Higgs Coup

Higgs EFT

Consistency

QCD EFT

Top EFT

DM EFT

LHC Physics in a Data-Driven Era

Tilman Plehn

Universität Heidelberg

PPP12, May 2017

Higgs Couply Higgs EFT Consistency QCD EFT Top EFT

Theory in a data-driven era

Same old theory motivation

- dark matter still not understood [WIMP still best choice]
- hierarchy problem (probably) a problem
- but: data in driving seat [remember 750]

Higgs Coupl's Higgs EFT Consistency QCD EFT Top EFT DM EFT

Theory in a data-driven era

Same old theory motivation

- dark matter still not understood [WIMP still best choice]
- hierarchy problem (probably) a problem
- but: data in driving seat [remember 750]

Theory tool box

- Lagrangian language obvious after Higgs discovery
- 1 full new physics model [built to solve problems, last lecture]
- 2 simplified models [Feynman diagrams for experimental features, theoretically poor at best]
- 3 effective Lagrangians [symmetries and particles fixed, non-renormalizable operators, SMEFT]
- \Rightarrow matter of experimental needs, convenience and taste

	effective Lagrangian	simplified models	full models
agnostic	(×)		
data-driven		(×)	(×)
theory-driven		(×)	

Higgs Coupl's Higgs EFT Consistency QCD EFT Top EFT DM EFT

Theory in a data-driven era

Same old theory motivation

- dark matter still not understood [WIMP still best choice]
- hierarchy problem (probably) a problem
- but: data in driving seat [remember 750]

Theory tool box

- Lagrangian language obvious after Higgs discovery
- 1 full new physics model [built to solve problems, last lecture]
- 2 simplified models [Feynman diagrams for experimental features, theoretically poor at best]
- 3 effective Lagrangians [symmetries and particles fixed, non-renormalizable operators, SMEFT]
- \Rightarrow matter of experimental needs, convenience and taste

	effective Lagrangian	simplified models	full models
agnostic	(X)		pre-LHC
data-driven		(×)	(×)
theory-driven		(×)	pre-LHC

Higgs Coupl's Higgs EFT Consistency QCD EFT Top EFT DM EFT

Theory in a data-driven era

Same old theory motivation

- dark matter still not understood [WIMP still best choice]
- hierarchy problem (probably) a problem
- but: data in driving seat [remember 750]

Theory tool box

- Lagrangian language obvious after Higgs discovery
- 1 full new physics model [built to solve problems, last lecture]
- 2 simplified models [Feynman diagrams for experimental features, theoretically poor at best]
- 3 effective Lagrangians [symmetries and particles fixed, non-renormalizable operators, SMEFT]
- \Rightarrow matter of experimental needs, convenience and taste

	effective Lagrangian	simplified models	full models
agnostic	(×)	dishonest	pre-LHC
data-driven	boring	(×)	(×)
theory-driven	pointless	(×)	pre-LHC

Higgs Coupl Higgs EFT Consistency QCD EFT Top EFT

Higgs questions

1. What is the 'Higgs' field?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected
- ask LHCb [Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles, not part of lecture]

Higgs Coup! Higgs EFT Consistency QCD EFT Top EFT

Higgs questions

1. What is the 'Higgs' field?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected
- ask LHCb [Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles, not part of lecture]

2. What is the Higgs Lagrangian?

- naive-but-useful: set of 'couplings' given Lagrangian
- bottom-up: effective theory [simplified models?]
- top-down: modified Higgs sectors

Higgs Coup! Higgs EFT Consistency QCD EFT Top EFT

Higgs questions

1. What is the 'Higgs' field?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected
- ask LHCb [Cabibbo-Maksymowicz-Dell'Aquila-Nelson angles, not part of lecture]

2. What is the Higgs Lagrangian?

- naive-but-useful: set of 'couplings' given Lagrangian
- bottom-up: effective theory [simplified models?]
- top-down: modified Higgs sectors

3. What does all this tell us? [not part of lecture]

- strongly interacting models?
- weakly interacting extensions?
- TeV-scale physics, hierarchy problem, vacuum stability, Higgs inflation, etc

Higgs Coupl's Higgs EFT Consistency QCD EFT Top EFT DM EFT

Higgs Couplings

Standard Model operators [historic slide]

