Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

New Physics in the Higgs Sector

Tilman Plehn

Universität Heidelberg

Milano, June 2015

Higgs boson

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution

VOLUME 13, NUMBER 16 PHYSICAL REVIEW LETTERS 19 OCTOBER 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

In a recent note¹ it was shown that the Goldstone theorem,² that Lorentz-covariant field theories in which spontaneous breakdown of symmetry under an internal Lie group occurs contain zero-mass particles, fails if and only if about the "vacuum" solution $\varphi_1(x) = 0$, $\varphi_2(x) = \varphi_0$:

- $\partial^{\mu} \{\partial_{\mu} (\Delta \varphi_1) e \varphi_0 A_{\mu}\} = 0,$ (2a)

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution

VOLUME 13, NUMBER 16 PHYSICAL REVIEW LETTERS 19 OctoBer 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

about the "vacuum" solution $\varphi_1(x) = 0$, $\varphi_2(x) = \varphi_0$:

(2a)

 $\partial^{\mu} \{\partial_{\mu} (\Delta \varphi_1) - e \varphi_0 A_{\mu}\} = 0,$

d-

rs

lv if

A detailed discussion of these questions will be presented elsewhere.

It is worth noting that an essential feature of the type of theory which has been described in this note is the prediction of incomplete multiplets of scalar and vector bosons.⁶ It is to be expected that this feature will appear also in theories in which the symmetry-breaking scalar fields are not elementary dynamic variables but bilinear combinations of Fermi fields.⁹

¹P. W. Higgs, to be published.

²J. Goldstone, Nuovo Cimento 19, 154 (1961);

J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev.

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology

PHYSICAL REVIEW

VOLUME 145, NUMBER 4

27 MAY 1966

Spontaneous Symmetry Breakdown without Massless Bosons*

PETER W. HIGGS[†] Department of Physics, University of North Carolina, Chapel Hill, North Carolina (Received 27 December 1965)

We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of pontnense breakdown of U(1) symmetry one of the scalar boons is massless, in conformity with the Goldstone theorem. When the symmetry group of the Lagrangian is extended from global to local U(1)transformations by the introduction of coupling with a vector gauge field, the Goldstone boson becomes the longitudinal state of a massive vector boson whose transverse rates are the quanta of the transverse gauge field. A perturbative treatment of the model is developed as which the major fratures of these phenomena are well in a horow that U(0) may be obtained more directly from an equivalent Lagrangian in which the ordinal granupsion, the other system display an induced symmetry is no longer mainfest. When the system is coupled to other systems in a U(1) invariant Laggrangian, the other system display an induced symmetry breakdown, associated with a partially conserved current which intracts with itself visual the massive vector boson.

I. INTRODUCTION

THE idea that the apparently approximate nature of the internal symmetries of elementary-particle physics is the result of asymmetries in the stable solutions of exactly symmetric dynamical equations, rather than an indication of asymmetry in the dynamical

appear have been used by Coleman and Glashow⁴ to account for the observed pattern of deviations from SU(3) symmetry.

The study of field theoretical models which display spontaneous breakdown of symmetry under an internal Lie group was initiated by Nambu,⁴ who had noticed⁵

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology

PHYSICAL REVIEW

VOLUME 145, NUMBER 4

27 MAY 1966

Spontaneous Symmetry Breakdown without Massless Bosons*

PETER W. HIGGS[†] Department of Physics, University of North Carolina, Chapel Hill, North Carolina (Received 27 December 1965)

te nature

7-particle

ble solu-

is, rather

II. THE MODEL

The Lagrangian density from which we shall work is given by $^{\scriptscriptstyle 29}$

$$\begin{split} \mathfrak{L} = & -\frac{1}{4} g^{\epsilon\mu} g^{\lambda\nu} F_{\epsilon\lambda} F_{\mu\nu} - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \Phi_a \nabla_{\nu} \Phi_a \\ & +\frac{1}{4} m_0^2 \Phi_a \Phi_a - \frac{1}{8} f^2 (\Phi_a \Phi_a)^2. \end{split}$$

In Eq. (1) the metric tensor $g^{\mu\nu} = -1 (\mu = \nu = 0)$, +1 $(\mu = \nu \neq 0)$ or $0 (\mu \neq \nu)$, Greek indices run from 0 to 3 and Latin indices from 1 to 2. The U(1)-covariant derivatives $F_{\mu\nu}$ and $\nabla_{\mu}\Phi_{\alpha}$ are given by

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},$$

We use the statistic stary of two scalar fields, first discussed by Goldstone, in which as a DEL symmetry one of the scalar bosons in smalles, in conformity with try group of the Lagrangian is extended from global to local U(1) uping with a vector gauge field, the Goldstone boson becomes the on whoch we shall work Φ_a the stransverse states are the quanta of the transverse gauge Φ_a the system is coupled to other yestem in a U(1) invariant. Lamasive vector boson. associated with a partially conserved masive vector boson.

> appear have been used by Coleman and Glashow³ to account for the observed pattern of deviations from SU(3) symmetry.

The study of field theoretical models which display spontaneous breakdown of symmetry under an internal Lie group was initiated by Nambu,⁴ who had noticed⁵

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution

We examine a simple relation

λ

- 1966: original Higgs phenomenology

PHYSICAL REVIEW

VOLUME 145, NUMBER 4

27 MAY 1966

Spontaneous Symmetry Breakdown without Massless Bosons*

PETER W. HIGGS[†] Department of Physics, University of North Carolina, Chapel Hill, North Carolina

II. THE MODEL

The Lagrangian density from which we shall v is given by²⁹

$$\mathcal{L} = -\frac{1}{4} g^{a\mu} g^{\lambda\nu} F_{a\lambda} F_{\mu\nu} - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \Phi_a \nabla_{\nu} \Phi_a \\ + \frac{1}{4} m_0^2 \Phi_a \Phi_a - \frac{1}{8} f^2 (\Phi_a \Phi_a)^2.$$

In Eq. (1) the metric tensor $g^{\mu\nu} = -1 (\mu = \nu + 1 (\mu = \nu \neq 0) \text{ or } 0 (\mu \neq \nu)$, Greek indices run fro to 3 and Latin indices from 1 to 2. The U(1)-coval derivatives $F_{\mu\nu}$ and $\nabla_{\mu}f_{\mu}$ are given by

