Tilman Plehn

Higgs couplings

Higgs EF

Top EFT

DM EFT

Higgs models

The Rise of Effective Lagrangians at the LHC

Tilman Plehn

Universität Heidelberg

Weizmann, June 2016

Tilman Plehn

- Higgs coupling
- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Theory in data-driven era

Same old theory motivation

- WIMP dark matter still best choice [Hooperon@Fermi]
- hierarchy problem (probably) a problem
- but: data in driving seat [750 GeV]

- Higgs coupling Higgs EFT Top EFT
- Liggo modelo

Theory in data-driven era

Same old theory motivation

- WIMP dark matter still best choice [Hooperon@Fermi]
- hierarchy problem (probably) a problem
- but: data in driving seat [750 GeV]

Theory tool box

- Lagrangian language established by Higgs discovery
- 1- full new physics model [built to solve problems]
- 2- simplified models [capturing experimental features, theoretically poor]
- 3- effective field theory [symmetries and particles fixed, non-renormalizable operators]
- \Rightarrow matter of convenience and taste

	bottom-up EFT	simplified models	full models
agnostic	(×)		
data-driven		(×)	(×)
theory-driven		(\times)	

- Higgs coupling Higgs EFT Top EFT
- Higgs models

Theory in data-driven era

Same old theory motivation

- WIMP dark matter still best choice [Hooperon@Fermi]
- hierarchy problem (probably) a problem
- but: data in driving seat [750 GeV]

Theory tool box

- Lagrangian language established by Higgs discovery
- 1- full new physics model [built to solve problems]
- 2- simplified models [capturing experimental features, theoretically poor]
- 3- effective field theory [symmetries and particles fixed, non-renormalizable operators]
- \Rightarrow matter of convenience and taste

	bottom-up EFT	simplified models	full models
agnostic	(×)		pre-LHC
data-driven		(×)	(×)
theory-driven		(×)	pre-LHC

- Higgs coupling Higgs EFT Top EFT
- Higgs models

Theory in data-driven era

Same old theory motivation

- WIMP dark matter still best choice [Hooperon@Fermi]
- hierarchy problem (probably) a problem
- but: data in driving seat [750 GeV]

Theory tool box

- Lagrangian language established by Higgs discovery
- 1- full new physics model [built to solve problems]
- 2- simplified models [capturing experimental features, theoretically poor]
- 3- effective field theory [symmetries and particles fixed, non-renormalizable operators]
- \Rightarrow matter of convenience and taste

	bottom-up EFT	simplified models	full models
agnostic	(×)	dishonest	pre-LHC
data-driven	boring	(×)	(×)
theory-driven	pointless	(×)	pre-LHC

Tilman Plehn

Higgs couplings

Higgs EF

- Top EFT
- DM EFT
- Higgs models

Agnostic: why super-simple SM-Higgs sector?

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar
 Standard Model operators
- total production/decay rates only
- Lagrangian

Higgs couplings

mm

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; gm_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

[SFitter]

- electroweak renormalizability through some UV completion
- QCD renormalizability not an issue

$$\begin{bmatrix} gg \to H \\ qq \to qgH \\ gg \to t\bar{t}H \\ qq' \to VH \end{bmatrix} \longleftrightarrow \begin{bmatrix} g_{HXX} = g_{HXX}^{SM} (1 + \Delta_X) \end{bmatrix} \longleftrightarrow \begin{bmatrix} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+ \tau^- \\ H \to \gamma\gamma \end{bmatrix}$$

Tilman Plehn

Higgs couplings

- Higgs EF
- Top EFT
- DM EFT
- liggs models

Higgs couplings

Agnostic: why super-simple SM-Higgs sector? [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

Total width

- coupling extraction impossible without width assumption
- observed partial widths:

$$N = \sigma BR \propto rac{g_p^2}{\sqrt{\Gamma_{
m tot}}} \; rac{g_d^2}{\sqrt{\Gamma_{
m tot}}} \sim rac{g^4}{g^2 \sum rac{\Gamma_i(g^2)}{g^2} + \Gamma_{
m unobs}} \; \stackrel{g^2 o 0}{\longrightarrow} = 0$$

gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{tot} \rightarrow \Gamma_H|_{min}$