- assume: narrow CP-even scalar
 Standard Model operators
- couplings proportional to masses?
- fundamental physics in terms of Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

$$\begin{array}{c} gg \rightarrow H \\ gg \rightarrow H+j \text{ (boosted)} \\ gg \rightarrow H^* \text{ (off-shell)} \\ qq \rightarrow qqH \\ gg \rightarrow tiH \\ gq' \rightarrow VH \end{array} \longleftrightarrow \begin{array}{c} fg_{HXX} = g_{HXX}^{SM} (1 + \Delta_X) \\ fg_{HX} = g_{HXX}^{SM} (1 + \Delta_X) \\ fg_{HX} = g_{HXX}^{SM} (1 + \Delta_X) \\ fg_{HX} = g_{HX}^{SM} (1 + \Delta_$$

Higgs Coupl's Higgs EFT Consistency QCD EFT Top EFT DM EFT

Higgs Couplings

Standard Model operators [historic slide]

- assume: narrow CP-even scalar Standard Model operators
- couplings proportional to masses?
- fundamental physics in terms of Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} \; G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

Great Run I results, but issues... [Corbett, Eboli, Goncalves, Gonzalez-Fraile, TP, Rauch]

- 1 electroweak renormalizability broken
- 2 total rates only
- 3 hard to relate to gauge, flavor sectors

Higgs Coup

Higgs EFT

Consiste

Top EFT

DM EFT

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]

D6 Higgs operators

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{split}$$

Higgs Coup Higgs EFT

Top EFT

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]

D6 Higgs operators

$$\begin{array}{ll} \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{array}$$

- actual basis after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_{\phi,2}}{\Lambda^2} \mathcal{O}_{\phi,2}$$

Higgs Coup Higgs EFT

Top EFT

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]

D6 Higgs operators

- $\begin{array}{ll} \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$
- actual basis after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\phi,2}}{\Lambda^{2}} \mathcal{O}_{\phi,2}$$

- Higgs couplings to SM particles [derivatives = momentum, #2 solved]

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

Higgs Coul

TOD EFT

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]

D6 Higgs operators

- $$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{split}$$
- actual basis after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\phi,2}}{\Lambda^{2}} \mathcal{O}_{\phi,2}$$

- Higgs couplings to SM particles [derivatives = momentum, #2 solved] $\begin{aligned} \mathcal{L}^{HVV} &= g_g \ HG^a_{\mu\nu}G^{a\mu\nu} + g_\gamma \ HA_{\mu\nu}A^{\mu\nu} \\
&+ g_Z^{(1)} \ Z_{\mu\nu}Z^{\mu}\partial^{\nu}H + g_Z^{(2)} \ HZ_{\mu\nu}Z^{\mu\nu} + g_Z^{(3)} \ HZ_{\mu}Z^{\mu} \\
&+ g_W^{(1)} \ \left(W^+_{\mu\nu}W^{-\mu}\partial^{\nu}H + \text{h.c.}\right) + g_W^{(2)} \ HW^+_{\mu\nu}W^{-\mu\nu} + g_W^{(3)} \ HW^+_{\mu}W^{-\mu} + \cdots \end{aligned}$

- plus Yukawa structure $f_{\tau,b,t}$
- 7 Δ-like coupling modifications

4 new Lorentz structures

Higgs Coup

Higgs EFT

Consis QCD E

Top EFT

DM EFT

D6 Higgs operators

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- $\begin{array}{ll} \mbox{ set of Higgs operators } & \mbox{ [renormalizable, #1 solved]} \\ & \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ & \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ & \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ & \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{array}$
- linking couplings and operators
 - $$\begin{split} g_{g} &= \frac{f_{GG}v}{\Lambda^{2}} \equiv -\frac{\alpha_{s}}{8\pi} \frac{f_{g}v}{\Lambda^{2}} & g_{\gamma} = -\frac{g^{2}vs_{w}^{2}}{2\Lambda^{2}} \frac{f_{BB} + f_{WW}}{2} \\ g_{Z}^{(1)} &= \frac{g^{2}v}{2\Lambda^{2}} \frac{c_{w}^{2}f_{W} + s_{w}^{2}f_{B}}{2c_{w}^{2}} & g_{W}^{(1)} = \frac{g^{2}v}{2\Lambda^{2}} \frac{f_{W}}{2} \\ g_{Z}^{(2)} &= -\frac{g^{2}v}{2\Lambda^{2}} \frac{s_{w}^{4}f_{BB} + c_{w}^{4}f_{WW}}{2c_{w}^{2}} & g_{W}^{(2)} = -\frac{g^{2}v}{2\Lambda^{2}} f_{WW} \\ g_{Z}^{(3)} &= \frac{g^{2}v}{4c_{w}^{2}} \left(1 \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) & g_{W}^{(3)} = \frac{g^{2}v}{4} \left(1 \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) \\ g_{f} &= -\frac{m_{f}}{v} \left(1 \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) + \frac{v^{2}}{\sqrt{2}\Lambda^{2}}f_{f} \end{split}$$

