Ctatua

Future

Paramoto

WIMP model

Precision

Three Reasons to Still Study Supersymmetry

Tilman Plehn

Universität Heidelberg

CERN, October 2017

Where we stand

Tilman Plehn

Experimental status

Status Future

squarks and gluinos at best heavy

- stops not much lighter

.....

- no unexplained missing energy
- $-(g-2)_{\mu}$ begin checked [only relevant anomaly]
- ⇒ 'Why, you are telling me it's not dead?'

Where we stand

Tilman Plehn

Status

WIMP model

Experimental status

squarks and gluinos at best heavy

- stops not much lighter

no unexplained missing energy

 $-(g-2)_{\mu}$ begin checked [only relevant anomaly]

⇒ 'Why, you are telling me it's not dead?'

Theoretial status

- light Higgs, no sign of compositeness hierarchy problem ... all but solved ...
- stop mass not slight little hierarchy problem ... whatever ...

Status

Where we stand

Experimental status

- squarks and gluinos at best heavy

- stops not much lighter

no unexplained missing energy

 $- \ (g-2)_{\mu} \ {
m begin \ checked} \ \ \ {
m [only \ relevant \ anomaly]}$

⇒ 'Why, you are telling me it's not dead?'

Theoretial status

- light Higgs, no sign of compositeness hierarchy problem ... all but solved ...
- stop mass not slight little hierarchy problem ... whatever ...

Bottom line

- LHC model building practically dead
- dark matter still attractive
- new, data driven approaches to BSM physics?

Status

Where we stand

Experimental status

- squarks and gluinos at best heavy

- stops not much lighter

no unexplained missing energy

 $-~(g-2)_{\mu}~{
m begin~checked}~~{
m [only~relevant~anomaly]}$

⇒ 'Why, you are telling me it's not dead?'

Theoretial status

- light Higgs, no sign of compositeness hierarchy problem ... all but solved ...
- stop mass not slight little hierarchy problem ... whatever ...

Bottom line

- LHC model building practically dead
- dark matter still attractive
- new, data driven approaches to BSM physics?
- ⇒ At least I am not interested in SM precision measurements!

Three Reasons
Tilman Plehn

Status

Driven by LHC achievements

Physics

- perturbative QFT appropriate framework
- Higgs physics now window to BSM physics
- case for (WIMP) dark matter not weakened [watch out for DD]
- resonance searches mostly good for flukes [local vs global CL]

Simulation

- jets and QCD no longer scare us
- precision predictions automized
- detector simulation etc standard
- simple signal-background studies no longer worth a paper

Analysis

- communication with experimentalists working
- jets being deconstructed for 10 years
- everything multi-variate, big data everywhere
- ⇒ LHC being turned into a flexible precision machine ...

Status

Driven by LHC achievements

Physics

- perturbative QFT appropriate framework
- Higgs physics now window to BSM physics
- case for (WIMP) dark matter not weakened [watch out for DD]
- resonance searches mostly good for flukes [local vs global CL]

Simulation

- jets and QCD no longer scare us
- precision predictions automized
- detector simulation etc standard
- simple signal-background studies no longer worth a paper

Analysis

- communication with experimentalists working
- jets being deconstructed for 10 years
- everything multi-variate, big data everywhere
- ⇒ LHC being turned into a flexible precision machine ...
 - ... and we have no idea what to do with it?

Future plans

Tilman Plehn

Personal, depressed take on the future of particle physics

Future

- HL-LHC the path to eternal boredom [all systematics and theory limited]

- ILC/FCCee really intensity frontier [measure bunch of Higgs couplings for 20 years?]

- 3 TeV CLIC not even conclusive on WIMPS [what's the case??]

⇒ but FCChh report was great fun!

Tilman Plehn

. . .

Future

.

WIMP mode

.

