla_{\nu}\Phi_{a} + \frac{1}{2}m_{o}^{2}\Phi_{c}\Phi_{a} - \frac{1}{8}f^{2}(\Phi_{a}\Phi_{a})^{2}. \quad (1)$$

In Eq. (1) the metric tensor $g^{\mu\nu} = -1 \ (\mu = \nu = 0)$, $+1 \ (\mu = \nu \neq 0)$ or $0 \ (\mu \neq \nu)$, Greek indices run from 0 to 3 and Latin indices from 1 to 2. The U(1)-covariant derivatives $F_{\mu\nu}$ and $\nabla_{\mu} \Phi_{\mu}$ are given by

appear have been used by Coleman and Glashow³ to account for the observed pattern of deviations from SU(3) symmetry.

symmetry one of the scalar bosons is massless, in conformity with try group of the Lagrangian is extended from global to local U(1)upling with a vector gauge field, the Goldstone boson becomes the

on whose transverse states are the quanta of the transverse gauge

el is developed in which the major features of these phenomena are es for decay and scattering processes are evaluated in lowest order, more directly from an equivalent Lagrangian in which the original

the system is coupled to other systems in a U(1) invariant Laluced symmetry breakdown, associated with a partially conserved

te nature SU(3) symmetry. 'Particle hile solusis, rather Lie group was initiated by Nambu,' who had noticed by Nambu,' who had

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},$$

Tilman Plehn

Higgs boson

Higgs boson

is given by29

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem
- $SU(2)_I \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars - problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and $3 \neq 2$

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

1964: combining two problems to one predictive solution

 $+\frac{1}{4}m_0^2\Phi_a\Phi_a-\frac{1}{8}f^2(\Phi_a\Phi_a)^2$.

1966: original Higgs phenomenology

II. THE MODEL

PHYSICAL REVIEW

VOLUME 145, NUMBER 4

27 MAY 1966

Spontaneous Symmetry Breakdown without Massless Bosons*

Department of Physics, University of North Carolina, Chapel Hill, North Carolina

i. Decay of a Scalar Boson into Two Vector Bosons

The Lagrangian density from which we shall v

The process occurs in first order (four of the five cubic vertices contribute), provided that $m_0 > 2m_1$. Let p be the incoming and k_1 , k_2 the outgoing momenta. Then

$$\begin{split} M = & i\{e[a^{*\mu}(k_1)(-ik_{2\mu})\phi^*(k_2) + a^{*\mu}(k_2)(-ik_{1\mu})\phi^*(k_1)] \\ & - e(ip_{\mu})[a^{*\mu}(k_1)\phi^*(k_2) + a^{*\mu}(k_2)\phi^*(k_1)] \\ & - 2em_{1a_{\mu}}^*(k_1)a^{*\mu}(k_2) - fm_{\delta}\phi^*(k_1)\phi^*(k_2)\}. \end{split}$$

By using Eq. (15), conservation of momentum, and the transversality $(k_{\mu}b^{\mu}(k)=0)$ of the vector wave

formations we wedness this to the forms

 $+1 (\mu = \nu \neq 0)$ or $0 (\mu \neq \nu)$, Greek indices run fro to 3 and Latin indices from 1 to 2. The U(1)-covar derivatives $F_{\mu\nu}$ and $\nabla_{\mu}\Phi_{\alpha}$ are given by $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

In Eq. (1) the metric tensor $g^{\mu\nu} = -1 (\mu = \nu)$

 $\mathcal{L} = -\frac{1}{4}g^{\alpha\mu}g^{\lambda\sigma}F_{\nu\lambda}F_{\mu\nu} - \frac{1}{3}g^{\mu\nu}\nabla_{\mu}\Phi_{\alpha}\nabla_{\nu}\Phi_{\alpha}$

Higgs Discovery	Higgs
Tilman Plehn	

Weak interaction

Higgs boson

Lagrangia

DISCOVE

Lagrangian

Coupling

Maanin

boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem
- $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars problem 2: massive gauge theories

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution

massive gauge bosons have 3 polarizations, and $3 \neq 2$

- 1966: original Higgs phenomenology
- 1976 etc: collider phenomenology

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of the Higgs boson, we give a speculative cosmological argument for a small mass. If its mass is similar to that of the plon, the Higgs boson may be visible in the reactions $\pi^-p \to Hn$ or $p \to Hp$ near threshold. If its mass is $\lesssim 300$ MeV, the Higgs boson may be present in the

decays of kaons with a branching ratio $O(10^{-7})$, or in the decays of one of the new par-

Tilman Plehn

Weak interaction
Higgs boson

. --

Discover

Lagrangi

Coupling

Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories
 massive gauge bosons have 3 polarizations, and 3 ≠ 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology
- 1976 etc: collider phenomenology

