Tilman Plehn

Lagrangia

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Higgs Physics after the Discovery

Tilman Plehn [and lots of Karlsruhe people]

Universität Heidelberg

Karlsruhe, 5/2013

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Immediate questions

- 1. What is the 'Higgs' Lagrangian?
 - psychologically: looked for Higgs, so found a Higgs
 - CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

Tilman Plehn

- Lagrangiar
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Immediate questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected
- 2. What are the coupling values?
 - requires fixed operator basis
 - Standard Model structure?
 - anomalous couplings?

Tilman Plehn

- Lagrangian Tagging jet
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Immediate questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

2. What are the coupling values?

- requires fixed operator basis
- Standard Model structure?
- anomalous couplings?

3. What can we expect in the future?

- WBF analyses still sub-leading
- VH and $t\bar{t}H$ missing
- self coupling not accessible?

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Lagrangian

Equivalent questions

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Tilman Plehn

Lagrangian

Tagging jets

- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Lagrangian

Equivalent questions

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Heavy flavor inspiration

- for any observed Higgs coupling there exists a renormalizable operator
- except Higgs production in gluon fusion
- except Higgs decay to photons
- except g_{WWH} might mean $HW^{\mu
 u}W_{\mu
 u}$
- Higgs Lagrangian all but trivial

Tilman Plehn

Lagrangian

- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Lagrangian

Equivalent questions

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Heavy flavor inspiration

- for any observed Higgs coupling there exists a renormalizable operator
- except Higgs production in gluon fusion
- except Higgs decay to photons
- except g_{WWH} might mean $HW^{\mu
 u}W_{\mu
 u}$
- Higgs Lagrangian all but trivial
- ⇒ analyze Higgs kinematics [in as many channels as possible]

Tilman Plehn

Lagrangian

Tagging jet

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Lagrangian

Model independent angles

- first step: Higgs polar angle for spin-0 vs spin-2

 $\frac{d\Gamma_0}{d\cos\theta^*} \sim P_0(\theta^*) = 1 \qquad P_2(\theta^*) \sim 1 + 6\cos^2\theta^* + \cos^4\theta^*$

Tilman Plehn

Lagrangian

Tagging jets

- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Lagrangian

Model independent angles

 $- \ H \to ZZ \ decays \quad \mbox{[Choi etal; Melnikov etal; Lykken etal; v d Bij etal; Englert, Spannowsky, Takeuchi]} \ classic \ Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles \quad \mbox{[all over LHCb]} \quad \mbox{[all over LHCb]}$

$$\begin{aligned} \cos \theta_{e} &= \hat{p}_{e^{-}} \cdot \hat{p}_{Z_{\mu}} \Big|_{Z_{e}} &\cos \theta_{\mu} = \hat{p}_{\mu^{-}} \cdot \hat{p}_{Z_{e}} \Big|_{Z_{\mu}} &\cos \theta^{*} = \hat{p}_{Z_{e}} \cdot \hat{p}_{\text{beam}} \Big|_{X} \\ \cos \phi_{e} &= (\hat{p}_{\text{beam}} \times \hat{p}_{Z_{\mu}}) \cdot (\hat{p}_{Z_{\mu}} \times \hat{p}_{e^{-}}) \Big|_{Z_{e}} \\ \cos \Delta \phi &= (\hat{p}_{e^{-}} \times \hat{p}_{e^{+}}) \cdot (\hat{p}_{\mu^{-}} \times \hat{p}_{\mu^{+}}) \Big|_{X} \end{aligned}$$

Tilman Plehn

Lagrangian

- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Lagrangian

Model independent angles

- $\text{ WBF production} \quad \text{[Rainwater, TP, Zeppenfeld; Hagiwara, Li, Mawatari; Englert, Mawatari, Netto, TP]} \\ \text{Breit frame or hadron collider } (\eta, \phi) \quad \text{[Breit: boost into space-like]} \\$

