Higgs Fits

Tilman Plehn

100 TeV

Rant

D6 fit

D6 limitations

Higgs Couplings at 100 TeV

Tilman Plehn

Universität Heidelberg

Higgs Couplings, October 2015

100 TeV

Rant

D6 fit

D6 limitations

Fundamental Higgs physics

High scales [Lindner etal, Wetterich etal]

- Planck-scale extrapolation

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 \right]$$

- Landau pole: exploding λ for large Q, small λ_t
- stability issue: sign change in λ for large Q, large λ_t
- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + rac{m_{t} - 171.2}{2.1} \times 4.1 - rac{\alpha_{s} - 0.1176}{0.002} \times 1.5$$

100 TeV

Rant

D6 fit

D6 limitations

Fundamental Higgs physics

High scales [Lindner etal, Wetterich etal]

- Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 \right]$$

- Landau pole: exploding λ for large Q, small λ_t
- stability issue: sign change in λ for large Q, large λ_t
- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + rac{m_{l} - 171.2}{2.1} \times 4.1 - rac{lpha_{s} - 0.1176}{0.002} imes 1.5$$

- RG running of Higgs potential
 - $\lambda < 0$ at 10¹⁰ GeV? [Buttazo etal]

100 TeV

Rant

D6 fit

D6 limitations

Fundamental Higgs physics

High scales [Lindner etal, Wetterich etal]

- Planck-scale extrapolation

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 \right]$$

- Landau pole: exploding λ for large Q, small λ_t
- stability issue: sign change in λ for large Q, large λ_t
- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + \frac{m_{t} - 171.2}{2.1} \times 4.1 - \frac{\alpha_{s} - 0.1176}{0.002} \times 1.5$$

- RG running of Higgs potential
- $\lambda < 0$ at 10¹⁰ GeV? [Buttazo etal]
- new physics at 10¹¹ GeV?

100 TeV

Rant

D6 fit

D6 limitations

Fundamental Higgs physics

High scales [Lindner etal, Wetterich etal]

- Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 \right]$$

- Landau pole: exploding λ for large Q, small λ_t
- stability issue: sign change in λ for large Q, large λ_t
- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + rac{m_{l} - 171.2}{2.1} \times 4.1 - rac{lpha_{s} - 0.1176}{0.002} imes 1.5$$

- RG running of Higgs potential
- $\lambda < 0$ at 10¹⁰ GeV? [Buttazo etal]
- new physics at 10¹¹ GeV?
- new physics at 10¹⁹ GeV?

100 TeV

Rant

D6 fit

D6 limitations

Fundamental Higgs physics

High scales [Lindner etal, Wetterich etal]

- Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 \right]$$

- Landau pole: exploding λ for large Q, small λ_t
- stability issue: sign change in λ for large Q, large λ_t
- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + rac{m_{t} - 171.2}{2.1} \times 4.1 - rac{lpha_{s} - 0.1176}{0.002} \times 1.5$$

- RG running of Higgs potential
- $\lambda < 0$ at 10¹⁰ GeV? [Buttazo etal]
- new physics at 10¹¹ GeV?
- new physics at 10¹⁹ GeV?
- TeV-scale DM portal?
- \Rightarrow three parameters: $\lambda, y_t, \Lambda_{NP}$

100 TeV

Rant

D6 fit

D6 limitations

Self-coupling at 100 TeV

$\label{eq:reality} \textit{Really measure } \lambda \quad \text{[Glover & v.d.Bij; Baur etal]}$

- fundamental parameter for ew symmetry breaking
- $gg \rightarrow HH$ leading production process
- rate measurement requiring y_t measurement [use m_{HH} , p_T]
- $HH \rightarrow b\bar{b}\gamma\gamma$ rate-limited
 - $HH \rightarrow b \bar{b} \tau \tau$ requiring excellent tagging
 - $HH \rightarrow 4b$ most promising for HH resonances
 - $HH \rightarrow b\bar{b}WW$ not sure
- $\Rightarrow \pm 50\%$ at LHC?

100 TeV

- Rant
- D6 fit
- D6 limitations

Self-coupling at 100 TeV

Really measure λ [Glover & v.d.Bij; Baur etal]

- fundamental parameter for ew symmetry breaking
- $gg \rightarrow HH$ leading production process
- rate measurement requiring y_t measurement [use m_{HH} , p_T]
- $HH \rightarrow b\bar{b}\gamma\gamma$ rate-limited
 - $HH
 ightarrow b ar{b} au au$ requiring excellent tagging
 - $HH \rightarrow 4b$ most promising for HH resonances
 - $HH \rightarrow b\bar{b}WW$ not sure
- \Rightarrow ±50% at LHC?