- WW ightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{\rm SM}
 ightarrow \Gamma_H |_{
 m max}$ [HiggsSignals]
- our assumption $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]

Tilman Plehn

Higgs couplings

Higgs EF

- Top EFT
- DM EFT

Higgs models

Higgs couplings after Run I

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties

Tilman Plehn

Higgs couplings

Higgs EF

- Top EFT
- DM EFT
- Higgs models

Higgs couplings after Run I

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops

Tilman Plehn

Higgs couplings

Higgs EF

- Top EFT
- DM EFT
- Higgs models

Higgs couplings after Run I

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible

Higgs couplings

- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Higgs couplings after Run I

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- \Rightarrow Standard Model within 25%

Tilman Plehn

Higgs couplings

- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Higgs couplings after Run I

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g$ vs g_t barely possible
- including invisible decays
- \Rightarrow Standard Model within 25%

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

- LHC extrapolations unclear
- systematic/theory uncertainties large
- $-e^+e^-$ linear collider much better unobserved decays avoided width measured from σ_{ZH} $H \rightarrow c\bar{c}$ accessible invisible decays hugely improved QCD theory error bars avoided

Tilman Plehn

Higgs couplings

- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Higgs couplings after Run I

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g$ vs g_t barely possible
- including invisible decays
- \Rightarrow Standard Model within 25%

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

- LHC extrapolations unclear
- systematic/theory uncertainties large
- $-e^+e^-$ linear collider much better unobserved decays avoided width measured from σ_{ZH} $H \rightarrow c\bar{c}$ accessible invisible decays hugely improved QCD theory error bars avoided
- \Rightarrow Higgs factory case obvious

Higgs couplings

- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Higgs couplings after Run I

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- \Rightarrow Standard Model within 25%

Three major problems with approach

- 1- theory: no electroweak renormalizability
- 2- experiment: no kinematic distributions
- 3- phenomenology: no link to other sectors

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{array}{ll} \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} \left(D^{\mu}\phi\right) \left(\phi^{\dagger}\phi\right) \end{array}$$

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{aligned}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\phi,2}}{\Lambda^{2}} \mathcal{O}_{\phi,2}$$

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{aligned}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_{\phi,2}}{\Lambda^2} \mathcal{O}_{\phi,2}$$

- Higgs couplings to SM particles [derivatives = momentum, #2 solved]

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{aligned}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\phi,2}}{\Lambda^{2}} \mathcal{O}_{\phi,2}$$

- Higgs couplings to SM particles [derivatives = momentum, #2 solved]

$$\mathcal{L}^{HW} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

- plus Yukawa structure $f_{\tau,b,t}$
- 9 operators for Run I data

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

- linked to Higgs couplings

$$\begin{split} g_{g} &= \frac{f_{GG}v}{\Lambda^{2}} \equiv -\frac{\alpha_{s}}{8\pi} \frac{f_{g}v}{\Lambda^{2}} & g_{\gamma} = -\frac{g^{2}vs_{w}^{2}}{2\Lambda^{2}} \frac{f_{BB} + f_{WW}}{2} \\ g_{Z}^{(1)} &= \frac{g^{2}v}{2\Lambda^{2}} \frac{c_{w}^{2}f_{W} + s_{w}^{2}f_{B}}{2c_{w}^{2}} & g_{W}^{(1)} = \frac{g^{2}v}{2\Lambda^{2}} \frac{f_{W}}{2} \\ g_{Z}^{(2)} &= -\frac{g^{2}v}{2\Lambda^{2}} \frac{s_{w}^{4}f_{BB} + c_{w}^{4}f_{WW}}{2c_{w}^{2}} & g_{W}^{(2)} = -\frac{g^{2}v}{2\Lambda^{2}} f_{WW} \\ g_{Z}^{(3)} &= M_{Z}^{2}(\sqrt{2}G_{F})^{1/2} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) & g_{W}^{(3)} = M_{W}^{2}(\sqrt{2}G_{F})^{1/2} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) \\ g_{t} &= -\frac{m_{t}}{v} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) + \frac{v^{2}}{\sqrt{2}\Lambda^{2}}f_{t} \end{split}$$

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]
- with impact...