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

334

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage

big experimental searches for the Higgs boson, but we do feel that people performing

J. Ellis et al. / Higgs boson

Higgs
s such as
mass of
f its mass
p → Hn or
nt in the

experiments vulnerable to the Higgs boson should know how it may turn up. nt in the

tiples 2.7 - 2.1 + U with a homoline actio O(10-4) If its mass is <4 CoV, the Wigns

Tilman Plehn

Weak interaction

Higgs boson

...99- ----

Discover

Lagrang

Coupling

Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and $3 \neq 2$

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology
- 1976 etc: collider phenomenology
- ⇒ Higgs boson predicted from mathematical field theory

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_I \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and $3 \neq 2$

In terms of Higgs potential

$$\begin{split} V &= -\,\mu^2 |\phi|^2 + \lambda |\phi|^4 \\ \text{minimum at} \quad \phi &= \frac{v}{\sqrt{2}} \\ \frac{\partial V}{\partial \, |\phi|^2} &= -\,\mu^2 + 2\lambda |\phi|^2 \ \Rightarrow \ \frac{v^2}{2} = \frac{\mu^2}{2\lambda} \\ \text{excitation} \quad \phi &= \frac{v + H}{\sqrt{2}} \end{split}$$

$$m_H^2 = \frac{\partial^2 V}{\partial H^2} \bigg|_{1.1} = 2\lambda v^2$$

Tilman Plehn

Weak interaction

Higgs boson

33- ----

Discove

Lagrangi

Coupling

Oodpiiii

Meanin

The heroes according to Inspire

Lessons for the field

- obviously, Higgs et al are outstanding physicists
- would we hire these brilliant people nowadays?
- is Nobel-worthy research visible by numbers?
- do non-Nobel-laureates look worse?

	papers	citations	top500	top250	top100
Peter Higgs	7	6979	PRL 13 (1964): 2382	0	1
			PL 12 (1964): 2536		
			PR 145 (1966): 1867		
Robert Brout	54	3393	PRL 13 (1964): 2161	0	3
Francois Englert	74	4563	PRL 13 (1964): 2161	1	6
Gerald Guralnik	66	3424	PRL 13 (1964): 1722	1	1
Carl Hagen	94	3761	PRL 13 (1964): 1722	0	6
Tom Kibble	72	8655	PRL 13 (1964): 1722	0	6
			PR 155 (1967): 940		
			five more: 569-1582		
Andrzej Buras	182	22458	4	10	53
Lance Dixon	109	16868	6	13	38
Gordi Kane	188	15501	2	7	25
Torbjorn Sjostrand	83	26332	10	5	26
Bryan Webber	146	20104	10	7	23
			ı		

_.

.

_ ..

Couplin

Mooning

The heroes according to Inspire

Lessons for the field

- obviously, Higgs et al are outstanding physicists
- would we hire these brilliant people nowadays?
- is Nobel-worthy research visible by numbers?
- do non-Nobel-laureates look worse?

	papers	citations	top500	top250	top100
Peter Higgs	7	6979	PRL 13 (1964): 2382	0	1
			PL 12 (1964): 2536		
			PR 145 (1966): 1867		
Robert Brout	54	3393	PRL 13 (1964): 2161	0	3
Francois Englert	74	4563	PRL 13 (1964): 2161	1	6
Gerald Guralnik	66	3424	PRL 13 (1964): 1722	1	1
Carl Hagen	94	3761	PRL 13 (1964): 1722	0	6
Tom Kibble	72	8655	PRL 13 (1964): 1722	0	6
			PR 155 (1967): 940		
			five more: 569-1582		
Andrzej Buras	182	22458	4	10	53
Lance Dixon	109	16868	6	13	38
Gordi Kane	188	15501	2	7	25
Torbjorn Sjostrand	83	26332	10	5	26
Bryan Webber	146	20104	10	7	23
			•		

[⇒] non-Nobel-laureates are excellent company

Tilman Plehn

Weak interaction

Lagrangian

_.

Discover

0

Coupling

Meaning

Exercise: strongly or weakly interacting

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^2 \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_1 = \frac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) \; , \quad \mathcal{O}_2 = -\frac{1}{3} (\phi^\dagger \phi)^3$$

Tilman Plehn

Weak interaction

r iigga boai

Lagrangian

Discovery

Lagrangian

Coupling

. .

ivieaning

Exercise: strongly or weakly interacting

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{z} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_1 = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \; , \quad \mathcal{O}_2 = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{1} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \ \partial^{\mu} (\phi^{\dagger} \phi) = \frac{1}{2} (\tilde{H} + v)^{2} \ \partial_{\mu} \tilde{H} \ \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_1 v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \ \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \ \sqrt{1 + \frac{f_1 v^2}{\Lambda^2}}$$

Tilman Plehn

Weak interaction

Higgs boso

Lagrangian

Discover

Lagrangian

Coupling

....

