Lobhudelei

Tilman Plehn

Boosted tops

Analyses

Local tools

Progress

750 GeV

Lobhudelei for the Local Tagging Group

Tilman Plehn

Universität Heidelberg

Neuenheimer Feld, April 2016

Boosted tops

Analyses Local tools Progress 750 GeV

Boosted tops

10+x years of top tagging

- 1994 $W \rightarrow$ 2 jets from heavy Higgs [Seymour]
- 1994 $t \rightarrow 3 \text{ jets}$ [Seymour]
- 2006 $t \rightarrow 3$ jets from resonances [Agashe, Belyaev, Krupovnickas, Perez, Virzi]
- 2008 $H
 ightarrow b ar{b}$ [BDRS Higgs tagger: Butterworth, Davison, Rubin, Salam]
- 2008 $t \rightarrow$ 3 jets from resonances [JH/CMS tagger: Kaplan, Rehermann, Schwartz, Tweedie]
- 2009 $t \rightarrow 3$ jets in Higgs production [HEPTopTagger: TP, Salam, Spannowsky]
- 2010 first meta analysis [BOOST proceedings]
- 2011 N-subjettiness [Thaler, van Tilburg]
- 2011 shower-desconstructed tops [Spannowsky, Soper]
- 2011 pedagogical review [TP, Spannowsky]

2013 track-based Tagger [Schätzel, Spannowsky]

- 2013 better HEPTopTagger [Anders, Bernaciak, Kasieczka, TP, Schell]
- 2015 even better HEPTopTagger2 [Kasieczka, TP, Strebler, Schell, Salam]

Boosted tops

Analyses Local tools Progress 750 GeV

BDRS Higgs tagger

New strategy for H ightarrow bb [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: target large m_{bb} and small R_{bb} , i.e. boosted Higgs
- $-\,$ fat Higgs jet $R_{bb}\sim 2m_{H}/p_{T}\sim 0.8$
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- first real look inside jets [subjets]

Boosted tops

Analyses Local tools Progress 750 GeV

BDRS Higgs tagger

New strategy for H ightarrow bb [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: target large m_{bb} and small R_{bb} , i.e. boosted Higgs
- fat Higgs jet $R_{bb} \sim 2 m_H/p_T \sim 0.8$
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- first real look inside jets [subjets]
- \Rightarrow non-trivial challenge to jet algorithms

jet definition	$\sigma_{\mathcal{S}}/{ m fb}$	σ_{B} /fb	S/\sqrt{B}_{30}
C/A, <i>R</i> = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{cut}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

Boosted tops

Analyses Local tools Progress 750 GeV

BDRS Higgs tagger

New strategy for $H \rightarrow bb$ [Butterworth, Davison, Rubin, Salam]

- S: large m_{bb} , boost-dependent R_{bb} B: large m_{bb} only for large R_{bb} S/B: target large m_{bb} and small R_{bb} , i.e. boosted Higgs
- fat Higgs jet $R_{bb}\sim 2m_H/p_T\sim 0.8$
- $-~qar{q}
 ightarrow V_\ell H_b$ sizeable in boosted regime $_{[
 ho_T}\gtrsim$ 300 GeV, few % of total rate]
- first real look inside jets [subjets]
- \Rightarrow non-trivial challenge to jet algorithms

Results and checks

- combined $V \rightarrow \ell \ell, \nu \nu, \ell \nu$
- Z peak as sanity check
- subjet b tag crucial [70%/1%] charm rejection an issue
- ⇒ not sure about current status

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Phase space

- tagging easier for higher boost, $p_{T,t} > 600 \text{ GeV}$
- Standard Model events at lower $p_{T,t}$ < 400 GeV 🕏
- $\Rightarrow p_T$ range main challenge

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Phase space

- tagging easier for higher boost, $p_{T,t} > 600 \text{ GeV}$
- Standard Model events at lower $p_{T,t}$ < 400 GeV 🕏
- $\Rightarrow p_T$ range main challenge

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Key moment in 2012 [ATLAS: Kasieczka & Schätzel]

- pile-up does not kill us

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Key moment in 2012 [ATLAS: Kasieczka & Schätzel]

- pile-up does not kill us
- top mass comes out right

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Key moment in 2012 [ATLAS: Kasieczka & Schätzel]

- pile-up does not kill us
- top mass comes out right
- resonance search works

Boosted tops

Analyses

Local tools Progress 750 GeV

Top resonance search

Z^\prime or KK gluon searches with $m\gtrsim$ 1.3 TeV

- purely leptonic rate limited
- semi-leptonic with approximate neutrino reconstruction
- purely hadronic considered hard [so let's solve a real problem!]