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{split}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]
- with impact...

...in last bin

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

D6 Higgs operators

Higgs sector effective field theory [HISZ, polish, Eboli, Goncales-Garcia,...]

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{split}$$

Run 1 legacy

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

liggs models

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

 $\mathcal{O}_{\mathsf{W}} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{\mathsf{B}} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{\mathsf{WWW}} = \mathsf{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$

- kinematics: $p_{T,\ell}$ in VV production

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

liggs models

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

liggs models

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting correlations

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

liggs models

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \mathsf{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting correlations
- \Rightarrow complete Higgs-gauge analysis

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

liggs models

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting correlations
- \Rightarrow complete Higgs-gauge analysis

LHC vs LEP

- triple gauge vertices g_1,κ,λ vs operators
- semileptonic analyses missing for 8 TeV
- \Rightarrow Run I LHC beating LEP

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \ \partial^{\mu} (\phi^{\dagger} \phi) \ , \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^2 \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^2}{\Lambda^2}}$$

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^2 \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}}}$$

second operator, minimum condition giving v

$$v^2 = -\frac{\mu^2}{\lambda} - \frac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^{2} \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}}}$$

second operator, minimum condition giving v

$$v^2 = -rac{\mu^2}{\lambda} - rac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

both operators contributing to Higgs mass

$$\mathcal{L}_{\text{mass}} = -\frac{\mu^2}{2}\tilde{H}^2 - \frac{3}{2}\lambda v^2\tilde{H}^2 - \frac{f_{\phi,3}}{\Lambda^2}\frac{15}{24}v^4\tilde{H}^2 \stackrel{!}{=} -\frac{m_H^2}{2}H^2$$
$$\Leftrightarrow \qquad m_H^2 = 2\lambda v^2 \left(1 - \frac{f_{\phi,2}v^2}{\Lambda^2} + \frac{f_{\phi,3}v^2}{2\Lambda^2\lambda}\right)$$

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= - \; \frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H \, \partial_{\mu}H \, \partial^{\mu}H \right] \\ &- \; \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \, \partial_{\mu} \, H \partial^{\mu}H \right] \end{split}$$

Tilman Plehn

Higgs couplings

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu} H \partial^{\mu} H \right] \\ &- \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu} H \partial^{\mu} H \right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu} H \partial^{\mu} H \right] \\ &- \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu} H \partial^{\mu} H \right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

 \Rightarrow operators and distributions linked to poor UV behavior

Tilman Plehn

Higgs coupling

Higgs EF

Top EFT

DM EFT

Higgs models

D6 top operators

Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

- single, pair-wise, and associated top production [plus decays]
- including anomalous A_{FB} from Tevatron
- 4-quark, Yang-Mills, electroweak operators

 $\mathcal{O}_{qq} = \bar{q} \gamma_{\mu} q \, \bar{t} \gamma^{\mu} t \qquad \mathcal{O}_{G} = f_{ABC} G^{A\nu}_{\mu} G^{B\lambda}_{\nu} G^{C\mu}_{\lambda}$

$$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} \cdots$$

- profile likelihoods and individual limits
- \Rightarrow generic D6 reach \sim 500 GeV [C = 1]

Tilman Plehn

Higgs coupling

Higgs EF

Top EFT

DM EFT

Higgs models

D6 top operators

Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

- single, pair-wise, and associated top production [plus decays]
- including anomalous A_{FB} from Tevatron
- 4-quark, Yang-Mills, electroweak operators