Exercise: strongly or weakly interacting

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^2 \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_1 = \frac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) \; , \quad \mathcal{O}_2 = -\frac{1}{3} (\phi^\dagger \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{1} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = \frac{1}{2} \left(\tilde{H} + v \right)^{2} \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_1 v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \ \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \ \sqrt{1 + \frac{f_1 v^2}{\Lambda^2}}$$

second operator, minimum condition to fix v

$$\frac{v^2}{2} = \begin{cases} -\frac{\mu^2}{2\lambda} - \frac{f_2\mu^4}{8\lambda^3\Lambda^2} + \mathcal{O}(\Lambda^{-4}) = -\frac{\mu^2}{2\lambda} \left(1 + \frac{f_2\mu^2}{4\lambda^2\Lambda^2}\right) \\ -\frac{2\lambda\Lambda^2}{f_2^2} + \mathcal{O}(\Lambda^0) \end{cases}$$

Tilman Plehn

Weak interaction

1.0.

Lagrangian

Lograpai

Coupling

Exercise: strongly or weakly interacting

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^2 rac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_1 = rac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) \; , \quad \mathcal{O}_2 = -rac{1}{3} (\phi^\dagger \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_1 = \frac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) = \frac{1}{2} \; (\tilde{H} + v)^2 \; \partial_\mu \tilde{H} \; \partial^\mu \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_1 v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \ \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \ \sqrt{1 + \frac{f_1 v^2}{\Lambda^2}}$$

second operator, minimum condition to fix v

$$\frac{v^2}{2} = \left\{ \begin{array}{l} -\frac{\mu^2}{2\lambda} - \frac{f_2\mu^4}{8\lambda^3\Lambda^2} + \mathcal{O}(\Lambda^{-4}) = -\frac{\mu^2}{2\lambda} \left(1 + \frac{f_2\mu^2}{4\lambda^2\Lambda^2}\right) \\ -\frac{2\lambda\Lambda^2}{f_2^2} + \mathcal{O}(\Lambda^0) \end{array} \right.$$

physical Higgs mass

$$\mathcal{L}_{mass} = -\frac{\mu^2}{2}\tilde{H}^2 - \frac{3}{2}\lambda v^2\tilde{H}^2 - \frac{f_2}{\Lambda^2}\frac{15}{24}v^4\tilde{H}^2 \stackrel{!}{=} -\frac{m_H^2}{2}H^2$$

$$\Leftrightarrow \qquad m_H^2 = 2\lambda v^2\left(1 - \frac{f_1v^2}{\Lambda^2} + \frac{f_2v^2}{2\Lambda^2\lambda}\right)$$

Tilman Plehn

Weak interaction

i liggs bosc

Lagrangian

Lagrangia

Lagrangian

Coupling

ivieaning

Exercise: strongly or weakly interacting

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^2 \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_1 = \frac{1}{2} \partial_\mu (\phi^\dagger \phi) \; \partial^\mu (\phi^\dagger \phi) \; , \quad \mathcal{O}_2 = -\frac{1}{3} (\phi^\dagger \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_H^2}{2 \nu} \left[\left(1 - \frac{f_1 \nu^2}{2 \Lambda^2} + \frac{2 f_2 \nu^4}{3 \Lambda^2 m_H^2} \right) H^3 - \frac{2 f_1 \nu^2}{\Lambda^2 m_H^2} H \, \partial_\mu H \, \partial^\mu H \right] \\ &- \frac{m_H^2}{8 \nu^2} \left[\left(1 - \frac{f_1 \nu^2}{\Lambda^2} + \frac{4 f_2 \nu^4}{\Lambda^2 m_H^2} \right) H^4 - \frac{4 f_1 \nu^2}{\Lambda^2 m_H^2} H^2 \, \partial_\mu \, H \partial^\mu H \right] \; . \end{split}$$

Tilman Plehn

Weak interaction

r ngga boat

Lagrangian

Discovery

Lagrangian

Coupling

ivicariiri

Exercise: strongly or weakly interacting

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_1 = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \ \partial^{\mu} (\phi^{\dagger} \phi) \ , \quad \mathcal{O}_2 = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_H^2}{2\nu} \left[\left(1 - \frac{f_1 \nu^2}{2\Lambda^2} + \frac{2 f_2 \nu^4}{3\Lambda^2 m_H^2} \right) H^3 - \frac{2 f_1 \nu^2}{\Lambda^2 m_H^2} H \, \partial_\mu H \, \partial^\mu H \right] \\ &- \frac{m_H^2}{8\nu^2} \left[\left(1 - \frac{f_1 \nu^2}{\Lambda^2} + \frac{4 f_2 \nu^4}{\Lambda^2 m_H^2} \right) H^4 - \frac{4 f_1 \nu^2}{\Lambda^2 m_H^2} H^2 \, \partial_\mu \, H \partial^\mu H \right] \; . \end{split}$$

field renormalization, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_1 v^2}{2\Lambda^2}\right) \tilde{H} + \frac{f_1 v}{2\Lambda^2} \tilde{H}^2 + \frac{f_1}{6\Lambda^2} \tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