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},$$

i. Decay of a Scalar Boson into Two Vector Bosons

The process occurs in first order (four of the five cubic vertices contribute), provided that $m_0 > 2m_1$. Let p be the incoming and k_1 , k_2 the outgoing momenta. Then

$$\begin{split} I &= i \{ e [a^{\mu_{\mu}}(k_1) (-ik_{2\mu}) \phi^*(k_2) + a^{*\mu}(k_2) (-ik_{1\mu}) \phi^*(k_1)] \\ &- e (ip_{\mu}) [a^{*\mu}(k_1) \phi^*(k_2) + a^{*\mu}(k_2) \phi^*(k_1)] \\ &- 2e m_1 a_{\mu}^*(k_1) a^{*\mu}(k_2) - f m_0 \phi^*(k_1) \phi^*(k_2) \} . \end{split}$$

By using Eq. (15), conservation of momentum, and the transversality $(k_{\mu}b^{\mu}(k)=0)$ of the vector wave functions we reduce this to the form

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology
- lots of collider phenomenology starting in 1976

Tilman Plehn

Higgs boson

- Couplings
- Distributions
- Meaning

Higgs boson

Two problems for spontaneous gauge symmetry breaking

- − problem 1: Goldstone's theorem $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ gives 3 massless scalars
- problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 \neq 2

Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble]

- 1964: combining two problems to one predictive solution
- 1966: original Higgs phenomenology
- lots of collider phenomenology starting in 1976

Adding in Glashow–Weinberg–Salam–'t Hooft–Veltman

- massive, minimal Standard Model complete
- renormalizability unique for particle physics [and cosmology]
- only fundamental Higgs helps
- \Rightarrow Higgs a powerful handle for new physics

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Questions for Run 2

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected
- ask flavor colleagues [Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles]

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Questions for Run 2

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected
- ask flavor colleagues [Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles]

2. What are the coupling values?

- set of 'couplings' given Lagrangian
- modified Higgs sectors
- Higgs effective theory

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Questions for Run 2

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected
- ask flavor colleagues [Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles]

2. What are the coupling values?

- set of 'couplings' given Lagrangian
- modified Higgs sectors
- Higgs effective theory

3. What does all this tell us?

- strongly interacting models?
- weakly interacting two-Higgs-doublet models?
- TeV-scale new physics?
- vacuum stability, Higgs inflation, etc

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Couplings

Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas]

- assume: narrow CP-even scalar Standard Model operators
- couplings from production & decay rates
- test Lagrangian

L

$$\begin{split} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\tilde{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible decays} \; , \end{split}$$

- electroweak renormalizability through UV completion
- QCD renormalizability not an issue
- frequentist likelihood everywhere
- total rates only

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{t} \\ H \to \tau^+ \tau^- \\ H \to \gamma\gamma \end{array}$$

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Couplings now and in the future

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Couplings now and in the future

- assume SM-like [secondary solutions possible]
 - SFitter: correct theory uncertainties
 - g_γ with new loops

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Couplings now and in the future

- assume SM-like [secondary solutions possible]
 - SFitter: correct theory uncertainties
 - g_γ with new loops
 - $-g_g vs g_t$ barely possible

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Couplings now and in the future

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- eight couplings state of the art
- \Rightarrow Standard Model within 25%

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g$ vs g_t barely possible
- including invisible decays
- eight couplings state of the art
- \Rightarrow Standard Model within 25%

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

- LHC extrapolations unclear
- systematic/theory uncertainties large
- ratios sensible
- \Rightarrow who deals with theory uncertainties?

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Modified Higgs sector

Non-minimal Higgs sectors [Lopez-Val, TP, Rauch; many, many, many papers]

- what is the Higgs sector's structure?
- assume we see 'a Higgs', extend by singlet or doublet
- coupling modifications of SM-like state
- proper renormalizable models

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Modified Higgs sector

Non-minimal Higgs sectors [Lopez-Val, TP, Rauch; many, many, many papers]

- what is the Higgs sector's structure?
- assume we see 'a Higgs', extend by singlet or doublet
- coupling modifications of SM-like state
- proper renormalizable models

Two doublets [no flavor, CP, custodial troubles]

- angle β = atan(v_2/v_1) angle α defining *h* and *H* gauge boson coupling $g_{W,Z} = \sin(\beta - \alpha)g_{W,Z}^{SM}$
- type-I: all fermions with ϕ_2 type-II: up-type fermions with ϕ_2 lepton-specific: type-I quarks and type-II leptons flipped: type-II quarks and type-I leptons

interpolated as Yukawa aligned: $y_b \cos(\beta - \gamma_b) = \sqrt{2}m_b/v$

- compressed masses $m_h \sim m_H$ [thanks to Berthold Stech] single hierarchy $m_h \ll m_{H,A,H^{\pm}}$ protected by custodial symmetry

Tilman Plehn

Higgs boson

Couplings

- New physics
- Operators
- Distributions
- Meaning

Modified Higgs sector

Non-minimal Higgs sectors [Lopez-Val, TP, Rauch; many, many, many papers]

- what is the Higgs sector's structure?
- assume we see 'a Higgs', extend by singlet or doublet
- coupling modifications of SM-like state
- proper renormalizable models

Facing data

- fit including single heavy Higgs mass
- decoupling regime $\sin^2 \alpha \sim 1/(1 + \tan^2 \beta)$
- \Rightarrow 2HDMs good fit with decoupling heavy Higgs

Tilman Plehn

Higgs boson

Couplings

New physics

- Operators
- Distributions
- Meaning

Modified Higgs sector

Non-minimal Higgs sectors [Lopez-Val, TP, Rauch; many, many, many papers]

- what is the Higgs sector's structure?
- assume we see 'a Higgs', extend by singlet or doublet
- coupling modifications of SM-like state
- proper renormalizable models