 $\mathcal{O}_{qq} = \bar{q}\gamma_{\mu}q\,\bar{t}\gamma^{\mu}t \qquad \mathcal{O}_{G} = f_{ABC}G^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda}$

$$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} \cdots$$

- profile likelihoods and individual limits
- \Rightarrow generic D6 reach \sim 500 GeV [C = 1]

For theorists: in terms of models

- axigluon: $M_A > 1.4 \text{ TeV}$ [tt resonance]
- SM-like W': $M_{W'} > 1.2 \text{ TeV}$ [t-channel,...]
- ⇒ models less sensitive to correlations

Tilman Plehn

Higgs coupling

Higgs EF1

Top EFT

DM EFT

Higgs models

D6 dark matter operators

Combining direct, indirect, collider results for WIMPs [Tait etal]

- choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon]
- consider D6 scattering process $\chi\chi \rightarrow$ SM SM
- relic density from annihilation $[m_{\chi}/\tau \sim 30]$
- indirect detection even later
- direct detection non-relativistic $\ [E \sim 10 \ \text{MeV}]$
- LHC tricky: single scale $m_\chi \ll m_{
 m mediator}$?
- example: scalar dark matter

LabelCoefficient	Operator	σ_{SI}	$\langle \sigma_{ann} v \rangle$
	Real scalar		
R1 $\lambda_1 \sim 1/(2M^2)$	$m_q \chi^2 \bar{q} q$	\checkmark	s-wave
R2 $\lambda_2 \sim 1/(2M^2)$	$im_q \chi^2 \bar{q} \gamma^5 q$		s-wave
R3 $\lambda_3 \sim \alpha_s/(4M^2)$	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	\checkmark	s-wave
R4 $\lambda_4 \sim \alpha_s/(4M^2$)iχ ² G _{μν} Ĝ ^{μν}		s-wave
Co	omplex scalar		
C1 $\lambda_1 \sim 1/(M^2)$	$m_q \chi^{\dagger} \chi \bar{q} q$	~	s-wave
C2 $\lambda_2 \sim 1/(M^2)$	$im_q \chi^\dagger \chi \bar{q} \gamma^5 q$		s-wave
C3 $\lambda_3 \sim 1/(M^2)$	$\chi^{\dagger}_{,i}\partial_{\mu}\chi\bar{q}\gamma^{\mu}q$	\checkmark	p-wave
C4 $\lambda_4 \sim 1/(M^2)$	$\chi^{\dagger}_{\mu}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	7	p-wave
C5 $\lambda_5 \sim \alpha_s/(8M^2)$	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	\checkmark	s-wave
C6 $\lambda_6 \sim \alpha_s/(8M^2$) $i\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$		s-wave

Tilman Plehn

Higgs coupling

Higgs EF

Top EFT

DM EFT

Higgs models

D6 dark matter operators

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density
- scalar dark matter

LabelCoefficient	Operator	σ_{SI}	$\langle \sigma_{ann} v \rangle$							
Real scalar										
R1 $\lambda_1 \sim 1/(2M)$	$(2) m_q \chi^2 \bar{q} q$	\checkmark	s-wave							
R2 $\lambda_2 \sim 1/(2M)$	$(2) im_q \chi^2 \bar{q} \gamma^5 q$		s-wave							
R3 $\lambda_3 \sim \alpha_s/(4$	$(M^2)\chi^2 G_{\mu\nu} G^{\mu\nu}$	 	s-wave							
R4 $\lambda_4 \sim \alpha_S/(4$	$M^2)i\chi^2 G_{\mu\nu}\tilde{G}^{\mu}$	ν	s-wave							

- profile likelihood
- flat prior on log λ_i [prior 1/ λ_i]
- Dirichlet prior prefering similar-sized Wilson coefficients