Higgs Coup

Higgs EFT

Consiste

Top EFT

DM EFT

D6 Higgs operators

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]
 - $$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]

Higgs Coup

Higgs EFT

Consiste

Top EFT

DM EFT

D6 Higgs operators

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]
 - $\begin{array}{ll} \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} \left(D^{\mu}\phi\right) \left(\phi^{\dagger}\phi\right) \end{aligned}$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]

Higgs Coup

Higgs EFT

Top EFT

DM EFT

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]
 - $\begin{array}{ll} \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} \left(D^{\mu}\phi\right) \left(\phi^{\dagger}\phi\right) \end{aligned}$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]
- with impact...

D6 Higgs operators

Higgs Coup

Consister QCD EFT Top EFT

DM EFT

D6 Higgs operators

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

- set of Higgs operators [renormalizable, #1 solved]
 - $\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]
- with impact...

...in last bin

Higgs Coup

Consistend QCD EFT Top EFT

DM EFT

D6 Higgs operators

D6 Lagrangian at face value [HISZ, polish, Trott etal, Goncales-Garcia etal]

 $\begin{array}{ll} - \mbox{ set of Higgs operators} & \mbox{ [renormalizable, #1 solved]} \\ & \mathcal{O}_{GG} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ & \mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ & \mathcal{O}_{\phi,1} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ & \mathcal{O}_{\phi,3} = \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{array}$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [#2 solved]
- with impact...
 ...in last bin
- Run I limits

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

Tilman Plehn

riiggs oou

Higgs EFT

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} rac{f_i}{\Lambda^2} \mathcal{O}_i \quad ext{with} \quad \mathcal{O}_{\phi,2} = rac{1}{2} \partial_\mu (\phi^{\dagger} \phi) \; \partial^\mu (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -rac{1}{3} (\phi^{\dagger} \phi)^3$$

Consistency

Top EFT

DM EFT

Higgs Cou

Higgs EFT

QCD EFT

Top EFT

DM EFT

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = \frac{1}{2} \left(\tilde{H} + v \right)^{2} \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}}}$$

niggs Cou

Higgs EFT

QCD EFT

Top EFT

DM EFT

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \ \partial^{\mu} (\phi^{\dagger} \phi) \ , \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = \frac{1}{2} \left(\tilde{H} + v \right)^{2} \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{\mathsf{kin}} = \frac{1}{2} \partial_{\mu} \tilde{H} \, \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi, 2} v^{2}}{\Lambda^{2}} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \, \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \, \sqrt{1 + \frac{f_{\phi, 2} v^{2}}{\Lambda^{2}}}$$

second operator, minimum condition giving v

$$v^2 = -\frac{\mu^2}{\lambda} - \frac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

Higgs Cou

Higgs EFT

Consisten

QUD EFI

Top EFT

DM EFT

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^{2} \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^{2}}{\Lambda^{2}}}$$

second operator, minimum condition giving v

$$v^2 = -\frac{\mu^2}{\lambda} - \frac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

both operators contributing to Higgs mass

$$\mathcal{L}_{\text{mass}} = -\frac{\mu^2}{2}\tilde{H}^2 - \frac{3}{2}\lambda v^2\tilde{H}^2 - \frac{f_{\phi,3}}{\Lambda^2}\frac{15}{24}v^4\tilde{H}^2 \stackrel{!}{=} -\frac{m_H^2}{2}H^2$$
$$\Leftrightarrow \qquad m_H^2 = 2\lambda v^2 \left(1 - \frac{f_{\phi,2}v^2}{\Lambda^2} + \frac{f_{\phi,3}v^2}{2\Lambda^2\lambda}\right)$$