Tilman Plehn

Lagrangian

- Higgs couplir D6 Lagrangia
- Weak scale
- High scale

Lagrangian

Model independent angles

$$\begin{split} &\cos \theta_1 = \hat{p}_{j_1} \cdot \hat{p}_{V_2} \Big|_{V_1 \text{Breit}} &\cos \theta_2 = \hat{p}_{j_2} \cdot \hat{p}_{V_1} \Big|_{V_2 \text{Breit}} &\cos \theta^* = \hat{p}_{V_1} \cdot \hat{p}_d \Big|_X \\ &\cos \phi_1 = (\hat{p}_{V_2} \times \hat{p}_d) \cdot (\hat{p}_{V_2} \times \hat{p}_{j_1}) \Big|_{V_1 \text{Breit}} \\ &\cos \Delta \phi = (\hat{p}_{q_1} \times \hat{p}_{j_1}) \cdot (\hat{p}_{q_2} \times \hat{p}_{j_2}) \Big|_X \,. \end{split}$$

Tilman Plehn

Lagrangian

- Higgs couplin D6 Lagrangia
- Weak scale
- High scale

Lagrangian

Model independent angles

$$\cos \theta_{1} = \hat{p}_{j_{1}} \cdot \hat{p}_{V_{2}} \Big|_{V_{1} \text{Breit}} \cos \theta_{2} = \hat{p}_{j_{2}} \cdot \hat{p}_{V_{1}} \Big|_{V_{2} \text{Breit}} \cos \theta^{*} = \hat{p}_{V_{1}} \cdot \hat{p}_{d} \Big|_{X}$$

$$\cos \phi_{1} = (\hat{p}_{V_{2}} \times \hat{p}_{d}) \cdot (\hat{p}_{V_{2}} \times \hat{p}_{j_{1}}) \Big|_{V_{1} \text{Breit}}$$

$$\cos \Delta \phi = (\hat{p}_{q_{1}} \times \hat{p}_{j_{1}}) \cdot (\hat{p}_{q_{2}} \times \hat{p}_{j_{2}}) \Big|_{X} \cdot \frac{1}{2}$$

$$\int_{0}^{0} \int_{0}^{1} \frac{1}{\sigma} \frac{d\sigma}{d\phi} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \frac{d\sigma}{\sigma} \int_{0}^{0} \int_{0}^{0}$$

 \Rightarrow different approaches with similar physics

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Lagrangian

Spin-2 test? [Englert, Mawatari, Netto, TP]

- unitarization affecting all energy variables
- $try \ Gottfried-Jackson \ angle \ \ [\hat{p}_{X,\textit{lab}} \ vs \ \hat{p}_{d,X}; \ Frank, \ Rauch, \ Zeppenfeld; \ Schumi]$

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Lagrangian

Spin-2 test? [Englert, Mawatari, Netto, TP]

- unitarization affecting all energy variables
- $try \ Gottfried-Jackson \ angle \ \ [\hat{p}_{X,\textit{lab}} \ vs \ \hat{p}_{d,X}; \ Frank, \ Rauch, \ Zeppenfeld; \ Schumi]$
- alternatively $\phi_1 + \phi_2$ [Hagiwara, Li, Mawatari]

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

Lagrangian

Spin-2 test? [Englert, Mawatari, Netto, TP]

- unitarization affecting all energy variables
- try Gottfried-Jackson angle $[\hat{p}_{X,lab} \text{ vs } \hat{p}_{d,X}; Frank, Rauch, Zeppenfeld; Schumi]$
- diagrammatic analysis for WBF [\$\Delta \eta_{jj}\$ crucial]

\Rightarrow angular observables in most channels

Tilman Plehn

Lagrangiar

Tagging jets

Higgs couplings D6 Lagrangians

- Weak scale
- High scale

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; BaBar; Bernaciak, Buschmann, Butter, TP]

- originally alternative to event shapes

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start

	$H_{\ell} < 0.3$	$0.3 < H_{\ell} < 0.7$	$0.7 < H_{\ell} < 1$
even ℓ	forbidden	democratic	ordered, collinear, back-to-back
odd ℓ	back-to-back	democratic	collinear, ordered

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; BaBar; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [mjj > 600 GeV]

Tilman Plehn

Lagrangiar

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; BaBar; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i} p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [m_{jj} > 600 GeV]
- applied to all jets in WBF

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs coupling
- D6 Lagrangians
- Weak scale
- High scale

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; BaBar; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [m_{jj} > 600 GeV]
- applied to all jets in WBF
- applied to all jets after WBF cuts

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs coupling
- D6 Lagrangians
- Weak scale
- High scale

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; BaBar; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [mjj > 600 GeV]
- applied to all jets in WBF
- applied to all jets after WBF cuts
- useful information left tuned resolution via variable $\ell \quad \mbox{[not too correlated]}$
- adjust weight factor? adjust objects entering FWMs?