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

·

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density

D6 dark matter operators

- scalar dark matter

 $\begin{array}{c|c} \mbox{LabelCoefficient} & \mbox{Operator} & \sigma_{\rm SI}\left(\sigma_{\rm ann}\nu\right) \\ \hline & \mbox{Real scalar} \\ \hline & \mbox{R1} \lambda_1 \sim 1/(2M^2) & \mbox{mq} \chi^2 \bar{q} q & \checkmark \ \mbox{swave} \\ \mbox{R2} \lambda_2 \sim 1/(2M^2) & \mbox{mq} \chi^2 \bar{q} \gamma^5 q & \mbox{swave} \\ \mbox{R3} \lambda_3 \sim \alpha_S/(4M^2) \chi^2 G_{\mu\nu} G^{\mu\nu} & \checkmark \ \mbox{swave} \\ \mbox{R4} \lambda_4 \sim \alpha_S/(4M^2) i \chi^2 G_{\mu\nu} \bar{G}^{\mu\nu} & \mbox{swave} \\ \end{array}$

- profile likelihood
- flat prior on log λ_i [prior 1/ λ_i]
- Dirichlet prior prefering similar-sized Wilson coefficients
- Fermi: GCE plus dwarf galaxies
- \Rightarrow with data, the method hardly matters $\frac{1}{40}$

Tilman Plehn

- Higgs coupling
- Higgs EF
- Top EFT
- DM EFT

Higgs models

(Simplified) scalar/gauge extensions

Higgs singlet/doublet extensions [Higgs portal]

- one or more new (pseudo-) scalars
- mixing with SM-like Higgs

Tilman Plehn

- Higgs coupling
- Higgs EF
- Top EFT
- DM EFT

Higgs models

(Simplified) scalar/gauge extensions

Higgs singlet/doublet extensions [Higgs portal]

- one or more new (pseudo-) scalars
- mixing with SM-like Higgs

Scalar top partners, non-Higgs [simplfied supersymmetry]

- Lagrangian with scalar top partner, singlet plus doublet

$$\begin{split} \mathcal{L} \supset & (D_{\mu}\tilde{J}^{\dagger}(D^{\mu}\tilde{Q}) + (D_{\mu}\tilde{t}_{R})^{*}(D^{\mu}\tilde{t}_{R}) - \tilde{Q}^{\dagger}M^{2}\tilde{Q} - M^{2}\tilde{t}_{R}^{*}\tilde{t}_{R} \\ & -\kappa_{LL}(\phi\cdot\tilde{Q})^{\dagger}(\phi\cdot\tilde{Q}) - \kappa_{RR}(\tilde{t}_{R}^{*}\tilde{t}_{R})(\phi^{\dagger}\phi) - \left[\kappa_{LR}M\tilde{t}_{R}^{*}(\phi\cdot\tilde{Q}) + \text{h.c.}\right] \end{split}$$

- contribution through loops all over Higgs-gauge sector

Tilman Plehn

- Higgs coupling
- Higgs EF
- Top EFT
- DM EFT

Higgs models

(Simplified) scalar/gauge extensions

Higgs singlet/doublet extensions [Higgs portal]

- one or more new (pseudo-) scalars
- mixing with SM-like Higgs

Scalar top partners, non-Higgs [simplfied supersymmetry]

- Lagrangian with scalar top partner, singlet plus doublet

$$\mathcal{L} \supset (D_{\mu}\tilde{)}^{\dagger}(D^{\mu}\tilde{Q}) + (D_{\mu}\tilde{t}_{R})^{*}(D^{\mu}\tilde{t}_{R}) - \tilde{Q}^{\dagger}M^{2}\tilde{Q} - M^{2}\tilde{t}_{R}^{*}\tilde{t}_{R} - \kappa_{LL}(\phi \cdot \tilde{Q})^{\dagger}(\phi \cdot \tilde{Q}) - \kappa_{RR}(\tilde{t}_{R}^{*}\tilde{t}_{R})(\phi^{\dagger}\phi) - \left[\kappa_{LR}M\tilde{t}_{R}^{*}(\phi \cdot \tilde{Q}) + \text{h.c.}\right]$$

- contribution through loops all over Higgs-gauge sector

Triplet gauge extension [whatever that becomes in the UV]