Yukawa-aligned 2HDM

- $\Delta_V \leftrightarrow (\beta \alpha) \qquad \Delta_{b,t,\tau} \leftrightarrow \{\beta, \gamma_{b,\tau}\} \qquad \Delta_\gamma \leftrightarrow m_{H^{\pm}}$
- $-\Delta_g$ not free parameter, top partner? custodial symmetry built in at tree level $\Delta_V < 0$
- Higgs-gauge quantum corrections enhanced $\Delta_{\it V} < 0$
- fermion quantum corrections large for tan $\beta \ll 1$ $\Delta_W \neq \Delta_Z > 0$ possible
- \Rightarrow free SM couplings well defined

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{\mathrm{SM}}} = 1 - rac{\xi^2}{2} + \mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V = -rac{\xi^2}{2} + \mathcal{O}(\xi^3)$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

- Distributions
- Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{
m SM}}=1-rac{\xi^2}{2}+\mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V=-rac{\xi^2}{2}+\mathcal{O}(\xi^3)$$

- dark singlet

$$\Gamma_{\text{inv}} = \xi^2 \Gamma_{\text{SM}} \qquad \qquad \mu_{\rho,d} = \frac{\Gamma_{\text{SM}}}{\Gamma_{\text{SM}} + \Gamma_{\text{inv}}} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

- Distributions
- Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{\mathrm{SM}}} = 1 - rac{\xi^2}{2} + \mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V = -rac{\xi^2}{2} + \mathcal{O}(\xi^3)$$

- dark singlet

$$\Gamma_{\text{inv}} = \xi^2 \Gamma_{\text{SM}} \qquad \qquad \mu_{p,d} = \frac{\Gamma_{\text{SM}}}{\Gamma_{\text{SM}} + \Gamma_{\text{inv}}} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$$

- mixing singlet [no anomalous decays]

$$1 + \Delta_x = \cos \theta = \sqrt{1 - \xi^2}$$
 $\mu_{\rho,d} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

- Distributions
- Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{\mathrm{SM}}} = 1 - rac{\xi^2}{2} + \mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V = -rac{\xi^2}{2} + \mathcal{O}(\xi^3)$$

- dark singlet

$$\Gamma_{\text{inv}} = \xi^2 \Gamma_{\text{SM}} \qquad \qquad \mu_{p,d} = \frac{\Gamma_{\text{SM}}}{\Gamma_{\text{SM}} + \Gamma_{\text{inv}}} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$$

- mixing singlet [no anomalous decays]

$$1 + \Delta_x = \cos \theta = \sqrt{1 - \xi^2}$$
 $\mu_{\rho, d} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$

- composite Higgs

$$\xi = \frac{v}{t} \qquad \qquad \frac{\mu_{\text{WBF},d}}{\mu_{\text{GF},d}} = \frac{(1-\xi^2)^2}{(1-2\xi^2)^2} = 1 + 2\xi^2 + \mathcal{O}(\xi^3) > 1$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

- Distributions
- Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{\mathrm{SM}}} = 1 - rac{\xi^2}{2} + \mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V = -rac{\xi^2}{2} + \mathcal{O}(\xi^3)$$

- dark singlet

$$\Gamma_{\text{inv}} = \xi^2 \Gamma_{\text{SM}} \qquad \qquad \mu_{p,d} = \frac{\Gamma_{\text{SM}}}{\Gamma_{\text{SM}} + \Gamma_{\text{inv}}} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$$

- mixing singlet [no anomalous decays]

$$1 + \Delta_x = \cos \theta = \sqrt{1 - \xi^2}$$
 $\mu_{\rho, d} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$

- composite Higgs

$$\xi = \frac{v}{f} \qquad \qquad \frac{\mu_{\mathsf{WBF},d}}{\mu_{\mathsf{GF},d}} = \frac{(1-\xi^2)^2}{(1-2\xi^2)^2} = 1 + 2\xi^2 + \mathcal{O}(\xi^3) > 1$$

- additional doublet [type-X fermion sector]

$$1 + \Delta_V = \sin(\beta - \alpha) = \sqrt{1 - \xi^2}$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

- Distributions
- Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{\mathrm{SM}}} = 1 - rac{\xi^2}{2} + \mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V = -rac{\xi^2}{2} + \mathcal{O}(\xi^3)$$

- dark singlet

$$\Gamma_{\text{inv}} = \xi^2 \Gamma_{\text{SM}} \qquad \qquad \mu_{p,d} = \frac{\Gamma_{\text{SM}}}{\Gamma_{\text{SM}} + \Gamma_{\text{inv}}} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$$

- mixing singlet [no anomalous decays]

$$1 + \Delta_x = \cos \theta = \sqrt{1 - \xi^2}$$
 $\mu_{\rho, d} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$

- composite Higgs

$$\xi = \frac{v}{f} \qquad \qquad \frac{\mu_{\mathsf{WBF},d}}{\mu_{\mathsf{GF},d}} = \frac{(1-\xi^2)^2}{(1-2\xi^2)^2} = 1 + 2\xi^2 + \mathcal{O}(\xi^3) > 1$$

- additional doublet [type-X fermion sector]

$$1 + \Delta_V = \sin(\beta - \alpha) = \sqrt{1 - \xi^2}$$

- MSSM [plus tan ß]

$$\xi^{2} = \simeq \frac{m_{h}^{2} (m_{Z}^{2} - m_{h}^{2})}{m_{A}^{2} (m_{H}^{2} - m_{h}^{2})} \sim \frac{m_{Z}^{4} \sin^{2}(2\beta)}{m_{A}^{4}}$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Extended Higgs sectors

Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP]

- decoupling defined through the massive gauge sector

$$rac{g_V}{g_V^{
m SM}} = 1 - rac{\xi^2}{2} + \mathcal{O}(\xi^3) \qquad \Leftrightarrow \qquad \Delta_V = -rac{\xi^2}{2} + \mathcal{O}(\xi^3)$$

- dark singlet

$$\Gamma_{\text{inv}} = \xi^2 \Gamma_{\text{SM}} \qquad \qquad \mu_{p,d} = \frac{\Gamma_{\text{SM}}}{\Gamma_{\text{SM}} + \Gamma_{\text{inv}}} = 1 - \xi^2 + \mathcal{O}(\xi^3) < 1$$

- mixing singlet [no anomalous decays]

$$1 + \Delta_x = \cos \theta = \sqrt{1 - \xi^2}$$
 $\mu_{p,d} = 1 - \xi^2 + O(\xi^3) < 1$