100 TeV Collider [Barr, Dolan, Englert, Ferreira de Lima, Spanno; Azatov, Contino, Panico, Son]

- standard cuts on final state
- add HHj for some improvement
- \Rightarrow ±15% at 100 TeV

100 TeV

Rant

D6 fit

D6 limitations

Top Yukawa at 100 TeV

Really measure yt

- much more interesting than top mass
- ttH leading production process
- $H \rightarrow b \bar{b}$ combinatorially hard
 - $H \rightarrow \gamma \gamma$ rate-limited
 - $H \rightarrow \tau \tau$ experimentally hard
- $\Rightarrow~\pm 10\%$ at LHC, neglecting theory uncertainties

100 TeV

Rant

- D6 fit
- D6 limitations

Top Yukawa at 100 TeV

Really measure yt

- much more interesting than top mass
- ttH leading production process
- $H \rightarrow b \bar{b}$ combinatorially hard
 - ${\it H} \rightarrow \gamma \gamma$ rate-limited
 - $H \rightarrow \tau \tau$ experimentally hard

 $\Rightarrow~\pm 10\%$ at LHC, neglecting theory uncertainties

100 TeV Collider [Mangano, Reimitz, TP, Schell, Shao]

- boosted $t\bar{t}H,\,H
 ightarrow bar{b}$ [TP, Salam, Spanno]
- tagged top, Higgs [state of art taggers]
 m_{bb} side band
 simultaneous fit of *Z*, *H* peaks

- theory control from
$$\frac{H \rightarrow b\bar{b}}{Z \rightarrow b\bar{b}}$$

 $\Rightarrow~\pm1\%$ at 100 TeV

Heavy Higgs at 100 TeV

100 TeV

Rant

D6 fit

D6 limitations

Additional Higgs bosons [Hajer, Ismail, Kling, Li, Liu, Su]

- new charged states new neutral states
- production processes known from LHC
- ⇒ multi-TeV range

100 TeV

Rant

D6 fit

D6 limitations

Kappas beyond Run I

Higgs couplings worked great at Run II They are not sufficient for Run II There is no updated framework worked out

100 TeV

Rant

D6 fit

D6 limitations

Higgs Couplings

Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas]

- Lagrangian [essentially non-linear sigma model: Buchalla etal]

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} - \Delta_3 \; \frac{m_H^2}{2v} H^3 + \text{invisible decays} \end{split}$$

$$\begin{array}{c} gg \rightarrow H \\ qq \rightarrow qqH \\ gg \rightarrow t\bar{t}H \\ qq' \rightarrow VH \end{array} \longleftrightarrow \qquad \begin{array}{c} fH \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^+ \tau^- \\ H \rightarrow \gamma \gamma \\ H \rightarrow \bar{p}_T \end{array}$$

100 TeV

Rant

D6 fit

D6 limitations

Higgs Couplings

Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas]

- Lagrangian [essentially non-linear sigma model: Buchalla etal]

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\tilde{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} - \Delta_3 \; \frac{m_H^2}{2v} H^3 + \text{invisible decays} \end{split}$$

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \begin{array}{c} fH \to ZZ \\ H \to b\bar{b} \\ H \to b\bar{b} \\ H \to \tau^+\tau^- \\ H \to \gamma\gamma \\ H \to \bar{p}_T \end{array}$$

Executive summary

- couplings fit works great [experimentally]
- offers perfect th-ex interface [Cranmer, Kreiss, Lopez-Val, TP]
- (1) has issues with electroweak renormalization
- (2) does not describe kinematic distributions
- (3) is hard to relate to other sectors

100 Te

Rant

D6 fit

D6 limitations

SFitter D6 fit

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\begin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} & \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \end{aligned}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

100 Te\

Rant

D6 fit

D6 limitations

SFitter D6 fit

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \qquad \mathcal{O}_{W} = \left(D_{\mu} \Phi \right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \qquad \mathcal{O}_{B} = \cdots$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

- Higgs couplings to SM particles

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

100 Te\

Rant

D6 fit

D6 limitations

SFitter D6 fit

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \qquad \mathcal{O}_{W} = \left(D_{\mu} \Phi \right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \qquad \mathcal{O}_{B} = \cdots$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s}v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

- Higgs couplings to SM particles

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

- plus Yukawa structure $f_{\tau,b,t}$

100 Te\

Rant

D6 fit

D6 limitations

SFitter D6 fit

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \qquad \mathcal{O}_{W} = \left(D_{\mu} \Phi \right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \qquad \mathcal{O}_{B} = \cdots$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s}v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

- Higgs couplings to SM particles

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g_Z^{(1)} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_Z^{(2)} H Z_{\mu\nu} Z^{\mu\nu} + g_Z^{(3)} H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

- plus Yukawa structure $f_{\tau,b,t}$
- 7 EFT couplings identical to Δ_x , suppressed by v^2/Λ^2 [with $\Delta_W = \Delta_Z$] 4 EFT couplings $g_{W,Z}^{(1,2)}$ in addition, suppressed by ∂/Λ
- \Rightarrow natural extension of Δ_j