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs coupling
- D6 Lagrangians
- Weak scale
- High scale

Fox-Wolfram moments

Series in spherical harmonics [Field, Kanev, Tayebnejad; BaBar; Bernaciak, Buschmann, Butter, TP]

$$H_{\ell}^{T} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{i=1}^{N} Y_{\ell}^{m}(\Omega_{i}) \frac{p_{T,i}}{p_{T,\text{tot}}} \right|^{2} = \sum_{i,j=1}^{N} \frac{p_{T,i}p_{T,j}}{p_{T,\text{tot}}^{2}} P_{\ell}(\cos \Omega_{ij}) ,$$

- defined on separated jets for a start
- applied to tagging jets in WBF [mjj > 600 GeV]
- applied to all jets in WBF
- applied to all jets after WBF cuts
- useful information left tuned resolution via variable $\ell \quad \mbox{[not too correlated]}$
- adjust weight factor? adjust objects entering FWMs?
- \Rightarrow might be useful eventually

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs coupling
- D6 Lagrangians
- Weak scale
- High scale

Jet counting

Jets with Higgs [Englert, Gerwick, TP, Schichtel, Schumann]

- example: WBF $H \rightarrow \tau \tau$
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Jet counting

Jets with Higgs [Englert, Gerwick, TP, Schichtel, Schumann]

- example: WBF $H \rightarrow \tau \tau$
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto from QCD [simulated with SHERPA, also ask Stefan Gieseke]

- count add'l jets to reduce backgrounds

 $p_T^{veto} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{veto} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]

Tilman Plehn

Lagrangiar

Tagging jets

- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Jet counting

Jets with Higgs [Englert, Gerwick, TP, Schichtel, Schumann]

- example: WBF $H \rightarrow \tau \tau$
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto from QCD [simulated with SHERPA, also ask Stefan Gieseke]

- count add'l jets to reduce backgrounds

 $p_T^{veto} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{veto} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]
- (fairly) staircase for e-w processes [cuts keeping signal]
- distribution of number of jets understood

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

Higgs rates

The model

 assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures benchmarks useless

 \leftrightarrow

- production & decay combinations
- signal strength vs couplings?

gg ightarrow H qq ightarrow qqH $qg ightarrow t\bar{t}H$
q ar q' o WH plus a little problem

$$\begin{array}{l} H \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau_{\ell h}^{+} \tau_{\ell}^{-} \\ H \rightarrow \gamma \gamma \\ H \rightarrow Z \gamma \end{array}$$

 \leftrightarrow

Gauss/Poisson statistics

systematics theory errors

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Higgs rates

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures benchmarks useless
- production & decay combinations
- signal strength vs couplings?

Why 126 GeV is just perfect [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012]

- because is wants a weakly interacting top partner

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Higgs rates

The model

- assume: we see a scalar [ZZ and WBF correlations] it is a narrow resonance SM-like D4 structures benchmarks useless
- production & decay combinations
- signal strength vs couplings?

Why 126 GeV is just perfect [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012]

- parameters: Higgs couplings to $W, Z, t, b, \tau, g, \gamma$ [SM-like D4 operators]

 $g_{HXX} = g_{HXX}^{\mathrm{SM}} ~(1 + \Delta_X) ~~g_{HWW} > 0$

- measurements:
$$GF : H \rightarrow ZZ, WW, \gamma\gamma$$

 $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$
 $VH : H \rightarrow b\bar{b}$
 $t\bar{t}H : H \rightarrow \gamma\gamma, b\bar{b}$

⇒ perfect application for SFitter

Tilman Plehn

- Lagrangian
- Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- simple argument
 LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 LHC rate 300% off: Standard Model wrong
- theory likelihood flat centrally and zero far away
- profile likelihood construction: RFit [CKMFitter]

$$\begin{aligned} -2\log\mathcal{L} &= \chi^2 = \vec{\chi}_d^T \ \mathcal{C}^{-1} \ \vec{\chi}_d \\ \chi_{d,i} &= \begin{cases} 0 & |d_i - \vec{q}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{q}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{q}_i| > \sigma_i^{\text{(theo)}} \end{cases} \end{aligned}$$