Higgs Coup

Higgs EFT

Consisten

QCD EFT

Top EFT

DM EFT

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu}\left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}}\right)H^{3} - \frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H\partial_{\mu}H\partial^{\mu}H\right] \\ &- \frac{m_{H}^{2}}{8\nu^{2}}\left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}}\right)H^{4} - \frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H^{2}\partial_{\mu}H\partial^{\mu}H\right] \end{split}$$

Higgs Cou

Higgs EFT

QCD EFT

Top EFT

DM EFT

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu}\left[\left(1-\frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}}+\frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}}\right)H^{3}-\frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H\partial_{\mu}H\partial^{\mu}H\right] \\ &-\frac{m_{H}^{2}}{8\nu^{2}}\left[\left(1-\frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}}+\frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}}\right)H^{4}-\frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H^{2}\partial_{\mu}H\partial^{\mu}H\right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

Higgs Cou

Higgs EFT

QGD EFI

Top EFT

DM EFT

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \ \partial^{\mu} (\phi^{\dagger} \phi) \ , \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= - \frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H \, \partial_{\mu}H \, \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{\phi,2}v^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \, \partial_{\mu}H \partial^{\mu}H \right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}\nu^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}\nu}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

 \Rightarrow operators and distributions linked to (poor) UV behavior

Top EFT

Higgs EFT

Triple gauge couplings

D6 Higgs-gauge operators

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production

Higgs Coup

Higgs EFT

Top EFT

DM EFT

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels

Higgs Coupl's

Higgs EFT

Top EFT

DM EFT

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting Higgs-sector correlations

Higgs Coup

Higgs EFT

OCD FF

Top EFT

DM EFT

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = \left(D_{\mu}\phi\right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu}\phi\right) \qquad \mathcal{O}_{B} = \left(D_{\mu}\phi\right)^{\dagger} \hat{B}^{\mu\nu} \left(D_{\nu}\phi\right) \qquad \mathcal{O}_{WWW} = \mathsf{Tr}\left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho}\right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting Higgs-sector correlations
- \Rightarrow complete Higgs-gauge analysis

Higgs Coupl Higgs EFT Consistency

Top EFT

DM EFT

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting Higgs-sector correlations
- ⇒ complete Higgs-gauge analysis

LHC vs LEP

- triple gauge vertices g_1, κ, λ vs operators
- LEP limits from precision LHC limits from energy
- semileptonic analyses missing for 8 TeV
- \Rightarrow LHC beating LEP, but what does it mean?

Self consistency

Tilman Plehn

Higgs Coup

Consistency

- QCD EFT
- Top EFT
- DM EFT

Ideal LEP and flavor worlds

- unique EFT Lagrangian: linear realization matching unbroken phase
- chain of well separated energy scales $\textit{E} \ll \Lambda_1 \ll ... \ll \Lambda_N$
- \Rightarrow systematic expansions in E/Λ and α [example: ew precision data]

Self consistency

Tilman Plehn

Higgs Coup Higgs EFT

- Consistency
- QCD EFT
- Top EFT
- DM EFT

Ideal LEP and flavor worlds

- unique EFT Lagrangian: linear realization matching unbroken phase
- chain of well separated energy scales $\textit{E} \ll \Lambda_1 \ll ... \ll \Lambda_N$
- \Rightarrow systematic expansions in E/Λ and α [example: ew precision data]

Rotten LHC world [Brehmer, Freitas, Lopez-Val, TP]

- range of (partonic) energy scales [H+jets production]
- electroweak symmetry breaking at $v \sim E_{LHC}$
- low precision, reach from energy

$$\left. \frac{\sigma \times \mathsf{BR}}{\left(\sigma \times \mathsf{BR} \right)_{\mathsf{SM}}} - 1 \right| = \frac{g^2 m_h^2}{\Lambda^2} \approx 10\% \qquad \stackrel{g=1}{\longleftrightarrow} \qquad \Lambda \approx 400 \ \text{GeV}$$

 \Rightarrow D8 operators not obviously suppressed

Self consistency

Tilman Plehn

Ideal LEP and flavor worlds

- unique EFT Lagrangian: linear realization matching unbroken phase
- chain of well separated energy scales $E \ll \Lambda_1 \ll ... \ll \Lambda_N$
- \Rightarrow systematic expansions in E/Λ and α [example: ew precision data]

Rotten LHC world [Brehmer, Freitas, Lopez-Val, TP]