100 Te\

Rant

D6 fit

D6 limitations

SFitter D6 fit

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \qquad \mathcal{O}_{W} = \left(D_{\mu} \Phi \right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \qquad \mathcal{O}_{B} = \cdots$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s}v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

SFitter analysis [Corbett, Eboli, Goncalves, Gonzalez-Fraile, TP, Rauch]

- setup and data identical to SFitter Δ_x fit
- ew-renormalizable: #1
- including $p_{T,V}, \Delta \Phi_{jj}$: #2
- TGVs for $\mathcal{O}_{B,W}$: #3

100 Te\

Rant

D6 fit

D6 limitations

SFitter D6 fit

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s}\nu}{8\pi}\frac{f_{g}}{\Lambda^{2}}\mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}}\mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}}\mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}}\mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}}\mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}}\mathcal{O}_{\Phi,2}$$

SFitter analysis [Corbett, Eboli, Goncalves, Gonzalez-Fraile, TP, Rauch]

- setup and data identical to SFitter Δ_x fit

100 Te\

Rant

D6 fit

D6 limitations

Limitations of D6 description

D6 vs EFT breakdown [Brehmer, Freitas, Lopez-Val, TP]

 phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT differences appear?

100 Te\

Rant

D6 fit

D6 limitations

Limitations of D6 description

D6 vs EFT breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT differences appear?
- push models to visible deviations at 13 TeV
 Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Knochel etal]

$$\left| \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1 \right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 0.1 \qquad \Leftrightarrow \qquad \Lambda \lesssim 280 \; \mathsf{GeV}$$

100 Te\

Rant

D6 fit

D6 limitations

Limitations of D6 description

D6 vs EFT breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT differences appear?
- push models to visible deviations at 13 TeV
 Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Knochel etal]

$$\left| rac{\sigma imes \mathsf{BR}}{(\sigma imes \mathsf{BR})_{\mathsf{SM}}} - 1
ight| = rac{g^2 m_h^2}{\Lambda^2} \gtrsim 0.1 \qquad \Leftrightarrow \qquad \Lambda \lesssim 280 \,\, \mathsf{GeV}$$

- construct and match EFT to D6 coupling modifications v^2/Λ^2 vs new structures ∂/Λ ? matching conditions with $v \lesssim \Lambda$?

100 Te\

- Rant
- D6 fit

D6 limitations

Limitations of D6 description

D6 vs EFT breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT differences appear?
- push models to visible deviations at 13 TeV
 Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Knochel etal]

$$\left|\frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1\right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 0.1 \qquad \Leftrightarrow \qquad \Lambda \lesssim 280 \; \mathsf{GeV}$$

- construct and match EFT to D6 coupling modifications v^2/Λ^2 vs new structures ∂/Λ ? matching conditions with $v \lesssim \Lambda$?
- compare LHC simulations: model vs D6

production: WBF, *VH*, *HH* decays: $H \rightarrow \gamma \gamma$, 4 ℓ

- check where differences D6 vs EFT appear

Higgs Fits

Tilman Plehn

100 TeV

Rant

D6 fit

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC

Singlet					EF	Т	EFT (v-improved)		
m _H	$\sin\alpha$	v_S/v	$\Delta_x^{\text{singlet}}$	Λ	- Ē _H	Δ_x^{EFT}	 $ar{c}_H$	Δ_x^{EFT}	
500 350 200 1000 500	0.2 0.3 0.4 0.4 0.6	10 10 10 10 10	-0.020 -0.046 -0.083 -0.083 -0.200	491 336 190 918 407	0.036 0.073 0.061 0.183 0.461	-0.018 -0.037 -0.031 -0.092 -0.231	0.040 0.092 0.167 0.167 0.400	-0.020 -0.046 -0.083 -0.092 -0.200	

- LHC effects in Vh and WBF production

100 TeV

Rant

D6 fit

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						EFT		
Туре	$\tan\beta$	α/π	m ₁₂	m _H 0	m _{A0}	$m_{H^{\pm}}$	Λ [GeV]	Ē₀	$\bar{c}_{d,\ell}$
1	1.5	-0.086	45	230	300	350	100	-0.744	-0.744
11	15	-0.023	116	449	450	457	448	0.000	0.065
11	10	0.032	157	500	500	500	99	0.465	-46.5
1	20	0	45	200	500	500	142	0.003	0.003