- additional vector triplet field V_{μ}

$$\begin{split} \mathcal{L} \supset &-\frac{1}{4} \tilde{V}^{a}_{\mu\nu} \tilde{V}^{\mu\nu a} + \frac{M^{2}_{\tilde{V}}}{2} \tilde{V}^{a}_{\mu} \tilde{V}^{\mu a} + i \frac{g_{V}}{2} c_{H} \tilde{V}^{a}_{\mu} \left[\phi^{\dagger} \sigma^{a} \overleftarrow{D}^{\mu} \phi \right] + \frac{g^{2}_{w}}{2g_{V}} \tilde{V}^{a}_{\mu} \sum_{\text{fermions}} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L} \\ &+ \frac{g_{V}}{2} c_{VVV \epsilon_{abc}} \tilde{V}^{a}_{\mu} \tilde{V}^{b}_{\nu} D^{[\mu} \tilde{V}^{\nu]c} + g^{2}_{V} c_{VVHH} \tilde{V}^{a}_{\mu} \tilde{V}^{\mu a} (\phi^{\dagger} \phi) - \frac{g_{w}}{2} c_{VVW} \epsilon_{abc} W^{\mu\nu} \tilde{V}^{b}_{\mu} \tilde{V}^{c}_{\nu} \end{split}$$

- new states, mixing with W^{\pm} and Z weak gauge coupling to W, Z mass eigenstates

Tilman Plehn

Higgs coupling

Higgs EF1

Top EFT

DM EFT

Higgs models

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 - theory: how do D6 vs EFT vs full model differences appear?

Tilman Plehn

Higgs coupling

- Higgs EFT
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 theory: how do D6 vs EFT vs full model differences appear?
- push (simplified) models to visible deviations at 13 TeV Higgs portal, 2HDM, stops, vector triplet [weakly interacting]

$$\left|\frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1\right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 10\% \qquad \Leftrightarrow \qquad \Lambda \lesssim 400 \ \text{GeV}$$

no scale hierarchy for testable models?!

Tilman Plehn

- Higgs coupling
- Higgs EFT
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 theory: how do D6 vs EFT vs full model differences appear?
- push (simplified) models to visible deviations at 13 TeV Higgs portal, 2HDM, stops, vector triplet [weakly interacting]

$$\left|\frac{\sigma\times \mathsf{BR}}{(\sigma\times \mathsf{BR})_{\mathsf{SM}}} - 1\right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 10\% \qquad \Leftrightarrow \qquad \Lambda \lesssim 400 \ \text{GeV}$$

no scale hierarchy for testable models?!

 construct and match D6-Lagrangian to model coupling modifications v²/Λ² vs new kinematics ∂/Λ? matching conditions with v ≲ Λ, v-improved matching

Tilman Plehn

- Higgs coupling
- Higgs EFT
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 theory: how do D6 vs EFT vs full model differences appear?
- push (simplified) models to visible deviations at 13 TeV Higgs portal, 2HDM, stops, vector triplet [weakly interacting]

$$\left| rac{\sigma imes \mathsf{BR}}{(\sigma imes \mathsf{BR})_{\mathsf{SM}}} - 1
ight| = rac{g^2 m_h^2}{\Lambda^2} \gtrsim 10\% \qquad \Leftrightarrow \qquad \Lambda \lesssim 400 \;\; \mathsf{GeV}$$

no scale hierarchy for testable models?!

- construct and match D6-Lagrangian to model coupling modifications v²/Λ² vs new kinematics ∂/Λ? matching conditions with v ≤ Λ, v-improved matching
- LHC simulations: D6-Lagrangian vs full model production: WBF, VH, HH decays: $H \rightarrow \gamma\gamma$, 4 ℓ
- $-\,$ check where differences appear at 13 TeV $\,$

kinematic distributions like $p_{T,j}$ or m_{VH} ? resonance peaks of new states?