Tilman Plehn

- Lagrangian
- Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- profile likelihood construction: RFit [CKMFitter]

$$2 \log \mathcal{L} = \chi^2 = \vec{\chi}_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Efficient combination of errors [different from Michael's ATLAS analysis]

- Gaussian ⊗ Gaussian: half width added in quadrature Gaussian/Poisson ⊗ flat: RFit scheme Gaussian ⊗ Poisson: ??
- approximate formula

$$\frac{1}{\log \mathcal{L}_{\text{comb}}} = \frac{1}{\log \mathcal{L}_{\text{Gauss}}} + \frac{1}{\log \mathcal{L}_{\text{Poisson}}}$$

- modified Minuit gradient fit last step
- \Rightarrow error bars from toy measurements

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Error analysis

Sources of uncertainty

- statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian
- profile likelihood construction: RFit [CKMFitter]

$$-2\log \mathcal{L} = \chi^2 = \chi_d^T C^{-1} \vec{\chi}_d$$
$$\chi_{d,i} = \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}$$

Systematic uncertainties

luminosity measurement	5 %
detector efficiency	2 %
lepton reconstruction efficiency	2 %
photon reconstruction efficiency	2 %
WBF tag-jets / jet-veto efficiency	5 %
b-tagging efficiency	3 %
au-tagging efficiency (hadronic decay)	3 %
lepton isolation efficiency $(H \rightarrow 4\ell)$	3%

1	$\Delta B^{(\text{syst})}$
$H \rightarrow ZZ$	1%
$H \rightarrow WW$	5%
$H \rightarrow \gamma \gamma$	0.1%
$H \rightarrow \tau \tau$	5%
$H ightarrow bar{b}$	10%

Higgs couplings

Tilman Plehn

Lagrangiar

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Higgs sector at LHC [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012; Contino et al]

- light Higgs around 126 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH: H \rightarrow b\bar{b}$ [BDRS-like analyses only] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus eventually Higgs mass]

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Higgs couplings

Higgs sector at LHC [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012; Contino et al]

- light Higgs around 126 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH: H \rightarrow b\bar{b}$ [BDRS-like analyses only] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus eventually Higgs mass]

Total width

- myths about scaling

$$N = \sigma BR \propto rac{g_{
ho}^2}{\sqrt{\Gamma_{
m tot}}} \; rac{g_d^2}{\sqrt{\Gamma_{
m tot}}} \sim rac{g^4}{g^2 rac{\sum \Gamma_i(g^2)}{g^2} + \Gamma_{
m unobs}} \; \stackrel{g^2 o 0}{
ightarrow} = 0$$

gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{\text{tot}} o \Gamma_H|_{\text{min}}$

- $WW \rightarrow WW$ unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H |_{max}$
- SFitter assumption $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Higgs couplings

Higgs sector at LHC [Zeppenfeld et al; Dührssen et al; SFitter 2009/2012; Contino et al]

- light Higgs around 126 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses] $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting] $VH: H \rightarrow b\bar{b}$ [BDRS-like analyses only] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, b\bar{b}...$ [useful but later]
- parameters: couplings $\textit{W},\textit{Z},t,\textit{b},\tau,\textit{g},\gamma$ [plus eventually Higgs mass]

SFitter ansatz [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- SM operators $g_{HXX} = g_{HXX}^{SM} (1 + \Delta_X)$ D5 couplings $g_{ggH}, g_{\gamma\gamma H}$ free? electroweak correction currently negligible
- experimental/theory errors on signal and backgrounds ATLAS and CMS both included
- exclusive likelihood map each coupling from profile likelihoods best-fit point with Minuit complete error analysis

Tilman Plehn

- Lagrangian
- Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

LHC including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- focus SM-like [secondary solutions possible]

SFitter results

- six couplings and ratios from data g_b from width g_g vs g_t not yet possible

[similar: Ellis etal, Djouadi etal, Strumia etal, Grojean etal]

- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- Tevatron $H \rightarrow b\bar{b}$ with little impact

Tilman Plehn

- Lagrangian
- Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

LHC including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- focus SM-like [secondary solutions possible]

SFitter results

- six couplings and ratios from data g_b from width g_g vs g_t not yet possible

[similar: Ellis etal, Djouadi etal, Strumia etal, Grojean etal]

- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- Tevatron $H \rightarrow b\bar{b}$ with little impact

Tilman Plehn

- Lagrangian
- Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

LHC including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- focus SM-like [secondary solutions possible]