- range of (partonic) energy scales [H+jets production]
- electroweak symmetry breaking at $v \sim E_{\rm LHC}$
- low precision, reach from energy

$$\left|\frac{\sigma \times \mathsf{BR}}{\left(\sigma \times \mathsf{BR}\right)_{\mathsf{SM}}} - 1\right| = \frac{g^2 m_h^2}{\Lambda^2} \approx 10\% \qquad \stackrel{g=1}{\longleftrightarrow} \qquad \Lambda \approx 400 \ \text{GeV}$$

⇒ D8 operators not obviously suppressed

Task for LHC theory

- develop a working D6 framework
- keep theorist's self respect
- validate as representation of full models [forget D8 estimates]

Consistency

TOD EFT

Matching matters

Tilman Plehn

Higgs Coupl Higgs EFT Consistency

Top EFT

Example: oblique parameters from Higgs portal vs D6 [Freitas, Lopez-Val, TP]

- operators

$$\mathcal{L}_{\mathsf{EFT}} \supset \frac{\mathcal{C}_{\mathcal{H}}}{2\Lambda^{2}} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) + \frac{\mathcal{C}_{\mathcal{T}}}{2\Lambda^{2}} (\phi^{\dagger}\overleftrightarrow{D}^{\mu}\phi) (\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi) + \frac{igc_{W}}{2\Lambda^{2}} (\phi^{\dagger}\sigma^{k}\overleftrightarrow{D}^{\mu}\phi) D^{\nu} W_{\mu\nu}^{k}$$

- predictions of Higgs portal model $[m_H \approx 2\lambda_2 v_s^2, s_\alpha^2 \approx \lambda_3^2 v^2/(2\lambda_2 m_H^2)]$

$$S \approx \frac{\lambda_3^2}{24\pi\lambda_2} \frac{v^2}{m_H^2} \log \frac{m_H^2}{m_h^2} \qquad T \approx \frac{-3\lambda_3^2 v^2}{32\pi s_w^2 \lambda_2 m_W^2} \left(\frac{m_Z^2}{m_H^2} - \frac{m_W^2}{m_H^2}\right) \log \frac{m_H^2}{m_h^2}$$

– leading log with tree-insertion of loop operators ${\cal O}_{{\cal T},{\cal B},W}$ $[\Lambda^2=2\lambda_2 v_S^2]$

$$\frac{c_{\rm T}}{\Lambda^2} = -\frac{3\alpha_{\rm ew}s_{\rm w}^2\lambda_3^2}{32\pi c_{\rm w}^2\lambda_2\Lambda^2}\,\log\frac{\Lambda^2}{\mu^2} \qquad \qquad \frac{c_{{\rm B},{\rm W}}}{\Lambda^2} = \frac{\lambda_3^2}{192\pi^2\lambda_2\Lambda^2}\,\log\frac{\Lambda^2}{\mu^2}$$

– including weak-scale loops with \mathcal{O}_{H}

$$rac{c_{H}}{\Lambda^{2}}=rac{\lambda_{3}^{2}}{2\lambda_{2}\Lambda^{2}}$$
 .

- *v*-improvement: $\Lambda = m_H$ and full model in terms of c_{α} [resumming VEV insertions?] $\frac{c_H}{\Lambda^2} = \frac{2(1 - c_{\alpha})}{v^2} \qquad \frac{c_T}{\Lambda^2} = -\frac{3\alpha_{\text{ews}}s_{\mu}^2(1 - c_{\alpha})}{8\pi c^2 v^2} \log \frac{m_H^2}{v^2} \qquad \frac{c_{B,W}}{\Lambda^2} = \frac{1 - c_{\alpha}}{48\pi c^2 v^2} \log \frac{m_H^2}{v^2}$
Matching matters

Tilman Plehn

Higgs EFT Consistency

Top EFT

Example: oblique parameters from Higgs portal vs D6 [Freitas, Lopez-Val, TP]

- operators

$$\mathcal{L}_{\mathsf{EFT}} \supset \frac{c_{\mathcal{H}}}{2\Lambda^{2}} \partial^{\mu} (\phi^{\dagger} \phi) \partial_{\mu} (\phi^{\dagger} \phi) + \frac{c_{\mathcal{T}}}{2\Lambda^{2}} (\phi^{\dagger} \overleftrightarrow{D}^{\mu} \phi) (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) + \frac{igc_{W}}{2\Lambda^{2}} (\phi^{\dagger} \sigma^{k} \overleftrightarrow{D}^{\mu} \phi) D^{\nu} W_{\mu\nu}^{k}$$