Tilman Plehn

Higgs coupling

Higgs EFT

Top EFT

DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC

Singlet				EFT				EFT (v-improved)		
m _H	$\sin\alpha$	v_s/v	$\Delta_x^{\text{singlet}}$	٨	$ar{c}_H$	Δ_x^{EFT}		$ar{c}_H$	Δ_x^{EFT}	
500	0.2	10	-0.020	491	0.036	-0.018		0.040	-0.020	
350	0.3	10	-0.046	336	0.073	-0.037		0.092	-0.046	
200	0.4	10	-0.083	190	0.061	-0.031		0.167	-0.083	
1000	0.4	10	-0.083	918	0.183	-0.092		0.167	-0.092	
500	0.6	10	-0.200	407	0.461	-0.231		0.400	-0.200	

- effects in WBF and hh

Tilman Plehn

- Higgs couplings
- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC

		2	HDM		EFT				
Туре	$\tan\beta$	α/π	m ₁₂	m _H 0	m _{A0}	$m_{H^{\pm}}$	Λ [GeV]	\bar{c}_u	Ē _{d,ℓ}
1	1.5	-0.086	45	230	300	350	100	-0.744	-0.744
11	15	-0.023	116	449	450	457	448	0.000	0.065
11	10	0.032	157	500	500	500	99	0.465	-46.5
1	20	0	45	200	500	500	142	0.003	0.003

Tilman Plehn

- Higgs couplings
- Higgs EFT
- Top EFT
- DMEET
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC

		2	2HDM		EFT				
Туре	$\tan\beta$	$lpha/\pi$	m ₁₂	m _H 0	m _{A0}	$m_{H^{\pm}}$	Λ [GeV]	\bar{c}_{u}	Ē _{d,ℓ}
I	1.5	-0.086	45	230	300	350	100	-0.744	-0.744
11	15	-0.023	116	449	450	457	448	0.000	0.065
11	10	0.032	157	500	500	500	99	0.465	-46.5
1	20	0	45	200	500	500			~ ~~~
									$p p \rightarrow h^0 -$

– effects in ${\it H} \rightarrow \gamma \gamma$

Tilman Plehn

- Higgs couplings
- Higgs EF
- Top EFT
- DM EFT
- Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H\to\gamma\gamma$

Top partners

-	testable	benchmarks	for	LHC

	Scal	ar top-par	tner mod	lel			EFT	
М	κ_{LL}	ĸ _{RR}	ĸLR	m _{ĩt1}	$m_{\tilde{t}_2}$		Ē₩	Ē _₩
500	-1.16	2.85	0.147	500	580	$6.22 \cdot 10^{-3}$	$-3.11 \cdot 10^{-7}$	$3.99 \cdot 10^{-7}$
350	-3.16	-2.82	0.017	173	200	$4.30 \cdot 10^{-3}$	$-2.55 \cdot 10^{-4}$	$2.55 \cdot 10^{-4}$
500	-7.51	-7.17	0.012	173	200	$1.66 \cdot 10^{-2}$	$-2.97 \cdot 10^{-4}$	$2.97 \cdot 10^{-4}$

Tilman Plehn

- Higgs coupling
- Higgs EFT
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC

m_{vh} [GeV]

Tilman Plehn

- Higgs coupling
- Higgs EF
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H\to\gamma\gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

	Triplet model							El	FT	
M_V	g_V	c _H	c _F	c _{VVHH}	m_{ξ}		ē₩	$ar{c}_H$	ō ₆	\overline{c}_{f}
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	$-5.0 \\ -5.0 \\ 3.0 \\ 3.0 \\ -1.32$	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849		-0.044 -0.017 0.006 0.006 -0.007	0.000 0.000 0.075 0.103 -0.020	0.000 0.000 0.100 0.138 -0.027	0.000 0.000 0.025 0.034 -0.007

Tilman Plehn

- Higgs coupling
- Higgs EF1
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

	Triplet model										
M_V	g_V	c _H	c _F	c _{VVHH}	m_{ξ}	-					
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	-5.0 -5.0 3.0 3.0 -1.32	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849						