SFitter results

- six couplings and ratios from data g_b from width g_g vs g_t not yet possible

[similar: Ellis etal, Djouadi etal, Strumia etal, Grojean etal]

- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- Tevatron $H \rightarrow b\bar{b}$ with little impact

Tilman Plehn

- Lagrangian
- Tagging jets

Higgs couplings

- D6 Lagrangians
- Weak scale
- High scale

LHC including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- focus SM-like [secondary solutions possible]
- six couplings and ratios from data
 - g_b from width
 - g_g vs g_t not yet possible

[similar: Ellis etal, Djouadi etal, Strumia etal, Grojean etal]

- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- Tevatron $H \rightarrow b\bar{b}$ with little impact

Future dinosaurs

SFitter results

- LHC extrapolations unclear [SFitter version]15
- theory extrapolations tricky [SFitter version]0.1
- ILC case obvious [500 GeV for now]
- interplay in loop-induced couplings

Theorists ideas

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings

D6 Lagrangians

- Weak scale
- High scale

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f$ [little Higgs $v \sim g^2 f/(2\pi)$]
- postulate new $f\gtrsim
 u$ and $m_
 ho
 ightarrow 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strengths

Theorists ideas

Tilman Plehn

Lagrangiar

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f$$
 [little Higgs $v \sim g^2 f/(2\pi)$]

- postulate new $f\gtrsim v$ and $m_
 ho o 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strengths

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \vec{f}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW} g}{16 \pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB} g'}{16 \pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu} \\ &+ \frac{c_{\gamma} g'^2}{16 \pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16 \pi^2 f^2} \frac{g_{\rho}^2}{g_{\rho}^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu}. \end{split}$$

Theorists ideas

Tilman Plehn

Lagrangiar

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f$$
 [little Higgs $v \sim g^2 t/(2\pi)$]

- postulate new $f\gtrsim v$ and $m_
 ho o 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strengths

$$\begin{split} \mathcal{L}_{\text{SILH}} &\sim \frac{c_{H}}{f^{2}} \partial^{\mu} \left(H^{\dagger} H\right) \partial_{\mu} \left(H^{\dagger} H\right) + \frac{c_{T}}{f^{2}} \left(H^{\dagger} \overleftarrow{D^{\mu}} H\right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H\right) \\ &- \frac{c_{6}}{(3f)^{2}} \left(H^{\dagger} H\right)^{3} + \left(\frac{c_{y} y_{f}}{f^{2}} H^{\dagger} H \overrightarrow{f_{L}} H f_{R} + \text{h.c.}\right) \\ &+ \frac{i c_{W}}{(16f)^{2}} \left(H^{\dagger} \sigma^{i} \overleftarrow{D^{\mu}} H\right) \left(D^{\nu} W_{\mu\nu}\right)^{i} + \frac{i c_{B}}{(16f)^{2}} \left(H^{\dagger} \overleftarrow{D^{\mu}} H\right) \left(\partial^{\nu} B_{\mu\nu}\right) \\ &+ \frac{i c_{HW}}{(16f)^{2}} \left(D^{\mu} H\right)^{\dagger} \sigma^{i} (D^{\nu} H) W_{\mu\nu}^{i} + \frac{i c_{HB}}{(16f^{2})} \left(D^{\mu} H\right)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^{2}} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_{g}}{(256f)^{2}} H^{\dagger} H G_{\mu\nu}^{a} G^{a\mu\nu}. \end{split}$$

Theorists ideas

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings

D6 Lagrangians

- Weak scale
- High scale

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f$ [little Higgs $v \sim g^2 f/(2\pi)$]
- postulate new $f\gtrsim
 u$ and $m_
 ho
 ightarrow 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strengths