- *v*-improvement: $\Lambda = m_H$ and full model in terms of C_{α} [resumming VEV insertions?] $\frac{c_H}{\Lambda^2} = \frac{2(1 - c_{\alpha})}{v^2} \qquad \frac{c_T}{\Lambda^2} = -\frac{3\alpha_{\text{ews}}s_w^2(1 - c_{\alpha})}{8\pi c_*^2 v^2} \log \frac{m_H^2}{u^2} \qquad \frac{c_{B,W}}{\Lambda^2} = \frac{1 - c_{\alpha}}{48\pi^2 v^2} \log \frac{m_H^2}{u^2}$
- broken-phase matching: systematically all terms v/Λ

$$\frac{c_{T}}{\Lambda^{2}} = -\frac{\alpha_{\rm ew}s_{\rm w}^{2}(1-c_{\alpha})}{8\pi c_{\rm w}^{2}v^{2}} \left(-\frac{5}{2} + 3\log\frac{m_{H}^{2}}{\mu^{2}}\right) \qquad \frac{c_{B,W}}{\Lambda^{2}} = \frac{1-c_{\alpha}}{144\pi^{2}v^{2}} \left(-\frac{5}{2} + 3\log\frac{m_{H}^{2}}{\mu^{2}}\right)$$

Matching matters

Tilman Plehn

Higgs EET Consistency

Top EFT

Example: oblique parameters from Higgs portal vs D6 [Freitas, Lopez-Val, TP]

- operators

$$\mathcal{L}_{\mathsf{EFT}} \supset \frac{\mathcal{C}_{\mathcal{H}}}{2\Lambda^{2}} \partial^{\mu}(\phi^{\dagger}\phi)\partial_{\mu}(\phi^{\dagger}\phi) + \frac{\mathcal{C}_{\mathcal{T}}}{2\Lambda^{2}}(\phi^{\dagger}\overleftarrow{D}^{\mu}\phi)(\phi^{\dagger}\overleftarrow{D}_{\mu}\phi) + \frac{igc_{W}}{2\Lambda^{2}}(\phi^{\dagger}\sigma^{k}\overleftarrow{D}^{\mu}\phi)D^{\nu}W_{\mu\nu}^{k}$$

- similar analysis for loop-induced $H \rightarrow \gamma \gamma$ [Trott etal]
- \Rightarrow D6 Lagrangian systematically improved

EFT strategy at LHC

Tilman Plehn

Higgs Coupl Higgs EFT

- Consistency
- QCD EFT
- Top EFT
- DM EFT

What does the D6 analysis at LHC mean? [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture features of model classes at LHC? theory: how do D6 vs EFT vs full model differences appear?
- 1 push (simplified) models to visible deviations at LHC Higgs portal, 2HDM, stops, vector triplet [weakly interacting]
- 2 construct and match D6-Lagrangian to model coupling modifications v^2/Λ^2 vs new kinematics ∂/Λ ? *v*-improved and broken phase matching
- 3 LHC simulations: D6-Lagrangian vs full model production: WBF, *VH*, *HH* decays: $H \to \gamma\gamma$, 4 ℓ
- \Rightarrow check for differences
 - kinematic distributions like $p_{T,j}$ or m_{VH} ? resonance peaks of new states?
- \Rightarrow consider uncertainties as matching uncertainties

Tilman Plehn

Higgs Coup

Consistency

QCD EFT

Top EFT

DM EFT

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Higgs Coup

Consistency

QCD EFT

Top EFT

DM EFT

Higgs singlet/doublet extensions [Higgs portal]

Model by model...

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Higgs Coup

Consistency

- QCD EFT
- Top EFT

DM EFT

Model by model...