- effects in Vh and WBF

Tilman Plehn

- Higgs coupling
- Higgs EF1
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model						
M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ	-
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	$-5.0 \\ -5.0 \\ 3.0 \\ 3.0 \\ -1.32$	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849	

- effects in Vh and WBF

Tilman Plehn

- Higgs coupling
- Higgs EF1
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model						
M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ	-
591	3.0	-0.47	-5.0	2.0	1200	
946	3.0	-0.47	-5.0	1.0	1200	
941	3.0	-0.28	3.0	1.0	1200	
1246	3.0	-0.50	3.0	-0.2	1200	
846	1.0	-0.56	-1.32	0.08	849	

effects in Vh and WBF

Tilman Plehn

- Higgs coupling
- Higgs EF1
- Top EFT
- DM EFT

Higgs models

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model							
M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ		
591	3.0	-0.47	-5.0	2.0	1200		
946	3.0	-0.47	-5.0	1.0	1200		
941	3.0	-0.28	3.0	1.0	1200		
1246	3.0	-0.50	3.0	-0.2	1200		
846	1.0	-0.56	-1.32	0.08	849		

effects in Vh and WBF

Tilman Plehn

Higgs couplings

nggs EF

Top EFT

DM EFT

Higgs models

Higgs D6 breakdown

Reasons for D6-breakdown in Higgs sector at LHC

Model	Process		EFT failure		
		resonance	kinematics	matching	
singlet	on-shell $h \rightarrow 4\ell$, WBF, Vh ,			×	
	off-shell WBF,		(×)	×	
	hh	×	Ì X Î	×	
2HDM	on-shell $h \rightarrow 4\ell$, WBF, Vh,			Х	
	off-shell $H \rightarrow \gamma \gamma, \ldots$		(×)	×	
	hh	×	Ì X Î	Х	
top partner	WBF, Vh			Х	
vector triplet	WBF		(×)	×	
	Vh	×	(\times)	×	

Tilman Plehn

Higgs coupling

11990 21

Top EFT

DM EFT

Higgs models

Higgs D6 breakdown

Reasons for D6-breakdown in Higgs sector at LHC

Model	Process	EFT failure		
		resonance	kinematics	matching
singlet	on-shell $h \rightarrow 4\ell$, WBF, Vh ,			×
	off-shell WBF,		(×)	×
	hh	×	×	×
2HDM	on-shell $h ightarrow 4\ell$, WBF, Vh,			×
	off-shell $H \rightarrow \gamma \gamma, \ldots$		(×)	×
	hh	×	×	Х
top partner	WBF, Vh			×
vector triplet	WBF		(×)	Х
	Vh	×	(\times)	×

Lessons from Higgs sector

- start with D6 description [data-driven era of particle physics]
- EFT expansion in E/Λ known to be dodgy
- test D6 in comparison to (simplified) models
- all relevant effect at tree level
- resonance peaks the key feature
- ⇒ D6 limitations not from matter-of-principle arguments

Tilman Plehn

- Higgs coupling:
- Higgs EF1
- Top EFT
- DM EFT

Higgs models

Questions

Questions waiting to be answered

- is it really the Standard Model Higgs? [No]
- is there WIMP dark matter? [Yes]
- is there TeV-scale physics beyond the Standard Model? [Yes]
- are EFT analyses boring? [Yes]
- will we stop EFT analyses once we find new states [Definitely]
- \Rightarrow welcome to a data-driven era!

Lectures on LHC Physics and dark matter updated under www.thphys.uni-heidelberg.de/-plehn/

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

750 GeV — the finger to particle theory

Effective theories in action?

EFT@LHC

- key question: another Higgs scalar?
- dimension-5 operators $XG^{\mu\nu}G_{\mu\nu}$ and $XA^{\mu\nu}A_{\mu\nu}$ \longrightarrow avoid di-jet constraints
- gauge invariant $XB^{\mu\nu}B_{\mu\nu}$ and $XW^{\mu\nu}W_{\mu\nu} \longrightarrow$ avoid VV constraints
- no clear link to other data
- ⇒ everyone writing models papers!