- composite Higgs

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a\mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

$$\begin{split} \mathcal{O}_{\Phi,1} &= \left(D_{\mu} \Phi \right)^{\dagger} \Phi \, \Phi^{\dagger} \left(D^{\mu} \Phi \right) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^{3} \end{split}$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} \left(D^{\mu} \Phi \right) \left(\Phi^{\dagger} \Phi \right)$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

set of Higgs-gauge operators

$$\begin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^{3} & \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \end{aligned}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators
 - $$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} & \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \end{split}$$
- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

- Higgs couplings to SM particles

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators
 - $$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} & \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \end{split}$$
- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\Phi,2}}{\Lambda^{2}} \mathcal{O}_{\Phi,2}$$

- Higgs couplings to SM particles

$$\mathcal{L}^{HW} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

- plus Yukawa structure $f_{\tau,b,t}$
- 9 operators for Run I data

Tilman Plehn

Couplings

Operators

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

....

- set of Higgs-gauge operators

 $\mathcal{O}_{GG}=\Phi^{\dagger}\Phi \textit{G}^{a}_{\mu\nu}\textit{G}^{a\mu\nu}$ $\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$ $\mathcal{O}_{\Phi,1} = (D_{\mu}\Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu}\Phi)$

$$\mathcal{O}_{\Phi,3}=rac{1}{3}\left(\Phi^{\dagger}\Phi
ight)^{3}$$

$$\begin{split} \mathcal{O}_{WW} &= \Phi^{\dagger} \, \hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \, \Phi \qquad \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \qquad \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \, \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\Phi,4} &= \left(D_{\mu} \Phi \right)^{\dagger} \left(D^{\mu} \Phi \right) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

observable Higgs couplings

$$\begin{split} g_{g} &= \frac{f_{GG}v}{\Lambda^{2}} \equiv -\frac{\alpha_{s}}{8\pi} \frac{f_{g}v}{\Lambda^{2}} & g_{\gamma} = -\frac{g^{2}vs_{w}^{2}}{2\Lambda^{2}} \frac{f_{BB} + f_{WW}}{2} \\ g_{Z}^{(1)} &= \frac{g^{2}v}{2\Lambda^{2}} \frac{c_{w}^{2}f_{W} + s_{w}^{2}f_{B}}{2c_{w}^{2}} & g_{W}^{(1)} = \frac{g^{2}v}{2\Lambda^{2}} \frac{f_{W}}{2} \\ g_{Z}^{(2)} &= -\frac{g^{2}v}{2\Lambda^{2}} \frac{s_{w}^{4}f_{BB} + c_{w}^{4}f_{WW}}{2c_{w}^{2}} & g_{W}^{(2)} = -\frac{g^{2}v}{2\Lambda^{2}} \frac{f_{W}}{w} \\ g_{Z}^{(3)} &= M_{Z}^{2}(\sqrt{2}G_{F})^{1/2} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\Phi,2}\right) & g_{W}^{(3)} = M_{W}^{2}(\sqrt{2}G_{F})^{1/2} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\Phi,2}\right) \\ g_{f} &= -\frac{m_{f}}{v} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\Phi,2}\right) + \frac{v^{2}}{\sqrt{2}\Lambda^{2}}f_{f} \end{split}$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a \mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

 $egin{aligned} \mathcal{O}_{\Phi,1} &= (D_\mu \Phi)^\dagger \, \Phi \, \Phi^\dagger \, \left(D^\mu \Phi
ight) \ \mathcal{O}_{\Phi,3} &= rac{1}{3} \left(\Phi^\dagger \Phi
ight)^3 \end{aligned}$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

SFitter analysis

- same setup and data as before

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a\mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

 $egin{aligned} \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \; \Phi \; \Phi^{\dagger} \; \left(D^{\mu} \Phi
ight) \ \mathcal{O}_{\Phi,3} &= rac{1}{3} \left(\Phi^{\dagger} \Phi
ight)^3 \end{aligned}$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

SFitter analysis

- same setup and data as before
- correlations a problem $[diagonalization means 1 + \Delta]$
- improvement on theory side?

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a \mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

 $egin{aligned} \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \; \Phi \; \Phi^{\dagger} \; \left(D^{\mu} \Phi
ight) \ \mathcal{O}_{\Phi,3} &= rac{1}{3} \left(\Phi^{\dagger} \Phi
ight)^3 \end{aligned}$

$$\begin{aligned} \mathcal{O}_{WW} &= \Phi^{\dagger} \, \hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \, \Phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\Phi,2} &= \frac{1}{2} \, \partial^{\mu} \, \left(\Phi^{\dagger} \Phi \right) \, \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\Phi,4} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \left(D^{\mu} \Phi \right) \left(\Phi^{\dagger} \Phi \right) \end{aligned}$$

SFitter analysis

- same setup and data as before
- correlations a problem [diagonalization means $1 + \Delta$]
- improvement on theory side?

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a \mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

$$\begin{split} \mathcal{O}_{\Phi,1} &= \left(D_{\mu} \Phi \right)^{\dagger} \Phi \, \Phi^{\dagger} \left(D^{\mu} \Phi \right) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^{3} \end{split}$$

$$\begin{aligned} \mathcal{O}_{WW} &= \Phi^{\dagger} \, \hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \, \Phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \, \left(\Phi^{\dagger} \Phi \right) \, \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\Phi,4} &= \left(D_{\mu} \Phi \right)^{\dagger} \, \left(D^{\mu} \Phi \right) \left(\Phi^{\dagger} \Phi \right) \end{aligned}$$

SFitter analysis

- same setup and data as before
- correlations a problem [diagonalization means $1 + \Delta$]
- improvement on theory side?

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $\mathcal{O}_{GG} = \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu}$ $\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$

 $egin{aligned} \mathcal{O}_{\Phi,1} &= (D_{\mu}\Phi)^{\dagger} \, \Phi \, \Phi^{\dagger} \, \left(D^{\mu}\Phi
ight) \ \mathcal{O}_{\Phi,3} &= rac{1}{3} \left(\Phi^{\dagger}\Phi
ight)^{3} \end{aligned}$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

- some operators momentum-dependent
- example: $p_{T,V}$ or $\Delta \Phi_{jj}$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a \mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

 $egin{aligned} \mathcal{O}_{\Phi,1} &= (D_\mu \Phi)^\dagger \, \Phi \, \Phi^\dagger \, \left(D^\mu \Phi
ight) \ \mathcal{O}_{\Phi,3} &= rac{1}{3} \left(\Phi^\dagger \Phi
ight)^3 \end{aligned}$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

- some operators momentum-dependent
- example: $p_{T,V}$ or $\Delta \Phi_{jj}$
- which bins?