Tilman Plehn

Weak interaction

Lagrangian

Higgs signatures

Higgs decays easy

- weak-scale scalar coupling proportional to mass
- off-shell decays below threshold
- decay to $\gamma\gamma$ via W and top loop [destructive interference]
- $\Rightarrow m_H = 126 \text{ GeV perfect}$

Tilman Plehn

Weak interaction

Lagrangian

---9----9---

Coupini

Meaning

Higgs signatures

Higgs decays easy

- weak-scale scalar coupling proportional to mass
- off-shell decays below threshold
- decay to $\gamma\gamma$ via $\it W$ and top loop <code>[destructive interference]</code>
- $\Rightarrow m_H = 126 \text{ GeV perfect}$

Higgs production hard [7-8 TeV, 5-15/fb]

– quantum effects needed gluon fusion production loop induced $_{\rm [}\sigma\sim$ 15000 fb] weak boson fusion production with jets $_{\rm [}\sigma\sim$ 1200 fb]

Tilman Plehn

Weak interaction

Lagrangian

.........

Lagrangian

_ ...

Coupini

Meaning

Higgs signatures

Higgs decays easy

- weak-scale scalar coupling proportional to mass
- off-shell decays below threshold
- decay to $\gamma\gamma$ via $\it W$ and top loop <code>[destructive interference]</code>
- $\Rightarrow m_H = 126 \text{ GeV perfect}$

Higgs production hard [7-8 TeV, 5-15/fb]

- quantum effects needed gluon fusion production loop induced $_{[\sigma}\sim$ 15000 fb] weak boson fusion production with jets $_{[\sigma}\sim$ 1200 fb]

- easy channels for 2011-2012

$$pp
ightarrow H
ightarrow ZZ
ightarrow 4\ell$$
 fully reconstructed $pp
ightarrow H
ightarrow \gamma\gamma$ fully reconstructed $pp
ightarrow H
ightarrow WW
ightarrow (\ell^- ar{
u})(\ell^+
u)$ large BR

Weak interaction

Lagrangian

Lagrangia

Lagrangian

Coupilli

Meaning

Higgs signatures

Higgs decays easy

- weak-scale scalar coupling proportional to mass
- off-shell decays below threshold
- decay to $\gamma\gamma$ via \emph{W} and top loop <code>[destructive interference]</code>
- $\Rightarrow m_H = 126 \text{ GeV perfect}$

Higgs production hard [7-8 TeV, 5-15/fb]

- quantum effects needed gluon fusion production loop induced $_{[\sigma \sim 15000 \text{ fb}]}$ weak boson fusion production with jets $_{[\sigma \sim 1200 \text{ fb}]}$
 - mm t

easy channels for 2011-2012

$$pp
ightarrow H
ightarrow ZZ
ightarrow 4\ell$$
 fully reconstructed $pp
ightarrow H
ightarrow \gamma\gamma$ fully reconstructed $pp
ightarrow H
ightarrow WW
ightarrow (\ell^- ar{
u})(\ell^+
u)$ large BR

⇒ fun still waiting

$$pp \rightarrow H \rightarrow \tau \tau$$
 plus jets $pp \rightarrow ZH \rightarrow (\ell^+\ell^-)(b\bar{b})$ boosted $pp \rightarrow t\bar{t}H$ waiting for a good idea...

Tilman Plehn

Weak interaction

Higgs boso

Discovery

Lagrangia

Coupling

Couping

ivieaning

Higgs discovery

4th of July fireworks [no theory input needed beyond basic Pythia]

- 'silver channel' $H \to \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \to ZZ \to 4\ell$ local significance 3.4 σ (ATLAS), 3.2 σ (CMS)
- *WW* and au au, bb adding little (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]

Tilman Plehn

Weak interaction

1 11990 000

Lagrangia

Discovery

Lagrangii

Coupling

Meaning

Higgs discovery

4th of July fireworks [no theory input needed beyond basic Pythia]

- 'silver channel' $H \to \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS)
- 'golden channel' $H \to ZZ \to 4\ell$ local significance 3.4 σ (ATLAS), 3.2 σ (CMS)
- *WW* and au au, bb adding little (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]
- ⇒ Rolf Heuer: 'We have him'

A sure sighting of a higgs... Peter Higgs on the shores of the Firth of Fourth by Prof J D Jackson, July 1960

Tilman Plehn

Weak interaction

Discovery

Lagrangian

Higgs discovery

4th of July fireworks [no theory input needed beyond basic Pythia]

