Invisible Higgs

Tilman Plehn

Why?

How?

So?

Invisible Higgs Decays

Tilman Plehn

Universität Heidelberg

University of Pittsburgh, August 2016

Why?

How?

Motivating invisible Higgs searches 1

Higgs portal to dark matter scalar [Silveira & Zee; Burgess, Pospelov, 'ter Velthuis]

- renormalizable Higgs sector

$$V_{\mathrm{SM}}=\mu_{H}^{2}\,\phi^{\dagger}\phi+\lambda_{H}(\phi^{\dagger}\phi)^{2}\supset-rac{m_{H}^{2}}{2}H^{2}+rac{m_{H}^{2}}{2
u_{H}}H^{3}+rac{m_{H}^{2}}{8
u_{H}^{2}}H^{4}$$

with observed mass scale

$$v_H = \sqrt{\frac{-\mu_H^2}{\lambda_H}} = 246 \text{ GeV}$$
$$m_H = \sqrt{2\lambda_H} v_H = 2\sqrt{-\mu_H^2} = 125 \text{ GeV} \approx \frac{v_H}{2}$$

Why?

How?

Motivating invisible Higgs searches 1

Higgs portal to dark matter scalar [Silveira & Zee; Burgess, Pospelov, 'ter Velthuis]

- renormalizable Higgs sector

$$V_{\rm SM} = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 \supset -\frac{m_H^2}{2} H^2 + \frac{m_H^2}{2v_H} H^3 + \frac{m_H^2}{8v_H^2} H^4$$

- renormalizable (portal) extension by real scalar $[dark \mathbb{Z}_2 parity, Higgs mediator]$

$$V \supset -\frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2v_{H}}H^{3} + \frac{m_{H}^{2}}{8v_{H}^{2}}H^{4} - \mu_{S}^{2}S^{2} + \lambda_{S}S^{4} + \frac{\lambda_{3}}{2}(H + v_{H})^{2}S^{2}$$

new mass scale: $m_S^2 = 2\mu_S^2 - \lambda_3 v_H^2$

Why?

How?

Motivating invisible Higgs searches 1

Higgs portal to dark matter scalar [Silveira & Zee; Burgess, Pospelov, 'ter Velthuis]

- renormalizable Higgs sector

$$V_{\rm SM} = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 \supset -\frac{m_H^2}{2} H^2 + \frac{m_H^2}{2v_H} H^3 + \frac{m_H^2}{8v_H^2} H^4$$

- renormalizable (portal) extension by real scalar $[dark \mathbb{Z}_2 parity, Higgs mediator]$

$$V \supset -\frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2v_{H}}H^{3} + \frac{m_{H}^{2}}{8v_{H}^{2}}H^{4} - \mu_{S}^{2}S^{2} + \lambda_{S}S^{4} + \frac{\lambda_{3}}{2}(H + v_{H})^{2}S^{2}$$

1. relic density: light scalar $m_S = 10 \dots 50 \text{ GeV}$

$$\langle \sigma v \rangle \bigg|_{SS \to b\bar{b}} = \frac{N_c \lambda_3^2 m_b^2}{\pi m_H^4} \stackrel{!}{=} \frac{4 \cdot 10^{-9}}{\text{GeV}^2} \qquad \Leftrightarrow \qquad \lambda_3 = 0.35$$

Why?

How?

Motivating invisible Higgs searches 1

Higgs portal to dark matter scalar [Silveira & Zee; Burgess, Pospelov, 'ter Velthuis]

- renormalizable Higgs sector

$$V_{\rm SM} = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 \supset -\frac{m_H^2}{2} H^2 + \frac{m_H^2}{2v_H} H^3 + \frac{m_H^2}{8v_H^2} H^4$$

- renormalizable (portal) extension by real scalar $[dark \mathbb{Z}_2 parity, Higgs mediator]$

$$V \supset -\frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2v_{H}}H^{3} + \frac{m_{H}^{2}}{8v_{H}^{2}}H^{4} - \mu_{S}^{2}S^{2} + \lambda_{S}S^{4} + \frac{\lambda_{3}}{2}(H + v_{H})^{2}S^{2}$$

2. relic density: resonance annihilation $m_S = m_H/2$

$$\left\langle \sigma \mathbf{v} \right\rangle \bigg|_{SS \to b\bar{b}} = \frac{N_c \lambda_3^2 m_b^2}{\pi m_H^2 \Gamma_H^2} \stackrel{!}{=} \frac{4 \cdot 10^{-9} \, \mathrm{BR}_{H \to b\bar{b}}}{\mathrm{GeV}^2} \qquad \Leftrightarrow \qquad \lambda_3 \approx 10^{-5}$$

Why?