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

 $egin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu
u} G^{a\mu
u} \ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu
u} \hat{W}^{\mu
u} \Phi \end{aligned}$

 $egin{aligned} \mathcal{O}_{\Phi,1} &= (D_\mu \Phi)^\dagger \, \Phi \, \Phi^\dagger \, \left(D^\mu \Phi
ight) \ \mathcal{O}_{\Phi,3} &= rac{1}{3} \left(\Phi^\dagger \Phi
ight)^3 \end{aligned}$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \qquad \mathcal{O}_{BB} = \cdots$$
$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \qquad \mathcal{O}_{B} = \cdots$$
$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$
$$\mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

- some operators momentum-dependent
- example: $p_{T,V}$ or $\Delta \Phi_{jj}$
- which bins?

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

D6 operators

Higgs sector effective field theory [following Corbett, Eboli, Gonzalez-Fraile, Goncales-Garcia]

- set of Higgs-gauge operators

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} (\Phi^{\dagger} \Phi)^{3} & \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \end{split}$$

- some operators momentum-dependent
- example: $p_{T,V}$ or $\Delta \Phi_{jj}$
- which bins?
- ⇒ just a start...

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Distributions 1: Boosted Higgs

Top-Higgs-gluon Lagrangian [Ellis, Hinchliffe, Soldate, v d Bij; Baur & Glover]

- ggH vertex structure [to keep production rate]

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \left(\Delta_t g_{ggH} + \Delta_g \frac{\alpha_s}{12\pi} \right) \frac{H}{v} G_{\mu\nu} G^{\mu\nu}$$

- high-p_T logarithms from 1,2 jets [Banfi etal; Azatov etal; Grojean etal; Buschmann etal]

$$\left|\mathcal{M}_{\mathit{Hj}(j)}
ight|^2 \sim rac{m_t^4}{p_T^4} \; \log^4 rac{p_T^2}{m_t^2}$$

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions

Meaning

Distributions 1: Boosted Higgs

Top-Higgs-gluon Lagrangian [Ellis, Hinchliffe, Soldate, v d Bij; Baur & Glover]

- ggH vertex structure [to keep production rate]

$$\mathcal{L} = \mathcal{L}_{SM} + \left(\Delta_t g_{ggH} + \Delta_g \frac{\alpha_s}{12\pi}\right) \frac{H}{v} G_{\mu\nu} G^{\mu\nu}$$

 $- \ high-p_T \ logarithms \ from \ 1,2 \ jets \ \ [Banfi etal; Azatov etal; Grojean etal; Buschmann etal]$

$$\left|\mathcal{M}_{Hj(j)}
ight|^2 \sim rac{m_t^4}{p_T^4} \log^4 rac{p_T^2}{m_t^2}$$

Measuring $\Delta_{t,g}$ from $p_{T,H}$ distributions [Buschmann, Goncalves, Kuttimalai, Schönherr, Krauss, TP]

- simulation: SHERPA-NLO
- $\label{eq:prod} \begin{array}{l} \mbox{ sensitive region } \ensuremath{\rho_{T,H}}\xspace > 250 \mbox{ GeV} \\ \mbox{ theory errors not small } \ensuremath{\mbox{ [ask Alessandro, Giancarlo]}} \end{array}$
- NLO vs top mass orthogonal jet count vs top mass orthogonal

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions

Meaning

Distributions 1: Boosted Higgs

Top-Higgs-gluon Lagrangian [Ellis, Hinchliffe, Soldate, v d Bij; Baur & Glover]

- ggH vertex structure [to keep production rate]

$$\mathcal{L} = \mathcal{L}_{SM} + \left(\Delta_t g_{ggH} + \Delta_g \frac{\alpha_s}{12\pi}\right) \frac{H}{v} G_{\mu\nu} G^{\mu\nu}$$

- high- p_T logarithms from 1,2 jets [Banfi etal; Azatov etal; Grojean etal; Buschmann etal] $|\mathcal{M}_{Hj(f)}|^2 \sim \frac{m_t^4}{p_\tau^4} \log^4 \frac{p_T^2}{m_e^2}$

Measuring $\Delta_{t,g}$ from $p_{T,H}$ distributions [Buschmann, Goncalves, Kuttimalai, Schönherr, Krauss, TP]

- simulation: SHERPA-NLO
- $\label{eq:prod} \begin{array}{l} \mbox{ sensitive region } \ensuremath{\rho_{\mathcal{T},\mathcal{H}}} > 250 \mbox{ GeV} \\ \mbox{ theory errors not small} & \mbox{ [ask Alessandro, Giancarlo]} \end{array}$
- NLO vs top mass orthogonal jet count vs top mass orthogonal
- most optimistic: statistics only $H \rightarrow WW$ analysis 2D likelihood study of $n_{\text{jets}}, p_{T,H}$
- $\Rightarrow \Delta_t = -0.3$ to 95% CL with 700 fb⁻¹

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Distributions 2: Off-Shell Higgs

Not-model-independent width measurements [Kauer & Passarino; Caola & Melnikov; Ellis & Williams]

– peak cross section vs off-shell interference in $H \rightarrow ZZ$

$$\sigma_{
m peak} \sim rac{g_g^2 g_Z^2}{(s-m^2)^2+m^2\Gamma^2} = rac{g_g^2 g_Z^2}{m^2\Gamma^2} \qquad \sigma_{
m off}(g_g g_Z) \sim \sigma_{cont} - rac{A_{
m int} \, g_g g_Z}{s-m^2} + rac{A_H \, g_g^2 g_Z^2}{(s-m^2)^2}$$