Key moment in 2012 [ATLAS: Kasieczka & Schätzel]

- pile-up does not kill us
- top mass comes out right
- resonance search works
- QCD can beat multivariate
- \Rightarrow wow!

Boosted tops

Analyses

Local tools Progress 750 GeV

Being a (boring) German

Precision Higgs physics: $t\bar{t}H, H \rightarrow b\bar{b}$

- signal vs background kinematics [MadMax]
- no combinatoric background
- fun: fat Higgs + fat top

[similarly $H\!H \rightarrow b \bar{b} b \bar{b}$: Lima et al]

Boosted tops

Analyses

Local tools Progress 750 GeV

Being a (boring) German

Precision Higgs physics: $t\bar{t}H, H \rightarrow b\bar{b}$

- signal vs background kinematics [MadMax]
- no combinatoric background
- fun: fat Higgs + fat top

[similarly $HH \rightarrow b\bar{b}b\bar{b}$: Lima et al]

Finally an analysis! [Kasieczka]

Boosted top Analyses

Local tools

Progress

750 GeV

1 — HEPTopTagger

Mass drop algorithm [TP, Salam, Spannowsky, Takeuchi]

- 1- C/A fat jet, R=1.5 and $p_T>200~GeV~$ [FastJet limitation]
- 2– mass drop, cutoff $m_{sub} > 30 \text{ GeV}$
- 3- filtering leading to hard substructure triple
- 4- top mass window $m_{123} = [150, 200] \text{ GeV}$
- 5– A-shaped mass plane cuts as function of m_W/m_t
- 6– consistency condition $p_T^{(tag)} > 200 \text{ GeV}$

Boosted top: Analyses

Local tools

- Progress
- 750 GeV

1 — HEPTopTagger

Mass drop algorithm [TP, Salam, Spannowsky, Takeuchi]

- 1- C/A fat jet, R=1.5 and $ho_T>200~GeV~$ [FastJet limitation]
- 2– mass drop, cutoff $m_{sub} > 30 \text{ GeV}$
- 3- filtering leading to hard substructure triple
- 4- top mass window $m_{123} = [150, 200] \text{ GeV}$
- 5– A-shaped mass plane cuts as function of m_W/m_t
- 6– consistency condition $p_T^{(tag)} > 200 \text{ GeV}$

HEPTopTagger2 [Kasieczka, TP, Salam, Schell, Strebler]

- fat jet to include FSR
- optimal R_{min}

large to include all decay jets small to avoid combinatorics, ISR, pile-up

- combined with N-subjettiness and Qjets
- multi-variate

$$\{m_{tt}, p_{T,t}, m_{jj}^{\text{(filt)}}, p_{T,j}^{\text{(filt)}}, m_{123}^{\text{(min}, R_{\min})}, m_{123}^{\text{(max, } R_{\min})}, f_{W}^{(R_{\min})}, R_{\min} - R_{\min}^{\text{(calc)}}\}$$

⇒ lots of variables: feature or curse?