100 TeV

Rant

D6 fit

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC

		2	HDM		EFT					
Туре	$\tan\beta$	α/π	m ₁₂	m _H 0	m _{A0}	$m_{H^{\pm}}$		Λ [GeV]	\bar{c}_{u}	$\bar{c}_{d,\ell}$
1	1.5	-0.086	45	230	300	350		100	-0.744	-0.744
11	15	-0.023	116	449	450	457		448	0.000	0.065
11	10	0.032	157	500	500	500		99	0.465	-46.5
1	20	0	45	200	500	500			~ ~~~	~ ~~~
							-	×10 ⁻⁶		$p \; p \to h^0 \to \gamma$
_HC €	effects	in $H \rightarrow$	$\gamma\gamma$				Ē	2		
			, ,				q/q	-		
							± r	EFT		

100 TeV

Rant

D6 fit

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC
- LHC effects in $H\to\gamma\gamma$

Top partners

Scalar top-partner model						EFT				
М	κ_{LL}	ĸ _{RR}	ĸLR	m _{ĩ1}	$m_{\tilde{t}_2}$	Ē _H	ē₩	ē _{₩W}		
500	-1.16	2.85	0.147	500	580	$6.22 \cdot 10^{-3}$	$-3.11 \cdot 10^{-7}$	$3.99 \cdot 10^{-7}$		
350	-3.16	-2.82	0.017	173	200	$4.30 \cdot 10^{-3}$	$-2.55 \cdot 10^{-4}$	$2.55 \cdot 10^{-4}$		
500	-7.51	-7.17	0.012	173	200	$1.66 \cdot 10^{-2}$	$-2.97 \cdot 10^{-4}$	$2.97 \cdot 10^{-4}$		

100 Te\

Rant

D6 fit

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC
- LHC effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC

100 Te\

Rant

D6 fit

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC
- LHC effects in $H\to\gamma\gamma$

Top partners

- testable benchmarks for LHC
- LHC effects in WBF

Vector triplet

- testable benchmarks for LHC

Triplet model							EFT				
M_V	g_V	с _Н	CF	c _{VVHH}	m _ξ		ē₩	$ar{c}_H$	ē ₆	\overline{c}_{f}	
591	3.0	-0.47	-5.0	2.0	1200		-0.044	0.000	0.000	0.000	
946	3.0	-0.47	-5.0	1.0	1200		-0.017	0.000	0.000	0.000	
941	3.0	-0.28	3.0	1.0	1200		0.006	0.075	0.100	0.025	
1246	3.0	-0.50	3.0	-0.2	1200		0.006	0.103	0.138	0.034	
846	1.0	-0.56	-1.32	0.08	849		-0.007	-0.020	-0.027	-0.007	

 \Rightarrow nothing dramatic except for resonances

Rant

D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC
- LHC effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- LHC effects in WBF

Vector triplet

_	testab	le be	0.3				
			Triple				
	M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ	
	591	3.0	-0.47	-5.0	2.0	1200	- 9 : "
	946	3.0	-0.47	-5.0	1.0	1200	_ 0.1 _ _
	941	3.0	-0.28	3.0	1.0	1200	-
	1246	3.0	-0.50	3.0	-0.2	1200	
	846	1.0	-0.56	-1.32	0.08	849	- 2 T1
_	LHC e	effect	s in WE				

ы

 $u d \rightarrow u d h$ (T1), $p_{T,i1} > 300 \text{ GeV}$

- 100 TeV
- Rant
- D6 fit
- D6 limitations

Limitations of D6 description

Higgs portal

- testable benchmarks for LHC
- LHC effects in Vh and WBF production

2HDM

- testable benchmarks for LHC
- LHC effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- LHC effects in WBF

Vector triplet

- testable benchmarks for LHC
- LHC effects in WBF
- \Rightarrow nothing dramatic except for resonances

Higgs Fits

Tilman Plehn

100 TeV

Rant

D6 fit

D6 limitations

Limitations of D6 description

Model	Process	EFT failure					
		resonance	kinematics	matching			
singlet	on-shell $h \rightarrow 4\ell$, WBF, Vh,			Х			
	off-shell WBF,		(\times)	×			
	hh	×	`x′	×			
2HDM	on-shell $h \rightarrow 4\ell$, WBF, Vh,			×			
	off-shell $H \rightarrow \gamma \gamma, \ldots$		(\times)	X			
	hh	×	`х́	×			
top partner	WBF, Vh			×			
vector triplet	WBF		(\times)	×			
	Vh	×	(\times)	×			

100 Te\

D. 0. ().

D6 limitations

Higgs couplings at Run II

D6 Higgs operator fit

- works very well [we did the fit] includes Δ_x as v^2/Λ^2 describes distributions though ∂/Λ
- is easy to simulate through MC [we did it] Rosetta to avoid basis choice
- only breaks down in theory land [we tested it]
- can be interpreted in terms of EFT

Laundry list

- check how non-linear realization works
- combine with triple gauge boson vertices [following Dieter]
- check what we miss without D8 [custodial symmetry]
- anything else?