$$\begin{split} \mathcal{L}_{\text{SILH}} &\sim \frac{c_{H}}{f^{2}} \partial^{\mu} \left(H^{\dagger} H\right) \partial_{\mu} \left(H^{\dagger} H\right) + \frac{c_{T}}{f^{2}} \left(H^{\dagger} \overleftarrow{D^{\mu}} H\right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H\right) \\ &- \frac{c_{6}}{(3f)^{2}} \left(H^{\dagger} H\right)^{3} + \left(\frac{c_{y} y_{f}}{f^{2}} H^{\dagger} H \overline{f}_{L} H f_{R} + \text{h.c.}\right) \\ &+ \frac{i c_{W}}{(16f)^{2}} \left(H^{\dagger} \sigma^{i} \overleftarrow{D^{\mu}} H\right) \left(D^{\nu} W_{\mu\nu}\right)^{i} + \frac{i c_{B}}{(16f)^{2}} \left(H^{\dagger} \overleftarrow{D^{\mu}} H\right) \left(\partial^{\nu} B_{\mu\nu}\right) \\ &+ \frac{i c_{HW}}{(16f)^{2}} \left(D^{\mu} H\right)^{\dagger} \sigma^{i} \left(D^{\nu} H\right) W_{\mu\nu}^{i} + \frac{i c_{HB}}{(16f^{2})} \left(D^{\mu} H\right)^{\dagger} \left(D^{\nu} H\right) B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^{2}} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_{g}}{(256f)^{2}} H^{\dagger} H G_{\mu\nu}^{a} G^{a\mu\nu}. \end{split}$$

- collider phenomenology of mostly $(H^{\dagger}H)$ terms [Mühlleitner etal]
- \Rightarrow remember what your operators are!

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} (\Phi^{\dagger} \Phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^2} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ &+ \frac{f_W}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) + \frac{f_B}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr}(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_b}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{Q}_3 \Phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{L}_3 \Phi e_{R,3}) \end{split}$$

- plus e-w precision data and triple gauge couplings

Tilman Plehn

Lagrangian

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} (\Phi^{\dagger} \Phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^2} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ &+ \frac{f_W}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) + \frac{f_B}{\Lambda^2} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr}(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_b}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{Q}_3 \Phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^2} (\Phi^{\dagger} \Phi) (\overline{L}_3 \Phi e_{R,3}) \end{split}$$

- plus e-w precision data and triple gauge couplings

Tilman Plehn

Lagrangiar

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_{\text{s}} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} (\Phi^{\dagger} \Phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^{2}} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ &+ \frac{f_{W}}{\Lambda^{2}} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{B}}{\Lambda^{2}} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) + \frac{f_{WWW}}{\Lambda^{2}} \operatorname{Tr}(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_{b}}{\Lambda^{2}} (\Phi^{\dagger} \Phi) (\overline{Q}_{3} \Phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^{2}} (\Phi^{\dagger} \Phi) (\overline{L}_{3} \Phi e_{R,3}) \end{split}$$

- plus e-w precision data and triple gauge couplings

⇒ remember what your operators are!

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1- combinatorics: m_H in $pp
 ightarrow 4b_{tag}$ 2 $j \ \ell
 u$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Top Yukawa

Direct measurement $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp
 ightarrow 4b_{tag}$ 2j $\ell
 u$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+ \nu$ reconstruction and rate: $\overline{t} \rightarrow \overline{b}W^- \rightarrow \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

New(ish) approaches

- semi-leptonic fat jets analysis [TP, Salam, Spannowsk; \underbrace{P}_{i} 100 $\int L dt = 4.7 \text{ fb}^{-1}$ require tagged top and Higgs trigger on lepton only continuum $t\overline{t}b\overline{b}$ left [with sidebands] top tagger working [Atlas-Heidelberg] 40

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

New(ish) approaches

- semi-leptonic fat jets analysis [TP, Salam, Spannowsky, Takeuchi] require tagged top and Higgs trigger on lepton only continuum ttbb left [with sidebands] top tagger working [Atlas-Heidelberg]
- purely leptonic matrix element method [Artoisenet, de Aquino, Mattoni, Mattelaer]
 4b-2l-MET final state combinatorics from matrix element

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Top Yukawa

Direct measurement $t\bar{t}H, H \rightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

New(ish) approaches

- semi-leptonic fat jets analysis [TP, Salam, Spannowsky, Takeuchi] require tagged top and Higgs trigger on lepton only continuum ttbb left [with sidebands] top tagger working [Atlas-Heidelberg]
- purely leptonic matrix element method [Artoisenet, de Aquino, Maltoni, Mattelaer]
 4b-2l-MET final state combinatorics from matrix element
- \Rightarrow good ideas welcome

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale models

Higgs portal [Englert, TP, Rauch, Zerwas, Zerwas]

- only few renormalizable links to a new phyics world general standard-hidden ansatz $H_1 = \cos \chi H_s + \sin \chi H_h$
- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \, \Gamma_{tot,1}^{SM} + \sin^2 \chi \, \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to XX^*]}{\sigma[H_1 \to XX^*]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}}$$