How?

Motivating invisible Higgs searches 1

Higgs portal to dark matter scalar [Silveira & Zee; Burgess, Pospelov, 'ter Velthuis]

- renormalizable Higgs sector

$$V_{\rm SM} = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 \supset -\frac{m_H^2}{2} H^2 + \frac{m_H^2}{2v_H} H^3 + \frac{m_H^2}{8v_H^2} H^4$$

- renormalizable (portal) extension by real scalar $[dark \mathbb{Z}_2 parity, Higgs mediator]$

$$V \supset -\frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2v_{H}}H^{3} + \frac{m_{H}^{2}}{8v_{H}^{2}}H^{4} - \mu_{S}^{2}S^{2} + \lambda_{S}S^{4} + \frac{\lambda_{3}}{2}(H + v_{H})^{2}S^{2}$$

3. relic density: heavy scalar $m_S\gtrsim$ 200 GeV

$$\langle \sigma v \rangle \bigg|_{SS \to HH} = \frac{\lambda_3^2}{8\pi m_S^2} \stackrel{!}{=} \frac{4 \cdot 10^{-9}}{\text{GeV}^2} \qquad \Leftrightarrow \qquad \lambda_3 \gtrsim 0.06$$

Why?

How?

Motivating invisible Higgs searches 1

Higgs portal to dark matter scalar [Silveira & Zee; Burgess, Pospelov, 'ter Velthuis]

- renormalizable Higgs sector

$$V_{\mathsf{SM}} = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 \supset -\frac{m_H^2}{2} H^2 + \frac{m_H^2}{2v_H} H^3 + \frac{m_H^2}{8v_H^2} H^4$$

- renormalizable (portal) extension by real scalar [dark Z2 parity, Higgs mediator]

$$V \supset -\frac{m_{H}^{2}}{2}H^{2} + \frac{m_{H}^{2}}{2v_{H}}H^{3} + \frac{m_{H}^{2}}{8v_{H}^{2}}H^{4} - \mu_{S}^{2}S^{2} + \lambda_{S}S^{4} + \frac{\lambda_{3}}{2}(H + v_{H})^{2}S^{2}$$

 \Rightarrow invisible Higgs decays possible...

[Djouadi, Lebedev, Mambrini, Quevillon]

Why?

How?

Motivating invisible Higgs searches 2

MSSM Higgs boson [SFitter: Butter,...]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

$$g_{H\tilde{\chi}\tilde{\chi}}\Big|_{MSSM} = (g_1 N_{11} - g_2 N_{12}) \ (\sin \alpha N_{13} + \cos \alpha N_{14})$$

1. require $m_h =$ 125 GeV in M_1 vs μ [tan β = 40]

Why?

How?

Motivating invisible Higgs searches 2

MSSM Higgs boson [SFitter: Butter,...]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

$$g_{H\tilde{\chi}\tilde{\chi}}\Big|_{MSSM} = (g_1 N_{11} - g_2 N_{12}) \ (\sin \alpha N_{13} + \cos \alpha N_{14})$$

- 1. require $m_h =$ 125 GeV in M_1 vs μ [tan β = 40]
- 2. add LEP chargino mass limit

Why?

How?

Motivating invisible Higgs searches 2

MSSM Higgs boson [SFitter: Butter,...]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

$$g_{H\tilde{\chi}\tilde{\chi}}\Big|_{MSSM} = (g_1 N_{11} - g_2 N_{12}) \ (\sin \alpha N_{13} + \cos \alpha N_{14})$$

- 1. require $m_h =$ 125 GeV in M_1 vs μ [tan β = 40]
- 2. add LEP chargino mass limit
- 3. add relic density

Why?