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5σ (ATLAS), 4.1σ (CMS)
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4 σ (ATLAS), 3.2 σ (CMS)
- WW and $\tau\tau$, bb adding little (CMS)
- combined 5.0 σ (ATLAS), 4.9 σ (CMS) [LEE 4.3 σ]
- ⇒ Rolf Heuer: 'We have it'

CERN-PH-EP/2012-220

CMS-HIG-12-028

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

CERN-PH-EP-201 Submitted to: Physics Letters B

The CMS Collaboration*

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

31 Jul 2012

Update

Weak interaction

Higgs Discovery

Tilman Plehn

ggs boso

Lagrangian

Discovery

Lagrangian Couplings

Coapini

Meaning

Higgs-like boson turned into Standard-Model-like Higgs into a Higgs boson

Tilman Plehn

Weak interaction

Higgs hoson

niggs bosoi

Lagrangian

Discovery

Lagrangia

Couplings

ooupmig

Meaning

Questions

1. What is the 'Higgs' Lagrangian?

- $\,-\,$ psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

Tilman Plehn

Weak interaction

Higgs hoson

niggs bosoi

Discovery

.

....

Couplings

ivicariirig

Questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

2. What are the coupling values?

- 'coupling' after fixing operator basis
- Standard Model Higgs vs anomalous couplings

Tilman Plehn

Weak interaction

Higgs boson

55----

Discovery

Lagrangia

Coupling

---p....9

IVICALIII

Questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

2. What are the coupling values?

- 'coupling' after fixing operator basis
- Standard Model Higgs vs anomalous couplings

3. What does all this tell us?

- models predicting weak-scale new physics?
- renormalization group based Hail-Mary passes?

Higgs bosol

---9----9-

Lagrangian

Coupling

Meaning

Lagrangian

Angular correlations like the flavor people

Cabibbo–Maksymowicz–Dell'Aquila–Nelson angles for $H \rightarrow ZZ$

$$\cos\theta_{e} = \left.\hat{\rho}_{e^{-}} \cdot \hat{\rho}_{Z_{\mu}}\right|_{Z_{e}} \qquad \cos\theta_{\mu} = \left.\hat{\rho}_{\mu^{-}} \cdot \hat{\rho}_{Z_{e}}\right|_{Z_{\mu}} \qquad \cos\theta^{*} = \left.\hat{\rho}_{Z_{e}} \cdot \hat{\rho}_{\text{beam}}\right|_{X}$$

$$\cos\phi_{e} = \left.\left(\hat{\rho}_{\text{beam}} \times \hat{\rho}_{Z_{\mu}}\right) \cdot \left(\hat{\rho}_{Z_{\mu}} \times \hat{\rho}_{e^{-}}\right)\right|_{Z_{e}}$$

$$\cos\Delta\phi = \left.\left(\hat{\rho}_{e^{-}} \times \hat{\rho}_{e^{+}}\right) \cdot \left(\hat{\rho}_{\mu^{-}} \times \hat{\rho}_{\mu^{+}}\right)\right|_{X}$$

$$e^{+}$$

$$e^{+}$$

$$VOLUME 137, NUMBER 2B \qquad 25 JANUARY 1965 \(\hat{log}_{e}\)$$

Angular Correlations in K_{c4} Decays and Determination of Low-Energy _{x-x} Phase Shifts*

NICOLA CABIBBO† AND ALEXANDER MARSYMOWICZ

Lawrence Radiation Laboratory, University of California, Berkeley, California

(Received 1 September 1964)

The study of correlations in K., decays can give unique information on low-energy -v scattering. To this ord we introduce an aparticularly simple and or ofrentletons. We show that the measurement of these correlations as any fixed -v can energy allows one to make a model-independent determination of the difference below that the measurement of the entropy of the correlations averaged over the energy spectrum. Measurement of the average correlations is particularly satisfe to the tenting of any model of low-energy -v of -

Tilman Plehn

Lagrangian

Lagrangian

Angular correlations like the flavor people

- Cabibbo-Maksymowicz-Dell'Aguila-Nelson angles for $H \rightarrow ZZ$

$$\begin{split} \cos\theta_{e} &= \hat{p}_{e^{-}} \cdot \hat{p}_{Z_{\mu}} \Big|_{Z_{\theta}} &\quad \cos\theta_{\mu} &= \hat{p}_{\mu^{-}} \cdot \hat{p}_{Z_{\theta}} \Big|_{Z_{\mu}} &\quad \cos\theta^{*} &= \hat{p}_{Z_{\theta}} \cdot \hat{p}_{\text{beam}} \Big|_{X} \\ \cos\phi_{e} &= (\hat{p}_{\text{beam}} \times \hat{p}_{Z_{\mu}}) \cdot (\hat{p}_{Z_{\mu}} \times \hat{p}_{e^{-}}) \Big|_{Z_{\theta}} \end{split}$$