Future plans

Personal, depressed take on the future of particle physics

- HL-LHC the path to eternal boredom [all systematics and theory limited]
- ILC/FCCee really intensity frontier [measure bunch of Higgs couplings for 20 years?]
- 3 TeV CLIC not even conclusive on WIMPS [what's the case??]
- ⇒ but FCChh report was great fun!

SUSY-related topics at 100 TeV

CERN-TH-2016-111

- supersymmetry: squarks, gluinos electroweakinos long-lived particles
- dark matter:
 WIMP with SM mediators
 WIMP with BSM mediators
 non-minimal models and co-annihilation
 super-WIMPS and gravitinos
- Higgs pairs, naturalness,...
- ⇒ in absence of better ideas: which of those need 100 TeV?

CDRITITION

Physics at a 100 TeV pp collider: beyond the Standard Model phenomena Editors:

T. Golling¹, M. Hance², P. Harris³, M.L. Mangano⁴, M. McCullough⁴, F. Moortgat³, P. Schwaller⁵, R. Torre⁵,
Comprehense:

P. Agrawal⁷, D.S.M. Alves^{8,9}, S. Antusch^{10,11}, A. Arbey^{4,12}, B. Auerbach¹³, G. Bambhaniya¹⁴ M. Battaglia², M. Bauer¹⁵, P.S. Bhupal Dev^{16,17}, A. Boveia³, J. Bramante¹⁸, O. Buchmueller¹⁹ M. Buschmann²⁰, J. Chakraborttv²¹, M. Chala⁵, S. Chekanov¹³, C.-Y. Chen^{22,23}, H.-C. Chene²⁴ M. Cirelli25, M. Citron19, T. Cohen26, N. Craig 27, D. Curtin28, R.T. D'Agnolo29, C. Doglioni31 J.A. Dror31, T. du Pree3, D. Dylewsky32, J. Ellis33, S.A.R. Ellis34, R. Essig35, J.J. Fan36 M. Farina³⁷, J.L. Feng³⁸, P.J. Fox³⁹, J. Galloway⁸, G. Giudice⁴, J. Gluza⁴⁰, S. Gori^{23,41}, S. Guha⁴² K. Hahn⁴³, T. Han^{44,45}, C. Helsens³, A. Henriques³, S. Iwamoto⁴⁶, T. Jeliński⁴⁰, S. Jung^{45,4} F. Kahlhoefer5, V.V. Khoze48, D. Kim49, J. Kopp20, A. Kotwal50, M. Krämer51, J.M. Lindert52 J. Liu²⁰, H.K. Lou⁹, J. Love¹³, M. Low²⁹, P.A.N. Machado⁵⁴, F. Mahmoudi^{4,12}, J. Marrouche¹⁹ A. Martin¹⁸, K. Mohan⁵⁵, R.N. Mohapatra²⁸, G. Nardini⁵⁶, K.A. Olive⁵⁷, B. Ostdiek²⁶, G. Panico⁵⁸ T. Plehn15, J. Proudfoot13, Z. Oian64, M. Reece7, T. Rizzo47, C. Roskas60, J. Ruderman8, R. Ruiz68 F. Sala25, E. Salvioni24, P. Saraswai28,61, T. Schell15, K. Schmidt-Hoberg5, J. Serra4, Y. Shadmi46, J. Shelton⁶¹, C. Solans³, M. Spannowsky⁴⁸, T. Srivastava²¹, D. Stolarski⁶², R. Szafron⁶³, M. Taoso⁵⁴ S. Tarem⁶⁶, A. Thalapillii³⁷, A. Thamm²⁰, Y. Tsai²⁴, C. Verhaaren⁶⁴, N. Vignaroli^{55,65} J.R. Walsh 53,66, L.T. Wang 67,68, C. Weiland 68, J. Wells 34, C. Williams 69, A. Wulzer 3, W. Xue 70, F. Yu²⁰, B. Zheng³⁴, J. Zheng⁵⁵

Parameters

WIMP model

1- Parameter-space-related patterns

Inspiration from parameter studies (sic!)