How

Motivating invisible Higgs searches 2

MSSM Higgs boson [SFitter: Butter,...]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

$$g_{H\tilde{\chi}\tilde{\chi}}\Big|_{\rm MSSM} = (g_1 N_{11} - g_2 N_{12}) \; (\sin \alpha N_{13} + \cos \alpha N_{14})$$

45 GeV.

- 1. require $m_h = 125 \text{ GeV}$ in $M_1 \text{ vs } \mu$ [tan β = 40]
- 2. add LEP chargino mass limit
- 3. add relic density
- 4. add direct detection

$$\mathsf{BR}(H_{125} o ilde{\chi} ilde{\chi}) \lesssim 50\%$$
 for $\mu = 100$ GeV, $M_1 =$

⇒ not generic, but possible...

Why?

How?

Weak boson fusion

Classic paper

- prime application of WBF strategy
- weak backgrounds $\sigma_{\it Vjj} \propto \alpha_{\it s}^2 lpha, lpha^3$

missing transverse momentum tagging jet cuts $[including \phi_{jj}]$ central jet veto

- analysis focus on background extrapolation $\phi_{jj} > 1$ and $Z \rightarrow \ell^+ \ell^-$
- trigger issue central

University of Wisconsin - Madison

MADPH-00-1191 IFT-P.076/2000 September 2000

Observing an invisible Higgs boson

O. J. P. Éboli¹ and D. Zeppenfeld² ¹Instituto de l'Isica Teòrica – UNESP R. Pamplona 145, 01405-900 Sao Paulo, Brazil ²Department of Physics, University of Wisconsin, Madison, WI 53706, USA

Why?

How?

Weak boson fusion

Classic paper

- prime application of WBF strategy
- weak backgrounds $\sigma_{\it Vjj} \propto \alpha_{\it s}^2 lpha, lpha^3$

missing transverse momentum tagging jet cuts $[including \phi_{jj}]$ central jet veto

- analysis focus on background extrapolation $\phi_{jj}>$ 1 and $Z\to \ell^+\ell^-$
- trigger issue central

 $\begin{array}{ll} p_T^j > 40 \; {\rm GeV} &, & |\eta_j| < 5.0 \\ |\eta_{j1} - \eta_{j2}| > 4.4 &, & \eta_{j1} \cdot \eta_{j2} < 0 \;, \\ p_T^\prime > 100 \; {\rm GeV} \;. \end{array}$

the backgrounds, with good signal efficiency, is : M_{jj} , of the two tagging jets,

 $M_{jj} > 1200 \ {\rm GeV}$,

; where the azimuthal angle between the tagging nall,

 $\phi_{jj} < 1$,

Why?

How?

Weak boson fusion

Classic paper

- prime application of WBF strategy
- weak backgrounds $\sigma_{\it Vjj} \propto \alpha_{\it s}^2 lpha, lpha^3$

missing transverse momentum tagging jet cuts $[including \phi_{jj}]$ central jet veto

- analysis focus on background extrapolation $\phi_{jj} > 1$ and $Z \rightarrow \ell^+ \ell^-$
- trigger issue central

Why?

How?

Weak boson fusion

Classic paper

- prime application of WBF strategy
- weak backgrounds $\sigma_{\it Vjj} \propto \alpha_{\it s}^2 lpha, lpha^3$

missing transverse momentum tagging jet cuts $[including \phi_{jj}]$ central jet veto

- analysis focus on background extrapolation $\phi_{jj}>1$ and $Z \rightarrow \ell^+ \ell^-$
- trigger issue central

	QCD Zjj	QCD Wjj	EW Zjj	EW Wjj	total
σ	1254	1284	151	101	2790
$P_{surv} \sigma$	351	360	124	83	918
$P_{surv} \sigma(\phi_{jj} < 1)$	71.8	70.2	14.8	9.9	167

TABLE II. Total cross sections (in fb) for the backgrounds after applying the cuts (1-3) (first two lines) and (4). In the last two lines we also include the central jet veto survival probabilities of Table I.

Why?

How?