- top-Higgs-gluon Lagrangian again $[m_{4\ell} \gg m_t > m_H]$

$$\mathcal{M}_{gg
ightarrow ZZ} \sim \pm rac{m_t^2}{m_Z^2} \log^2 rac{m_{4\ell}^2}{m_t^2}$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Distributions 2: Off-Shell Higgs

Not-model-independent width measurements [Kauer & Passarino; Caola & Melnikov; Ellis & Williams]

– peak cross section vs off-shell interference in $H \rightarrow ZZ$

$$\sigma_{
m peak} \sim rac{g_g^2 g_Z^2}{(s-m^2)^2+m^2\Gamma^2} = rac{g_g^2 g_Z^2}{m^2\Gamma^2} ~~ \sigma_{
m off}(g_g g_Z) \sim \sigma_{cont} - rac{A_{
m int}~g_g g_Z}{s-m^2} + rac{A_H~g_g^2 g_Z^2}{(s-m^2)^2}$$

- top-Higgs-gluon Lagrangian again $[m_{4\ell} \gg m_t > m_H]$

$$\mathcal{M}_{gg \rightarrow ZZ} \sim \pm \frac{m_t^2}{m_Z^2} ~\log^2 \frac{m_{4\ell}^2}{m_t^2}$$

Measuring $\Delta_{t,g}$ from $m_{4\ell}$ distributions [Buschmann, Goncalves, Kuttimalai, Schönherr, Krauss, TP]

- simulation: MCFM
- sensitive region m_{4l} > 500 GeV systematic/theory errors potentially bad

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Distributions 2: Off-Shell Higgs

Not-model-independent width measurements [Kauer & Passarino; Caola & Melnikov; Ellis & Williams]

– peak cross section vs off-shell interference in $H \rightarrow ZZ$

$$\sigma_{
m peak} \sim rac{g_g^2 g_Z^2}{(s-m^2)^2+m^2\Gamma^2} = rac{g_g^2 g_Z^2}{m^2\Gamma^2} ~~ \sigma_{
m off}(g_g g_Z) \sim \sigma_{cont} - rac{A_{
m int}~g_g g_Z}{s-m^2} + rac{A_H~g_g^2 g_Z^2}{(s-m^2)^2}$$

- top-Higgs-gluon Lagrangian again $[m_{4\ell} \gg m_t > m_H]$

$$\mathcal{M}_{gg \rightarrow ZZ} \sim \pm \frac{m_t^2}{m_Z^2} ~\log^2 \frac{m_{4\ell}^2}{m_t^2}$$

Measuring $\Delta_{t,g}$ from $m_{4\ell}$ distributions [Buschmann, Goncalves, Kuttimalai, Schönherr, Krauss, TP]

- simulation: MCFM
- sensitive region m_{4ℓ} > 500 GeV systematic/theory errors potentially bad
- most optimistic: statistics only $H \rightarrow ee\mu\mu$ analysis 2D likelihood study of $\cos \theta_e$, $m_{4\ell}$
- $\Rightarrow \Delta_t = -0.3$ to 95% CL with 1700 fb⁻¹
- \Rightarrow still included in SFitter analysis

Tilman Plehn

- Higgs boson
- Couplings
- New physics
- Operators
- Distributions
- Meaning

Meaning

TeV scale

- fourth chiral generation excluded
- strongly interacting models retreating [Goldstone protection]
- extended Higgs sectors wide open
- no final verdict on the MSSM
- hierarchy problem worse than ever [light fundemental scalar discovered]
- ⇒ whatever...

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Meaning

High scales [Holthausen, Lim, Lindner; Wetterich etal; Buttazo etal; Gies etal]

- Planck-scale extrapolation

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + \frac{m_{t} - 171.2}{2.1} \times 4.1 - \frac{\alpha_{s} - 0.1176}{0.002} \times 1.5$$

⇒ whatever...

Tilman Plehn

Higgs boson

- Now physics
- Operators
- Distributions

Meaning

Meaning

High scales [Holthausen, Lim, Lindner; Wetterich etal; Buttazo etal; Gies etal]

- Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + rac{m_{t} - 171.2}{2.1} \times 4.1 - rac{lpha_{s} - 0.1176}{0.002} \times 1.5$$

⇒ whatever...

- RG running of Higgs potential
- $\lambda < 0$ at finite energy? [Buttazo etal]

Tilman Plehn

Higgs boson

- New physics
- Operators
- Distributions

Meaning

Meaning

High scales [Holthausen, Lim, Lindner; Wetterich etal; Buttazo etal; Gies etal]

- Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + rac{m_{t} - 171.2}{2.1} \times 4.1 - rac{lpha_{s} - 0.1176}{0.002} \times 1.5$$

⇒ whatever...

- RG running of Higgs potential
- $-\lambda < 0$ at finite energy?
- functional RG [D6 operators at 10¹⁹ GeV]

Tilman Plehn

Higgs boson Couplings

New physics

Operators

Distributions

Meaning

Meaning

High scales [Holthausen, Lim, Lindner; Wetterich etal; Buttazo etal; Gies etal]

- Planck-scale extrapolation

$$\frac{d\,\lambda}{d\,\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_H = 126.3 + rac{m_t - 171.2}{2.1} imes 4.1 - rac{lpha_s - 0.1176}{0.002} imes 1.5$$

⇒ whatever...

- RG running of Higgs potential
- $-\lambda < 0$ at finite energy?
- functional RG [D6 operators at 10¹⁹ GeV]
- functional RG with DM portal

Tilman Plehn

Higgs bosor

New physics

Operators

Distributions

Meaning

Meaning

High scales [Holthausen, Lim, Lindner; Wetterich etal; Buttazo etal; Gies etal]

- Planck-scale extrapolation

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- IR fixed point for λ/λ_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_H = 126.3 + rac{m_t - 171.2}{2.1} \times 4.1 - rac{lpha_s - 0.1176}{0.002} \times 1.5$$

⇒ whatever...

1

- RG running of Higgs potential
- $-\lambda < 0$ at finite energy?
- functional RG [D6 operators at 10¹⁹ GeV]
- functional RG with DM portal
- ⇒ whatever...