 $\cos \Delta \phi = (\hat{p}_{e^-} \times \hat{p}_{e^+}) \cdot (\hat{p}_{\mu^-} \times \hat{p}_{\mu^+}) \Big|_{V}$

 $\Delta \phi$ 25 JANUARY 1965

PHYSICAL REVIEW

VOLUME 137, NUMBER 2B

Angular Correlations in K.4 Decays and Determination of Low-Energy z- z Phase Shifts*

NICOLA CABIBBOT AND ALEXANDER MAKSYMOWICZ Laurence Radiation Laboratory, University of California, Berkeley, California (Received 1 September 1964)

The study of correlations in K44 decays can give unique in end we introduce a particularly simple set of correlations. tions at any fixed m-m c.m. energy allows one to make a mo δι-δι between the S- and P-wave π-π phase shifts at that t δι-δι can be obtained from a measurement of the same or Measurement of the average correlations is particularly suit scattering. We discuss in particular two such models; (a) th of S-wave scattering and (b) the Brown-Faier σ-resonance description is adequate, the suggested measurements shoul in the I = 0 state. If the σ -resonance model is correct, these n the resonance.

* This work was done under the auspices of the U. S. Atomic Energy Commission.

†On leave from the Frascati National Laboratory, Frascati, Italy: present address: CERN, Geneva, Switzerland. ¹L. B. Okun' and E. P. Shabalin, Zh. Eksperim. i Teor. Fiz. 37, 1775 (1959) [English transl.: Soviet Phys.—JETP 10, 1252

 K. Chadan and S. Oneda, Phys. Rev. Letters 3, 292 (1959).
 K. S. Mathur, Nuovo Cimento 14, 1322 (1959).
 F. S. Batabin, Zh. Eksperim i Teor. Fiz. 39, 345 (1960).
 E. P. Shabain, Zh. Eksperim i Teor. Fiz. 39, 345 (1960).
 English transl.: Soviet Phys.—IETP 12, 245 (1961).
 R. W. Birge, R. P. Ely, G. Oddal, G. E. Kaims, A. Kernan, W. M. Powell, U. Camerini, W. F. Fry, J. Colidos, R. H. March, and S. Natlaf, Phys. Rev. Letter 11, 85 (1963). Members of this group have kindly communicated to us that the total of 11 events reported in this paper has now increased to at least 80.

G. Ciocchetti, Nuovo Cimento 25, 385 (1962).

⁷ L. M. Brown and H. Faier, Phys. Rev. Letters 12, 514 (1964). ⁸ B. A. Arbuzov, Nguyen Van Hieu, and R. N. Faustov, Zh. Eksperim. i Teor. Fiz. 44, 329 (1963) [English transl.: Soviet Phys.-IETP 17, 225 (1963)

dominated by the postulated σ resonance. Measurement of average correlations could then be used to determine the mass of this resonance.

II. KINEMATICS AND CORRELATIONS

Our approach to the kinematics of the reaction $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ is the same as that used in analyzing resonances. We visualize this reaction as a two-body decay into a dipion of mass $M_{\pi\pi}$ and a dilepton of mass Mer. We then consider the subsequent decay of each of these two "resonances" in its own center-of-mass system.

9 The usefulness of angular correlations in the determination of $\delta_0 - \delta_1$ was first recognized by E. P. Shabalin, Zh. Eksperim i Teor. Fiz. 44, 765 (1963) [English transl.: Soviet Phys.—JETP 17, 517 (1963)]. See also erratum, Zh. Eksperim. i Teor. Fiz. 45, 2085

Tilman Plehn

Weak interaction

Higgs bos

Lagrangian

Lagrangian

Coupling

Meaning

Lagrangian

Angular correlations like the flavor people

- Cabibbo–Maksymowicz–Dell'Aquila–Nelson angles for $H \rightarrow ZZ$
- Breit frame or hadron collider (η,ϕ) in WBF [Breit: boost into space-like]

Tilman Plehn

Weak interaction

. ..990 500

Lagrangia

Lagrangian

Coupling

Meaning

Lagrangian

Angular correlations like the flavor people

- Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles for $H \rightarrow ZZ$
- Breit frame or hadron collider (η, ϕ) in WBF [Breit: boost into space-like]

$$\begin{split} \cos\theta_1 &= \hat{\rho}_{j_1} \cdot \hat{\rho}_{V_2} \Big|_{V_1 \, \text{Breit}} &\quad \cos\theta_2 = \hat{\rho}_{j_2} \cdot \hat{\rho}_{V_1} \Big|_{V_2 \, \text{Breit}} &\quad \cos\theta^* = \hat{\rho}_{V_1} \cdot \hat{\rho}_d \Big|_X \\ \cos\phi_1 &= (\hat{\rho}_{V_2} \times \hat{\rho}_d) \cdot (\hat{\rho}_{V_2} \times \hat{\rho}_{j_1}) \Big|_{V_1 \, \text{Breit}} \\ \cos\Delta\phi &= (\hat{\rho}_{q_1} \times \hat{\rho}_{j_1}) \cdot (\hat{\rho}_{q_2} \times \hat{\rho}_{j_2}) \Big|_{V_1} \, . \end{split}$$