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Triplet gauge extension [Brehmer, Biekötter, TP]

- additional vector triplet field V_{μ}
- Lagrangian modulo UV completion

$$\begin{split} \mathcal{L} \supset &-\frac{1}{4} \tilde{V}^{a}_{\mu\nu} \tilde{V}^{\mu\nu a} + \frac{M^{2}_{\tilde{V}}}{2} \tilde{V}^{a}_{\mu} \tilde{V}^{\mu a} + i \frac{g_{V}}{2} c_{\mu} \tilde{V}^{a}_{\mu} \left[\phi^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} \phi \right] + \frac{g^{2}_{w}}{2g_{V}} \tilde{V}^{a}_{\mu} \sum_{\text{fermions}} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L} \\ &+ \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} \tilde{V}^{a}_{\mu} \tilde{V}^{b}_{\nu} D^{[\mu} \tilde{V}^{\nu]c} + g^{2}_{V} c_{VVHH} \tilde{V}^{a}_{\mu} \tilde{V}^{\mu a} (\phi^{\dagger} \phi) - \frac{g_{w}}{2} c_{VVW} \epsilon_{abc} W^{\mu\nu} \tilde{V}^{b}_{\mu} \tilde{V}^{c}_{\nu} \end{split}$$

 new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigenstates

Higgs Coup

Consistency

- QCD EFT
- Top EFT

DM EFT

Model by model...

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Triplet gauge extension [Brehmer, Biekötter, TP]

- additional vector triplet field V_{μ}
- new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigenstates

Triplet model						El	-T			
M _V	g_V	с _Н	CF	c _{VVHH}	m_{ξ}		ē₩	$ar{c}_H$	ē ₆	\bar{c}_f
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	-5.0 -5.0 3.0 3.0 -1.32	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849		-0.044 -0.017 0.006 0.006 -0.007	0.000 0.000 0.075 0.103 -0.020	0.000 0.000 0.100 0.138 -0.027	0.000 0.000 0.025 0.034 -0.007

Higgs Coupl Higgs EFT Consistency

Top EET

Model by model...

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Triplet gauge extension [Brehmer, Biekötter, TP]

- additional vector triplet field V_{μ}
- new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigens

Triplet model							
M_V	g_V	c _H	c _F	c _{VVHH}	m_{ξ}		
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	$-5.0 \\ -5.0 \\ 3.0 \\ 3.0 \\ -1.32$	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849		

Higgs Coupl Higgs EFT Consistency

Top EET

DMEET

Model by model...

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Triplet gauge extension [Brehmer, Biekötter, TP]

- additional vector triplet field V_{μ}
- new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigens

Triplet model							
M_V	g_V	c _H	c _F	c _{VVHH}	m _ξ		
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	-5.0 -5.0 3.0 3.0 -1.32	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849		

Higgs Coupl' Higgs EFT Consistency

Consistency

QCD EFT

DMEET

Model by model...

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Triplet gauge extension [Brehmer, Biekötter, TP]

- additional vector triplet field V_{μ}
- new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigens

Triplet model

g_V	c_H	c _F	c _{VVHH}	m_{ξ}
3.0	-0.47	-5.0	2.0	1200
3.0	-0.47	-5.0	1.0	1200
3.0	-0.28	3.0	1.0	1200
3.0	-0.50	3.0	-0.2	1200
1.0	-0.56	-1.32	0.08	849
	<i>g_V</i> 3.0 3.0 3.0 3.0 1.0	$\begin{array}{c c} g_V & c_H \\ \hline 3.0 & -0.47 \\ 3.0 & -0.47 \\ 3.0 & -0.28 \\ 3.0 & -0.50 \\ 1.0 & -0.56 \end{array}$	$\begin{array}{c cccc} g_V & c_H & c_F \\ \hline 3.0 & -0.47 & -5.0 \\ 3.0 & -0.47 & -5.0 \\ 3.0 & -0.28 & 3.0 \\ 3.0 & -0.50 & 3.0 \\ 1.0 & -0.56 & -1.32 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 \Rightarrow D6 Lagrangian okay, if away from poles

Higgs Coupl' Higgs EFT Consistency

Consistency

QCD EFT

DMEET

Model by model...