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Exercise: top-Higgs renormalization group

Running of coupling/mass ratios [Wetterich]

Higgs self coupling and top Yukawa with stable zero IR solutions

$$\frac{d \lambda}{d \log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 \right) \qquad \frac{d y_t^2}{d \log Q^2} = \frac{9}{32\pi^2} y_t^4$$

Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

Exercise: top-Higgs renormalization group

Running of coupling/mass ratios [Wetterich]

Higgs self coupling and top Yukawa with stable zero IR solutions

$$\frac{d \lambda}{d \log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 \right) \qquad \qquad \frac{d y_t^2}{d \log Q^2} = \frac{9}{32\pi^2} y_t^4$$

running ratio $R = \lambda / y_t^2$

$$\frac{dR}{d\log Q^2} = \frac{3\lambda}{32\pi^2 R} \left(8R^2 + R - 2 \right) \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad R_* = \frac{\sqrt{65} - 1}{16} \simeq 0.44$$

Tilman Plehn

Higgs bosor Couplings

Coupings

New physics

Operators

Distributions

Meaning

Exercise: top-Higgs renormalization group

Running of coupling/mass ratios [Wetterich]

Higgs self coupling and top Yukawa with stable zero IR solutions

$$\frac{d \lambda}{d \log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 \right) \qquad \qquad \frac{d y_t^2}{d \log Q^2} = \frac{9}{32\pi^2} y_t^4$$

running ratio $R = \lambda / y_t^2$

$$\frac{dR}{d\log Q^2} = \frac{3\lambda}{32\pi^2 R} \left(8R^2 + R - 2 \right) \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad R_* = \frac{\sqrt{65} - 1}{16} \simeq 0.44$$

numbers in the far infrared, better for $\textit{Q} \sim \textit{v}$

$$\frac{\lambda}{y_t^2} = \frac{m_H^2}{2v^2} \left. \frac{v^2}{2m_t^2} \right|_{\rm IR} = \frac{m_H^2}{4m_t^2} \right|_{\rm IR} = 0.44 \qquad \Leftrightarrow \qquad \frac{m_H}{m_t} \right|_{\rm IR} = 1.33$$

Tilman Plehn

- Higgs boson Couplings
- New physics
- Operators
- Distributions
- Meaning

Questions

Big questions

- is it really the Standard Model Higgs?
- is there new physics in/outside the Higgs sector?
- does fundamental theory still hold to Planck scale?

More specifically

- need to test Higgs models
- weak-scale Lagrangian the appropriate description
- extrapolation to high scales my reason to be here

Interpretations of Higgs measurements

- Higgs couplings most universal for rates
- effective theories well defined, but less universal
- do not trust theorists when they offer 'big picture'

Lectures on LHC Physics, Springer, arXiv:0910.4182 updated under www.thphys.uni-heidelberg.de/-plehn/

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Tilman Plehn

Higgs bosor

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Longitudinal WW scattering

WW scattering at high energies [Tao etal; Dawson]

- historically alternative to light Higgs
- WW scattering at high energies [via Goldstones]

 $g_V H \left(a_L V_{L\mu} V_L^{\mu} + a_T V_{T\mu} V_T^{\mu}\right)$

- still useful after Higgs discovery?

Tilman Plehn

Higgs bosor

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Longitudinal WW scattering

WW scattering at high energies [Tao etal; Dawson]

- historically alternative to light Higgs
- WW scattering at high energies [via Goldstones]

 $g_V H \left(a_L V_{L\mu} V_L^{\mu} + a_T V_{T\mu} V_T^{\mu}\right)$

- still useful after Higgs discovery?
- high energy signal reduced by Higgs
- tagging jets as Higgs pole observables instead

Tilman Plehn

Higgs bosor

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Longitudinal WW scattering

WW scattering at high energies [Tao etal; Dawson]

- historically alternative to light Higgs
- WW scattering at high energies [via Goldstones]

 $g_V \ H \ \left(a_L V_{L\mu} \ V_L^\mu + a_T \ V_{T\mu} \ V_T^\mu\right)$

- still useful after Higgs discovery?
- high energy signal reduced by Higgs
- tagging jets as Higgs pole observables instead

Tagging jet observables [Brehmer, Jäckel, TP]

- polarization defined in Higgs frame
- transverse momenta

$$P_T(x, p_T) \sim \frac{1 + (1 - x)^2}{x} \frac{p_T^3}{((1 - x)m_W^2 + p_T^2)^2}$$
$$P_L(x, p_T) \sim \frac{1 - x}{x} \frac{2(1 - x)m_W^2 p_T}{((1 - x)m_W^2 + p_T^2)^2}$$

Tilman Plehn

- Higgs bosor
- Couplings
- New physics
- Operators
- Distributions
- Meaning

Longitudinal WW scattering

WW scattering at high energies [Tao etal; Dawson]

- historically alternative to light Higgs
- WW scattering at high energies [via Goldstones]

 $g_V \ H \ \left(a_L V_{L\mu} \ V_L^\mu + a_T \ V_{T\mu} \ V_T^\mu\right)$

- still useful after Higgs discovery?
- high energy signal reduced by Higgs
- tagging jets as Higgs pole observables instead

Tagging jet observables [Brehmer, Jäckel, TP]

- polarization defined in Higgs frame
- transverse momenta
- azimuthal angle

$$\mathsf{A}_{\phi} = \frac{\sigma(\Delta\phi_{jj} < \frac{\pi}{2}) - \sigma(\Delta\phi_{jj} > \frac{\pi}{2})}{\sigma(\Delta\phi_{jj} < \frac{\pi}{2}) + \sigma(\Delta\phi_{jj} > \frac{\pi}{2})}$$

Tilman Plehn

- Higgs bosor
- Couplings
- New physics
- Operators
- Distributions
- Meaning

Longitudinal WW scattering

WW scattering at high energies [Tao etal; Dawson]

- historically alternative to light Higgs
- WW scattering at high energies [via Goldstones]

 $g_V H \left(a_L V_{L\mu} V_L^{\mu} + a_T V_{T\mu} V_T^{\mu}\right)$

- still useful after Higgs discovery?
- high energy signal reduced by Higgs
- tagging jets as Higgs pole observables instead

Tagging jet observables [Brehmer, Jäckel, TP]

- polarization defined in Higgs frame
- transverse momenta
- azimuthal angle
- total rate $\sigma \sim (A_L a_L^2 + A_T a_T^2)$
- \Rightarrow simple question, clear answer