Weak interaction

...95- ---

Lagrangia

Lagrangian

Coupling

Coupling

Tilman Plehn

Angular correlations like the flavor people

- Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles for $H \rightarrow ZZ$
- Breit frame or hadron collider (η, ϕ) in WBF [Breit: boost into space-like]
- possible scalar couplings

Lagrangian

$$\mathcal{L} \supset (\phi^\dagger \phi) W^\mu W_\mu \qquad \frac{1}{\Lambda^2} (\phi^\dagger \phi) W^{\mu\nu} \, W_{\mu\nu} \qquad \frac{1}{\Lambda^2} (\phi^\dagger \phi) \varepsilon_{\mu\nu\rho\sigma} W^{\mu\nu} \, W^{\rho\sigma}$$

⇒ different channels, same physics

Tilman Plehn

Weak interaction

...55----

Lagrangia

Lagrangian

Coupling

Meaning

Lagrangian

Angular correlations like the flavor people

- Cabibbo–Maksymowicz–Dell'Aquila–Nelson angles for $H \rightarrow ZZ$
- Breit frame or hadron collider (η,ϕ) in WBF $_{ t [Breit: boost into space-like]}$
- possible scalar couplings

$$\mathcal{L} \supset (\phi^\dagger \phi) \textit{W}^\mu \textit{W}_\mu \qquad \frac{1}{\Lambda^2} (\phi^\dagger \phi) \textit{W}^{\mu\nu} \textit{W}_{\mu\nu} \qquad \frac{1}{\Lambda^2} (\phi^\dagger \phi) \varepsilon_{\mu\nu\rho\sigma} \textit{W}^{\mu\nu} \textit{W}^{\rho\sigma}$$

⇒ different channels, same physics

Tilman Plehn

Weak interaction

I Constitution

Higgs boson

Discover

Lagrangia

Couplings

Meaning

Couplings

Standard Model operators [SFitt

- assume: narrow CP-even scalar
 Standard Model operators
 couplings proportional to masses?
- couplings from production & decay rates

$$gg \rightarrow H$$
 $qq \rightarrow qqH$
 $gg \rightarrow t\bar{t}H$
 $qq' \rightarrow VH$

$$g_{HXX} = g_{HXX}^{\rm SM} \ (1 + \Delta_X)$$

Couplings

Standard Model operators [SFitter]

- assume: narrow CP-even scalar Standard Model operators couplings proportional to masses?
- couplings from production & decay rates

$$g_{HXX} = g_{HXX}^{SM} \ (1 + \Delta_X)$$

$$\longleftrightarrow \qquad \boxed{\begin{array}{c} g_{HXX} = g_{HXX}^{SM} \ (1 + \Delta_X) \\ \end{array}} \quad \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+\tau^- \\ H \to \gamma\gamma \end{array}$$

Total width

non-trivial scaling

$$N = \sigma \, BR \propto rac{g_p^2}{\sqrt{\Gamma_{ ext{tot}}}} \, rac{g_d^2}{\sqrt{\Gamma_{ ext{tot}}}} \sim rac{g^4}{g^2 rac{\Gamma_I(g^2)}{g^2} + \Gamma_{ ext{unobs}}} \, \stackrel{g^2 o 0}{\longrightarrow} = 0$$

- gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{\text{tot}} \to \Gamma_H|_{\text{min}}$
- $WW \rightarrow WW$ unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$
- SFitter assumption $\Gamma_{\text{tot}} = \sum_{\text{obs}} \Gamma_i$ [plus generation universality]

Tilman Plehn

Weak interaction

Higgs boson

Higgs bosor

Discover

Lagrangia

Couplings

Couplings now and in the future

Now [Aspen/Moriond 2013]

- focus SM-like [secondary solutions possible]

- six couplings and ratios from data g_b from width g_g vs g_t not yet possible
- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- almost too exactly the 1964 prediction

Tilman Plehn

Weak interaction

Higgs boso

Discover

Lagrangian

Couplings

....