Boosted tops Analyses

Local tools

- Progress
- 750 GeV

2 — Shower deconstruction

Remember matrix element method [Tevatron]

- measured fully exclusive cross section: dσ computed matrix element squared: |*M*|²(*m*_t)
- direct comparison to determine m_t
- log likelihood ratio best test statistic
- combinatorics by adding likelihoods [problem for taggers w/o QJets]

Same for subjets [Soper, Spannowsky]

- background from QCD splittings [parton shower] signal from hard decays Sudakovs for non–splitting
- compute LLR for signal and background assumption as 'top-ness' measure

Boosted tops Analyses

Local tools

- Progress
- 750 GeV

2 — Shower deconstruction

Remember matrix element method [Tevatron]

- measured fully exclusive cross section: $d\sigma$ computed matrix element squared: $|\mathcal{M}|^2(m_t)$
- direct comparison to determine m_t
- log likelihood ratio best test statistic
- combinatorics by adding likelihoods [problem for taggers w/o QJets]

Implementation [1211.3140]

- look at microjets inside fat jet $[R_{k_T} = 0.2, p_T < 5 10 \text{ GeV}, N = 9]$
- approximate parton shower as description [shower time, analytic computation]
- compute χ for signal/background hypothesis
- one-paramer tagger χ_{\min} [extended to event deconstruction]
- ⇒ same problem: calculability beyond Pythia?

Boosted tops Analyses Local tools

Progress

750 GeV

Recent progress

CMS state of art [Kasieczka]

- 13 TeV study validated with 8 TeV data
- can we finally beat the CMS tagger? yes!!
- ⇒ HEPTopTagger2 and shower deco leading head-to-head

Boosted tops Analyses Local tools Progress

750 GeV

Recent progress

CMS state of art [Kasieczka]

- 13 TeV study validated with 8 TeV data
- can we finally beat the CMS tagger? yes!!
- ⇒ HEPTopTagger2 and shower deco leading head-to-head

ATLAS state of art [Christoph, Sebastian, Maddalena, David, Danilo, supported by Andre]

- final word from 8 TeV data

Boosted tops Analyses Local tools

Progress 750 GeV

Recent progress

CMS state of art [Kasieczka]

- 13 TeV study validated with 8 TeV data
- can we finally beat the CMS tagger? yes!!
- ⇒ HEPTopTagger2 and shower deco leading head-to-head

ATLAS state of art [Christoph, Sebastian, Maddalena, David, Danilo, supported by Andre]

- final word from 8 TeV data
- Maddalena's in-situ calibration

Boosted tops Analyses Local tools Progress

750 GeV

Recent progress

CMS state of art [Kasieczka]

- 13 TeV study validated with 8 TeV data
- can we finally beat the CMS tagger? yes!!
- ⇒ HEPTopTagger2 and shower deco leading head-to-head

ATLAS state of art [Christoph, Sebastian, Maddalena, David, Danilo, supported by Andre]

- final word from 8 TeV data
- Maddalena's in-situ calibration
- David's efficience/fake rate

Boosted tops Analyses Local tools Progress

750 GeV

Recent progress

CMS state of art [Kasieczka]

- 13 TeV study validated with 8 TeV data
- can we finally beat the CMS tagger? yes!!
- ⇒ HEPTopTagger2 and shower deco leading head-to-head

ATLAS state of art [Christoph, Sebastian, Maddalena, David, Danilo, supported by Andre]

- final word from 8 TeV data
- Maddalena's in-situ calibration
- David's efficience/fake rate
- ⇒ HEPTopTagger and shower deco leading head-to-head

The finger to particle theory

Lobhudelei

Tilman Plehn

Analyses

750 GeV

Since Christoph asked: my take on 750 GeV theory papers

- open questions due to limited significance
- general problem: signal rate large
- largely EFT exercise
- dimension-5 operators $XG^{\mu\nu}G_{\mu\nu}$ and $XA^{\mu\nu}A_{\mu\nu} \longrightarrow$ avoid di-jet constraints
- gauge invariant $XB^{\mu\nu}B_{\mu\nu}$ and $XW^{\mu\nu}W_{\mu\nu} \longrightarrow$ avoid VV constraints
- no clear link to other data
- ⇒ great to play with, but only for fun, please

Boosted tops Analyses Local tools Progress

750 GeV

Outlook

Enjoy the Kulturbrauerei

- QCD can be fun
- theory-experiment link can work great
- visit us again in Heidelberg
- if you did not see the Philosophenweg you missed something
- please, find some interesting physics in Run II