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale models

Higgs portal [Englert, TP, Rauch, Zerwas, Zerwas]

- only few renormalizable links to a new phyics world general standard-hidden ansatz $H_1 = \cos \chi H_s + \sin \chi H_h$
- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays] $\Gamma_1^{tot} = \cos^2 \chi \Gamma_{tot,1}^{SM} + \sin^2 \chi \Gamma_1^{hid}$
- constraints on event rate

$$\frac{\sigma[H_1 \to XX^*]}{\sigma[H_1 \to XX^*]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}}$$

⇒ invisible Higgs needed for final answer [Eboli & Zeppenfeld]

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians

Weak scale

High scale

Weak scale models

Higgs portal [Englert, TP, Rauch, Zerwas, Zerwas]

- only few renormalizable links to a new phyics world general standard-hidden ansatz $H_1 = \cos \chi H_s + \sin \chi H_h$
- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays]

$$\Gamma_1^{\rm tot} = \cos^2\chi\,\Gamma_{\rm tot;1}^{\rm SM} + \sin^2\chi\,\Gamma_1^{\rm hic}$$

- constraints on event rate

$$\frac{\sigma[H_1 \to XX^*]}{\sigma[H_1 \to XX^*]^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_1^{\text{hid}}}{\Gamma_{\text{tot},1}^{\text{SM}}}}$$

⇒ invisible Higgs needed for final answer [Eboli & Zeppenfeld]

Form factor Higgs [Kaplan & Georgi; Contino, Espinosa, Giudice, Grojean, Mühlleitner, Pomarol, Rattazzi]

- simple trick: $\xi\equiv
 u/f\gtrsim$ 0.3 while $m_
 ho=g_
 ho f\gg f$ [also not calculable]
- 1– all couplings scaled $g
 ightarrow g \sqrt{1-\xi}$
- one-parameter fit in SFitter
- from 8 TeV data $\Delta_{H}=0\pm0.15$
- 2- gauge couplings $g o g \sqrt{1-\xi}$ Yukawas $g o g(1-2\xi)/\sqrt{1-\xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale theory

Non-decoupling D6 operators

- SM: chiral fermions $g_{Hgg} \sim lpha_s/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale theory

Non-decoupling D6 operators

- SM: chiral fermions $g_{Hgg} \sim lpha_s/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Supersymmetry

- MSSM Higgs mass the best-predicted LHC observable [Hahn etal + Stal]
- production rates mix of form factor and D6 [e.g. Hollik, TP, Rauch, Rzehak]
- stop mass/mixing crucial $[m_A = 1 \text{ TeV}, \tan \beta = 20]$

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale theory

Non-decoupling D6 operators

- SM: chiral fermions $g_{Hgg} \sim lpha_s/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Supersymmetry

- MSSM Higgs mass the best-predicted LHC observable [Hahn etal + Stal]
- production rates mix of form factor and D6 [e.g. Hollik, TP, Rauch, Rzehak]
- stop mass/mixing crucial $[m_A = 1 \text{ TeV}, \tan \beta = 20]$
- SUSY particles in eff couplings [everyone] stop mixing destructive [Reece]

$$\frac{g_{Hgg}}{g_{Hgg}^{SM}} = 1 + \frac{1}{4} \left(\frac{m_l^2}{m_{\tilde{t}_1}^2} + \frac{m_l^2}{m_{\tilde{t}_2}^2} - \frac{m_l^2 X_l^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right)$$

- move towards NMSSM always an option ...
- \Rightarrow no final verdict on the MSSM (ever?)

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale theory

Non-decoupling D6 operators

- SM: chiral fermions $g_{Hgg} \sim lpha_{s}/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = rac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{
m SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}
ight)
ight]^2, \qquad \qquad \xi = rac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Moving towards the Standard Model?

- $-\,$ should we worried by SM $\pm 20\%?$
- what is expected in BSM models [Gupta, Rzehak, Wells]

	ΔhVV	$\Delta h \overline{t} t$	$\Delta h \overline{b} b$
mixed-in singlet	6%	6%	6%
composite Higgs	8%	tens of %	tens of %
MSSM	< 1%	3%	aepenas

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale theory

Non-decoupling D6 operators

- SM: chiral fermions $g_{Hgg} \sim lpha_s/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Moving towards the Standard Model?