Weak boson fusion

Classic paper

- prime application of WBF strategy
- weak backgrounds $\sigma_{\it Vjj}\propto \alpha_{\it s}^2 lpha, lpha^3$

missing transverse momentum tagging jet cuts $[including \phi_{jj}]$ central jet veto

- analysis focus on background extrapolation $\phi_{jj}>$ 1 and $Z\to \ell^+\ell^-$
- trigger issue central
- estimated reach:

 $BR_{inv} = 5\%$ at 95% CL with 100 fb⁻¹ at 14 TeV

Why?

How?

Weak boson fusion

Classic paper

- prime application of WBF strategy
- weak backgrounds $\sigma_{\it Vjj} \propto \alpha_{\it s}^2 lpha, lpha^3$

missing transverse momentum tagging jet cuts $[including \phi_{jj}]$ central jet veto

- analysis focus on background extrapolation $\phi_{jj} > 1$ and $Z \rightarrow \ell^+ \ell^-$
- trigger issue central
- estimated reach:

 $BR_{inv} = 5\%$ at 95% CL with 100 fb⁻¹ at 14 TeV

⇒ room for improvement, time for an update?

Update

Why?

Invisible Higgs

Tilman Plehn

How?

So?

Analysis update [Bernaciak, TP, Schichtel, Tattersall]

- impact of 3rd jet kinematics? [rapidity-ordered, beyond veto]
- two multivariate analyses

$$[\rho_{T,j_1}, \eta_{j_1}, \rho_{T,j_2}, \eta_{j_2}, \Delta\phi_{j_1,j_2}, p_T\}$$
(2-jet)

$$\{p_{T,j_1}, \eta_{j_1}, p_{T,j_2}, \eta_{j_2}, \Delta\phi_{j_1,j_2}, p_{T}, p_{T,j_3}, \eta_{j_3}, \Delta\phi_{j_1,j_3}\}$$
(3-jet

- fast detector simulation Delphes/CheckMate
- fixed signal efficiency $[\rho_{T,j} > 20 \text{ GeV for central jets}]$

	2-jets	3-jets	4-jets
S/B after WBF cuts	1/240	1/360	1/475
ϵ_{S}	0.01	0.01	0.01
ϵ_B	1.7×10^{-6}	$1.3 imes 10^{-5}$	$2.7 imes 10^{-5}$
σ_S (fb)	80.0	80.0	80.0
S/B	1/2.6	1/21	1/42

Invisible Higgs Update

Why? How?

Analysis update [Bernaciak, TP, Schichtel, Tattersall]

- impact of 3rd jet kinematics? [rapidity-ordered, beyond veto]
- two multivariate analyses

$$[\boldsymbol{p}_{T,j_1}, \ \eta_{j_1}, \ \boldsymbol{p}_{T,j_2}, \ \eta_{j_2}, \ \Delta\phi_{j_1,j_2}, \ \boldsymbol{p}_T\}$$
(2-jet

$$\{ p_{T,j_1}, \eta_{j_1}, p_{T,j_2}, \eta_{j_2}, \Delta \phi_{j_1,j_2}, p_{T}, p_{T,j_3}, \eta_{j_3}, \Delta \phi_{j_1,j_3} \}$$
(3-jet

- fast detector simulation Delphes/CheckMate
- full ROC curve
- \Rightarrow 3rd jet not all that useful?

Update

Why?

How?

So?

Analysis update [Bernaciak, TP, Schichtel, Tattersall]

- impact of 3rd jet kinematics? [rapidity-ordered, beyond veto]
- two multivariate analyses

{

$$p_{T,j_1}, \ \eta_{j_1}, \ p_{T,j_2}, \ \eta_{j_2}, \ \Delta\phi_{j_1,j_2}, \ p_T \}$$
(2-jet)

$$\{\boldsymbol{p}_{\mathcal{T},j_1}, \ \eta_{j_1}, \ \boldsymbol{p}_{\mathcal{T},j_2}, \ \eta_{j_2}, \ \Delta\phi_{j_1,j_2}, \ \boldsymbol{p}_{\mathcal{T}}, \boldsymbol{p}_{\mathcal{T},j_3}, \ \eta_{j_3}, \ \Delta\phi_{j_1,j_3}\}$$
(3-jet)

- fast detector simulation Delphes/CheckMate
- \Rightarrow 3rd jet not all that useful?