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \ \partial^{\mu} (\phi^{\dagger} \phi) \ , \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^2 \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^2}{\Lambda^2}}$$

Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$${\cal O}_{\phi,2}=rac{1}{2}\partial_{\mu}(\phi^{\dagger}\phi)\;\partial^{\mu}(\phi^{\dagger}\phi){=}rac{1}{2}\left(ilde{H}+ extsf{v}
ight)^{2}\;\partial_{\mu} ilde{H}\;\partial^{\mu} ilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^2}{\Lambda^2}}$$

second operator, minimum condition giving v

$$v^2 = -\frac{\mu^2}{\lambda} - \frac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$${\cal O}_{\phi,2}=rac{1}{2}\partial_{\mu}(\phi^{\dagger}\phi)\;\partial^{\mu}(\phi^{\dagger}\phi)=rac{1}{2}\left(ilde{H}+ extsf{v}
ight)^{2}\;\partial_{\mu} ilde{H}\;\partial^{\mu} ilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^2}{\Lambda^2}}$$

second operator, minimum condition giving v

$$v^2 = -rac{\mu^2}{\lambda} - rac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

both operators contributing to Higgs mass

$$\mathcal{L}_{\text{mass}} = -\frac{\mu^2}{2}\tilde{H}^2 - \frac{3}{2}\lambda v^2\tilde{H}^2 - \frac{f_{\phi,3}}{\Lambda^2}\frac{15}{24}v^4\tilde{H}^2 \stackrel{!}{=} -\frac{m_H^2}{2}H^2$$
$$\Leftrightarrow \qquad m_H^2 = 2\lambda v^2 \left(1 - \frac{f_{\phi,2}v^2}{\Lambda^2} + \frac{f_{\phi,3}v^2}{2\Lambda^2\lambda}\right)$$

Tilman Plehn

Higgs boson

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu} \left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu}H \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8\nu^{2}} \left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu}H \partial^{\mu}H \right] \end{split}$$

Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu} \left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu}H \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8\nu^{2}} \left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu}H \partial^{\mu}H \right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

Tilman Plehn

Higgs bosor

Couplings

New physics

Operators

Distributions

Meaning

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= - \frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu}H \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu}H \partial^{\mu}H \right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

 \Rightarrow operators and distributions linked to poor UV behavior

Tilman Plehn

Higgs boson

- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higher-dimensional operators

Light Higgs as a Goldstone boson [Contino, Giudice, Grojean, Pomarol, Rattazzi, Galloway,...]

- strongly interacting models not looking like that [Bardeen, Hill, Lindner]
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f \sim m_{
 ho}$ [little Higgs $v \sim g^2 f/(2\pi)$]
- adding specific D6 operator set
Tilman Plehn

Higgs bosor Couplings

- New physic:
- Operators
- Distributions
- Meaning

Higher-dimensional operators

Light Higgs as a Goldstone boson [Contino, Giudice, Grojean, Pomarol, Rattazzi, Galloway,...]

- strongly interacting models not looking like that [Bardeen, Hill, Lindner]
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f \sim m_
ho$$
 [little Higgs $v \sim g^2 f/(2\pi)$]

- adding specific D6 operator set

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{C_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \vec{I}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW} g}{16 \pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB} g'}{16 \pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu} \\ &+ \frac{c_\gamma g'^2}{16 \pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16 \pi^2 f^2} \frac{y_f^2}{g_{\rho}^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu}. \end{split}$$

Tilman Plehn

Higgs bosor Couplings

- New physic:
- Operators
- Distributions
- Meaning

Higher-dimensional operators

Light Higgs as a Goldstone boson [Contino, Giudice, Grojean, Pomarol, Rattazzi, Galloway,...]

- strongly interacting models not looking like that [Bardeen, Hill, Lindner]
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f \sim m_
ho$$
 [little Higgs $v \sim g^2 f/(2\pi)$]

- adding specific D6 operator set

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{C_H}{f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6}{(3f)^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \vec{I}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W}{(16f)^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B}{(16f)^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW}}{(16f)^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB}}{(16f^2)} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g}{(256f)^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu} . \end{split}$$

Tilman Plehn

- Higgs boson
- Couplings
- New physics
- Operators
- Distributions
- Meaning

Higher-dimensional operators

Light Higgs as a Goldstone boson [Contino, Giudice, Grojean, Pomarol, Rattazzi, Galloway,...]

- strongly interacting models not looking like that [Bardeen, Hill, Lindner]
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f \sim m_{
 ho}$ [little Higgs $v \sim g^2 f/(2\pi)$]
- adding specific D6 operator set
- collider phenomenology of $(H^{\dagger}H)$

Tilman Plehn

- Higgs boson
- new physic:
- Operators
- Distributions
- Meaning

Higher-dimensional operators

Light Higgs as a Goldstone boson [Contino, Giudice, Grojean, Pomarol, Rattazzi, Galloway,...]

- strongly interacting models not looking like that [Bardeen, Hill, Lindner]
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f \sim m_{
 ho}$ [little Higgs v $\sim g^2 f/(2\pi)$]
- adding specific D6 operator set
- collider phenomenology of $(H^{\dagger}H)$

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model
- additional higher-dimensional couplings

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} (\phi^{\dagger} \phi) G_{\mu\nu} G^{\mu\nu} + \frac{f_{WW}}{\Lambda^{2}} \phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \phi \\ &+ \frac{f_{W}}{\Lambda^{2}} (D_{\mu} \phi)^{\dagger} W^{\mu\nu} (D_{\nu} \phi) + \frac{f_{B}}{\Lambda^{2}} (D_{\mu} \phi)^{\dagger} B^{\mu\nu} (D_{\nu} \phi) + \frac{f_{WWW}}{\Lambda^{2}} \operatorname{Tr} (W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}) \\ &+ \frac{f_{b}}{\Lambda^{2}} (\phi^{\dagger} \phi) (\overline{Q}_{3} \phi d_{R,3}) + \frac{f_{\tau}}{\Lambda^{2}} (\phi^{\dagger} \phi) (\overline{L}_{3} \phi e_{R,3}) \end{split}$$

⇒ before measuring couplings remember what your operators are!