- should we worried by SM $\pm 20\%?$
- what is expected in BSM models [Gupta, Rzehak, Wells]
- coupling new states as $\lambda_j H^2 |\phi_j|^2$ [Craig, Englert, McCullough]
- m_{ϕ} and λ_j given by hierarchy problem
- contributing to $\sigma_{Z\!H}$ through self energy

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Weak scale theory

Non-decoupling D6 operators

- SM: chiral fermions $g_{Hgg} \sim lpha_s/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Moving towards the Standard Model?

- should we worried by SM $\pm 20\%?$
- what is expected in BSM models [Gupta, Rzehak, Wells]
- coupling new states as $\lambda_j H^2 |\phi_j|^2$ [Craig, Englert, McCullough]
- m_{ϕ} and λ_j given by hierarchy problem
- contributing to σ_{ZH} through self energy
- \Rightarrow trivial: want best possible precision

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

High scale theory

What if it is essentially the Standard Model

- many theories decouple in Higgs sector [custodial symmetry, suppressed D6]
- any handle on high-scale physics needed

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale

```
High scale
```

High scale theory

What if it is essentially the Standard Model

- many theories decouple in Higgs sector [custodial symmetry, suppressed D6]
- any handle on high-scale physics needed

Renormalization group

- Higgs mass related to self coupling: $m_H = v\sqrt{2\lambda}$ top mass related to Yukawa: $y_t = \sqrt{2}m_t/v$

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 - \frac{3}{2}\lambda \left(3g_2^2 + g_1^2 \right) + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right]$$

- IR fixed point for λ/y_t^2 fixing $m_H^2/m_t^2=1/2$ [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + \frac{m_{t} - 171.2}{2.1} \times 4.1 - \frac{\alpha_{s} - 0.1176}{0.002} \times 1.5$$

- Planck-scale conditions [Holthausen, Lim, Lindner]
- \Rightarrow Higgs and top crucial in combination

Tilman Plehn

- Lagrangiar
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Outlook

LHC Higgs program

- experimentalists: do not listen to theorists
- phenomenologists: enjoy fun problems
- theorists: give us some fun interpretations

Lectures on LHC Physics, arXiv:0910.4182, Springer, online under www.thphys.uni-heidelberg.de/~{}plehn

Tilman Plehn

Lagrangia

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Wook ooolo
- High scale

Markov chains

Probability maps [statistics unexpectedly hard...]

- honest LHC parameters: weak-scale Lagrangean [Higgs, MSSM, dark matter,...]
- likelihood map: data given a model $p(d|m) \sim |\mathcal{M}|^2(m)$
- Bayes' theorem: p(m|d) = p(d|m) p(m)/p(d) [p(d) normalization, p(m) prejudice]

Markov chains

- problem in grid: huge phase space, find local best points? problem in fit: domain walls, find global best points?
- construct 'representative' poll
- classical: representative set of spin states compute average energy on this reduced sample
- BSM or Higgs: map p(d|m) of parameter points evaluate whatever you want
- Metropolis-Hastings starting probability p(d|m) vs suggested probability p(d|m')
 1- accept new point if p(d|m') > p(d|m)
 2- or accept with p(d|m')/p(d|m) < 1

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

F

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$P_{\text{bin}}(p \neq 0) = rac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Tilman Plehn

- Lagrangian
- Tagging jets
- Higgs couplings
- D6 Lagrangians
- Weak scale
- High scale

Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation measure of 'representative': probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count bin with inverse averaging

$$\mathsf{P}_{\mathsf{bin}}(p \neq 0) = rac{\mathsf{bincount}}{\sum_{i=1}^{\mathsf{bincount}} p^{-1}}$$

– good choice for $\mathcal{O}(6)$ dimensions

Cooling Markov chains [Lafaye, TP, Rauch, Zerwas]

- zoom in on peak structures [inspired by simulated annealing]
- modified condition
 Markov chain in partitions, numbered by j

 $p(d|m') > p(d|m) r^{10/j}$ $r \in [0, 1]$ random number

- check for parameter coverage with many Markov chains
- \Rightarrow exclusive likelihood map first result

Tilman Plehn

Lagrangia

Tagging jets

Higgs couplings

D6 Lagrangians

Weak scale

High scale