Using central jets rather than killing them

- central (micro-) jets to 10 GeV

	p _T	$_{,j} > 20 \text{ G}$	eV	p _T	$_{,j} > 10 { m G}$	eV
	2-jets	3-jets	4-jets	2-jets	3-jets	4-jets
S/B after WBF cuts	1/240	1/360	1/475	1/213	1/303	1/429
ϵ_{S}	0.01	0.01	0.01	0.01	0.01	0.01
S/B	1/2.6	1/21	1/42	1/1.2	1/5	1/38

Why?

- How?
- So?

Update

Analysis update [Bernaciak, TP, Schichtel, Tattersall]

- impact of 3rd jet kinematics? [rapidity-ordered, beyond veto]
- two multivariate analyses

$$[p_{T,j_1}, \eta_{j_1}, p_{T,j_2}, \eta_{j_2}, \Delta\phi_{j_1,j_2}, p_T]$$
(2-jet)

$$\{\boldsymbol{p}_{\mathsf{T},j_1}, \ \eta_{j_1}, \ \boldsymbol{p}_{\mathsf{T},j_2}, \ \eta_{j_2}, \ \Delta\phi_{j_1,j_2}, \ \boldsymbol{p}_{\mathsf{T}}, \boldsymbol{p}_{\mathsf{T},j_3}, \ \eta_{j_3}, \ \Delta\phi_{j_1,j_3}\}$$
(3-jet)

- fast detector simulation Delphes/CheckMate
- \Rightarrow 3rd jet not all that useful?

Using central jets rather than killing them

Update

Why?

How?

So?

Analysis update [Bernaciak, TP, Schichtel, Tattersall]

- impact of 3rd jet kinematics? [rapidity-ordered, beyond veto]
- two multivariate analyses

{

$$p_{T,j_1}, \eta_{j_1}, p_{T,j_2}, \eta_{j_2}, \Delta \phi_{j_1,j_2}, p_T \}$$
 (2-jet)

$$\{p_{T,j_1}, \eta_{j_1}, p_{T,j_2}, \eta_{j_2}, \Delta\phi_{j_1,j_2}, p_{T}, p_{T,j_3}, \eta_{j_3}, \Delta\phi_{j_1,j_3}\}$$
(3-jet)

- fast detector simulation Delphes/CheckMate
- \Rightarrow 3rd jet not all that useful?

Using central jets rather than killing them

- central (micro-) jets to 10 GeV
- reach for invisible branching ratio [95% CL]

	$p_{T,j} > 20 \text{ GeV}$ $p_{T,j} > 10 \text{ GeV}$			10 GeV		
$\mathcal{L}[fb^{-1}]$	WBF cuts	+ jet veto	+ $\Delta \phi_{jj}$	BDT 2-jets	BDT 2-jets	+ BDT 3-jets
10	1.02	0.49	0.47	0.28	0.18	0.16
100	0.49	0.20	0.18	0.10	0.07	0.061
3000	0.25	0.094	0.069	0.035	0.025	0.021

 \Rightarrow QCD and analysis challenge, really...

Why? How?

- So?

Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $-m_{\chi}\sim$ 30 GeV from spectrum

Why? How?

So?

Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim$ 30 GeV from spectrum

In conclusion, we have studied the angular distribution and energy spectrum of gamma rays measured by the Fermi Gamma Ray Space Telescope in the region surrounding the Galactic Center, and find that this data is well described by a scenario in which a 25-30 GeV dark matter particle, distributed with a halo profile slightly steeper than NFW ($\gamma = 1.1$), is annihilating with a cross section within a factor of a few of the value predicted for a thermal relic.

Why? How? So?

Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

່ວ

cm⁻²

(GeV

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $-m_{\chi}\sim$ 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good

Why? How? So?

Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim$ 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution

Why? How? So?

Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim$ 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
- even better with modified NFW contribution

of the analysis that has previously not been employed. After subtraction of interstellar emission and point sources, an extended residual is present. It can be fit with a centrally peaked profile with a specified spectral model, but not all of the positive residual is accounted for by such a model. Because of the uncertain nature of the properties of the positive residual due to the IEM and point source determination, a precise physical interpretation of its origin is premature.