Couplings now and in the future

Now [Aspen/Moriond 2013]

- focus SM-like [secondary solutions possible]
- six couplings and ratios from data
 g_b from width
 g_a vs g_t not yet possible
- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- almost too exactly the 1964 prediction

Future

- LHC extrapolations unclear
- theory extrapolations tricky
- ILC case obvious
- interplay in loop-induced couplings

Tilman Plehn

Weak interaction

1 11990 000

Lagrangia

D:----

Lagrangian

Couplings

Meaning

Couplings now and in the future

Now [Aspen/Moriond 2013]

- focus SM-like [secondary solutions possible]
- six couplings and ratios from data
 g_b from width
 g_a vs g_t not yet possible
- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- almost too exactly the 1964 prediction

Future

- LHC extrapolations unclear
- theory extrapolations tricky
- ILC case obvious
- interplay in loop-induced couplings
- fundamental e⁺e⁻ advantages:
 unobserved decays avoided
 width measured from rate σ_{ZH}
 H → c̄c̄ accessible
 invisible decays hugely improved
 QCD theory error bars avoided

Tilman Plehn

Weak interaction

Higgs boso

Lagrangia

- -

Counling

Coupilli

Meaning

Meaning

TeV-scale scenarios

- fourth chiral generation excluded
- strongly interacting models retreating [Goldstone protection]
- extended Higgs sectors wide open
- no final verdict on the MSSM
- hierarchy problem worse than ever [light fundemental scalar discovered]
- ⇒ do not know

Tilman Plehn

Weak interaction

1 11990 000

Lagrangia

D'....

Lagrangian

Coupling

Meaning

Meaning

TeV-scale scenarios

- fourth chiral generation excluded
- strongly interacting models retreating [Goldstone protection]
- extended Higgs sectors wide open
- no final verdict on the MSSM
- hierarchy problem worse than ever [light fundemental scalar discovered]
- ⇒ do not know

High scales

Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- vacuum stability right at edge
- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2

$$m_H = 126.3 + \frac{m_t - 171.2}{2.1} \times 4.1 - \frac{\alpha_s - 0.1176}{0.002} \times 1.5$$

Tilman Plehn

Weak interaction

...55- ----

Lagrangia

.

. .

Coupling

Meaning

Exercise: top-Higgs renormalization group

Running of coupling/mass ratios

Higgs self coupling and top Yukawa with stable zero IR solutions

$$\frac{d \lambda}{d \log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 \right) \qquad \qquad \frac{d y_t^2}{d \log Q^2} = \frac{9}{32\pi^2} y_t^4$$

Tilman Plehn

Weak interaction

- - -

Lagrangia

DISCOVE

Lagrangia

Coupling

Meaning

Exercise: top-Higgs renormalization group

Running of coupling/mass ratios

Higgs self coupling and top Yukawa with stable zero IR solutions

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda y_t^2 - 3y_t^4\right) \qquad \qquad \frac{d\,y_t^2}{d\,\log Q^2} = \frac{9}{32\pi^2}\,\,y_t^4$$

running ratio $R = \lambda/y_t^2$

$$\frac{dR}{d\log Q^2} = \frac{3\lambda}{32\pi^2R} \; \left(8R^2 + R - 2\right) \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad R_* = \frac{\sqrt{65} - 1}{16} \simeq 0.44$$

Tilman Plehn

Weak interaction

Lagrangia

DISCOVE

Lagrangian

Coupling

Meaning

Exercise: top-Higgs renormalization group

Running of coupling/mass ratios

Higgs self coupling and top Yukawa with stable zero IR solutions

$$\frac{d \lambda}{d \log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 \right) \qquad \frac{d y_t^2}{d \log Q^2} = \frac{9}{32\pi^2} y_t^4$$

running ratio $R = \lambda/y_t^2$

$$\frac{dR}{d\log Q^2} = \frac{3\lambda}{32\pi^2R} \left(8R^2 + R - 2\right) \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad R_* = \frac{\sqrt{65} - 1}{16} \simeq 0.44$$

numbers in the far infrared, better for $Q \sim v$

$$\frac{\lambda}{y_t^2} = \frac{m_H^2}{2v^2} \frac{v^2}{2m_t^2} \bigg|_{IR} = \frac{m_H^2}{4m_t^2} \bigg|_{IR} = 0.44 \qquad \Leftrightarrow \qquad \frac{m_H}{m_t} \bigg|_{IR} = 1.33$$

Tilman Plehn

Weak interaction

Lagrangia

---5----5-

Coupling

Meaning

Exciting times...

...for LHC physicists

- Higgs discovery after almost 50 years [waiting since Fermi]
- detailed studies just starting
- all open physics territory
- many Higgs analysis challenges ahead
- technical expertize the key
- QCD always helpful
- ⇒ young and bright ideas in high demand

Lectures on LHC Physics, Springer, arXiv:0910.4182 updated under www.thphys.uni-heidelberg.de/~plehn/

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

Higgs Discovery Tilman Plehn Weak interaction Higgs boson Lagrangian

Discovery

Couplings

Meaning