- observables m_h , $\Omega_{\chi}h^2$ add Hooperon for fun decouple strongly interacting particles

- analysis of parameter volumes pointless(?)
- check DM-related MSSM patterns
- annihilation $\tilde{\chi}\tilde{\chi} \to b\bar{b}, WW, t\bar{t}$ possible
- ⇒ are XENON1T/LZ really MSSM killers?

Link to invisible Higgs decays

- possible in the MSSM
- linked to Hooperon in NMSSM
- probably ruled out by DD

1 – Parameter-space-related patterns

Tilman Plehn

Inspiration from parameter studies (sic!)

Parameters

- observables $m_h, \Omega_{\gamma} h^2$ add Hooperon for fun decouple strongly interacting particles

- analysis of parameter volumes pointless(?)
- check DM-related MSSM patterns
- annihilation $\tilde{\chi}\tilde{\chi} \to b\bar{b}$, WW, $t\bar{t}$ possible
- ⇒ are XENON1T/LZ really MSSM killers?

Direct/indirect BSM searches

- BSM and Higgs and flavor all mixed
- minimal vs non-minimal SUSY realizations.
- 'generic' is not the question
- _ ???? finsert vour best idea herel
- ???? [insert your friend's idea here]
- _ ???? finsert some mediocre ideas herel
- ⇒ extrapolation to high scales still the theme

2- Just a WIMP model

Tilman Plehn

Electroweakinos only

WIMP model

- define DM through $SU(2)_I$ representation singlet, doublet, triplet

allow for general mixing

- add co-annihilation partners, if needed

- ignore squarks, gluinos

⇒ relic neutralino surface

Majorana neutralino, different mediators

- − SM *Z*-boson $\chi\chi \rightarrow Z \rightarrow$ jets
- SM-like Higgs $\chi\chi\to h\to b\bar b$
- heavy Higgs $H, A \rightarrow b\bar{b}, t\bar{t}$
- t-channel chargino $\chi\chi\to WW\to \text{jets}$
- chargino co-annihilation $\chi^0 \chi^{\pm} \to W$
- stau co-annihilation $\tilde{\tau}\chi \to \tau + X$
- ⇒ giving upper limit on neutralino mass
- ⇒ better than set of simplified models?

2- Just a WIMP model

Electroweakinos only

WIMP model

- define DM through $SU(2)_I$ representation singlet, doublet, triplet

- allow for general mixing
- add co-annihilation partners, if needed
- ignore squarks, gluinos
- ⇒ relic neutralino surface

Inspiring signatures

- charged tracks
- low-momentum photons/leptons
- combination of very soft and very hard objects
- ????
- _ ????
- ⇒ targeting signatures and analyses

WIMP model

Precision

3– Benchmark for precision BSM physics

When signatures get tough

- SUSY in low rates
- SUSY in tails or rotten phase space
- SUSY in loops [fig: Goncalves, Han, Mukhopadhyay]
 ...or at least something SUSY-related

New approach to BSM Physics

- it's not going to be easy
- it might not be tree-level
- it might be hidden in the backgrounds
- it might not show up in resonance searches
- it might not show up in generic signatures
- ⇒ theory framework crucial
- ⇒ LHC physics will be hard, but once the pain goes...

Tilman Plehn

Precision

What's next?

Supersymmetry serving as...

- ...not only classic and best but also only BSM model still standing
- ...an inspiration for BSM searches (1)
- ...a WIMP dark matter model (2)
- ...a benchmark for an era of precision BSM physics (3)
- ...whatever we can use it for (4-99)

Everyone under 40...

- ...this is your task!
- ...stop listen to old guys like me!
- ...stop re-writing your advisors' theses!
- ...get up-to-date on experimental techniques!
- ...embrace whatever you find, and be convincing!

Statu

Future Parameters

WIMP model

Precision