Why? How? So?

Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

ິທ

 cm^{-2}

(GeV

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $-m_{\chi}\sim$ 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
- even better with modified NFW contribution
- different DM candidates [Calore etal; ask Asher]
- \Rightarrow DM model playground, but probably astrophysics $\frac{2}{6}$

NMSSM Hooperons

Invisible Higgs Tilman Plehn

Why? How? So?

Hooperon in the NMSSM [Berlin, Hooper, McDermott; Butter etal]

- scalars largely decoupled from h_{125} [through A_{λ}]
- higgsino mass parameter μ singlino mass parameter $2\kappa\mu$ singlino-higgsino mixing parameter λ

$$M_{\tilde{\chi}} = \begin{pmatrix} M_{1} & 0 & -m_{Z}c_{\beta}s_{w} & m_{Z}s_{\beta}s_{w} & 0\\ 0 & M_{2} & m_{Z}c_{\beta}c_{w} & -m_{Z}s_{\beta}c_{w} & 0\\ -m_{Z}c_{\beta}s_{w} & m_{Z}c_{\beta}c_{w} & 0 & -\mu & -m_{Z}s_{\beta}\frac{\lambda}{g}\\ m_{Z}s_{\beta}s_{w} & -m_{Z}s_{\beta}c_{w} & -\mu & 0 & -m_{Z}c_{\beta}\frac{\lambda}{g}\\ 0 & 0 & -m_{Z}s_{\beta}\frac{\lambda}{g} & -m_{Z}c_{\beta}\frac{\lambda}{g} & 2\tilde{\kappa}\mu \end{pmatrix}$$

- s-channel mediators

Standard Model: *Z*, *h*₁₂₅ new: heavy/singlet pseudoscalars

- Fermi: light pseudo-scalar mediator higgsino-admixed singlino DM
- \Rightarrow LHC signatures? [Cao, Zurek,...]

Why? How? So?

Higgs decays to Hooperons

LHC signatures [SFitter: Butter...]

- squarks, gluinos, sleptons decoupled $\tan \beta = 10$, Higgs mass correct,...
- singlino vs bino mass parameter space
- funnel off-pole annihilation: Z and h_{125} strips with $m_{\tilde{\chi}} = 40, 48, 55 \text{ GeV}$
- Hooperon at $M_1 \gtrsim 70 \text{ GeV}$

Why? How? So?

Higgs decays to Hooperons

LHC signatures [SFitter: Butter...]

- squarks, gluinos, sleptons decoupled
 - $\tan \beta =$ 10, Higgs mass correct,...
- singlino vs bino mass parameter space [slice μ = 220 GeV]
- funnel off-pole annihilation: Z and h_{125} strips with $m_{\tilde{\chi}} = 40, 48, 55$ GeV
- Hooperon at $M_1\gtrsim$ 70 GeV
- \Rightarrow strong correlation with $h_{125} \rightarrow$ invisible

Why? How?

So?

Pep talk

Invisible Higgs searches...

... are well motivated in many models

... are an example of one person changing something

... are a challenge to QCD and jet reconstruction

...can be linked to astrophysical anomalies

Why? How?

So?

Higgs couplings

Test SM-like Higgs sector [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar
 Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

- electroweak renormalizability through some UV completion
- QCD renormalizability not an issue

$$\begin{array}{c} gg \rightarrow H \\ qq \rightarrow qgH \\ gg \rightarrow tiH \\ qq' \rightarrow VH \end{array} \longleftrightarrow \qquad \begin{array}{c} fH \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^+ \tau^- \\ H \rightarrow \gamma\gamma \end{array}$$

Why? How? So?

Higgs couplings

Test SM-like Higgs sector [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; gm_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \, Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties

Why? How? So?

Higgs couplings

Test SM-like Higgs sector [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; gm_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \, Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops

Why? How? So?

Higgs couplings

Test SM-like Higgs sector [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; gm_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible

Why? How? So?

Higgs couplings

Test SM-like Higgs sector [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; gm_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \, Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g$ vs g_t barely possible
- \Rightarrow including invisible decays

Invisible Higgs
Tilman Plehn
Why?
How?
So?