Higgs singlet/doublet extensions [Higgs portal]

- mixing with SM-like Higgs, not too interesting

Scalar top partners [simplified supersymmetry]

- loop contributions everywhere, small, not too interesting

Triplet gauge extension [Brehmer, Biekötter, TP]

- additional vector triplet field V_{μ}
- new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigens

Triplet model

g_V	c _H	c _F	c _{VVHH}	m_{ξ}
3.0	-0.47	-5.0	2.0	1200
3.0	-0.47	-5.0	1.0	1200
3.0	-0.28	3.0	1.0	1200
3.0	-0.50	3.0	-0.2	1200
1.0	-0.56	-1.32	0.08	849
	<i>g_V</i> 3.0 3.0 3.0 3.0 1.0	$\begin{array}{c c} g_V & c_H \\ \hline 3.0 & -0.47 \\ 3.0 & -0.47 \\ 3.0 & -0.28 \\ 3.0 & -0.50 \\ 1.0 & -0.56 \end{array}$	$\begin{array}{c cccc} g_V & c_H & c_F \\ \hline 3.0 & -0.47 & -5.0 \\ 3.0 & -0.47 & -5.0 \\ 3.0 & -0.28 & 3.0 \\ 3.0 & -0.50 & 3.0 \\ 1.0 & -0.56 & -1.32 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 \Rightarrow D6 Lagrangian okay, if away from poles

Higgs Coupl's

Higgs EFT

Consistency

QCD EFT

Top EFT

DM EFT

DUH!

Higgs Coup

підда ст т

QCD EFT

Top EFT

DM EFT

D6 QCD operators

Ubiquitous QCD operator [TP, Krauss, Kuttimalai]

- anomalous gluon coupling

$$c_G \mathcal{O}_G = \frac{g_s \, c_G}{\Lambda^2} \, f_{abc} G^{\rho}_{a\nu} \, G^{\nu}_{b\lambda} \, G^{\lambda}_{c\rho} \qquad \text{with} \quad G^{\rho\nu}_a = \partial^{\rho} \, G^{\nu}_a - \partial^{\nu} \, G^{\rho}_a - i g_s f_{abc} \, G^{b\rho} \, G^{c\nu}$$

$$S_T = \sum_{j=1}^{N_{\text{jets}}} E_{T,j} + (p_T > 50 \text{ GeV})$$

Higgs EFT

QCD EFT

D6 QCD operators

Ubiquitous QCD operator [TP, Krauss, Kuttimalai]

- anomalous gluon coupling

$$c_G \mathcal{O}_G = \frac{g_s \, c_G}{\Lambda^2} \, f_{abc} G^{\rho}_{a\nu} \, G^{\nu}_{b\lambda} \, G^{\lambda}_{c\rho} \qquad \text{with} \quad G^{\rho\nu}_a = \partial^{\rho} \, G^{\nu}_a - \partial^{\nu} \, G^{\rho}_a - i g_s f_{abc} \, G^{b\rho} \, G^{c\nu}$$

$$S_T = \sum_{j=1}^{N_{\text{jets}}} E_{T,j} + (p_T > 50 \text{ GeV})$$

- 4-fermion operator for
$$N_{\text{jets}} = 2, 3$$

gluon operator for $N_{\text{jets}} \ge 5$ [Sherpa]

Higgs EFT

QCD EFT

D6 QCD operators

Ubiquitous QCD operator [TP, Krauss, Kuttimalai]

- anomalous gluon coupling

$$c_G \mathcal{O}_G = \frac{g_s c_G}{\Lambda^2} f_{abc} G^{\rho}_{a\nu} G^{\nu}_{b\lambda} G^{\lambda}_{c\rho} \qquad \text{with} \quad G^{\rho\nu}_a = \partial^{\rho} G^{\nu}_a - \partial^{\nu} G^{\rho}_a - ig_s f_{abc} G^{b\rho} G^{c\nu}$$

$$S_T = \sum_{j=1}^{N_{\text{jets}}} E_{T,j} + (p_T > 50 \text{ GeV})$$

- 4-fermion operator for
$$N_{jets} = 2, 3$$

gluon operator for $N_{jets} \ge 5$ [Sherpa]

Higgs EFT

QCD EFT

D6 QCD operators

Ubiquitous QCD operator [TP, Krauss, Kuttimalai]

anomalous gluon coupling

$$c_G \mathcal{O}_G = \frac{g_s \, c_G}{\Lambda^2} \, f_{abc} G^{\rho}_{a\nu} \, G^{\nu}_{b\lambda} \, G^{\lambda}_{c\rho} \qquad \text{with} \quad G^{\rho\nu}_a = \partial^{\rho} \, G^{\nu}_a - \partial^{\nu} \, G^{\rho}_a - i g_s f_{abc} \, G^{b\rho} \, G^{c\nu}$$

$$S_T = \sum_{j=1}^{N_{\text{jets}}} E_{T,j} + (p_T > 50 \text{ GeV})$$

- 4-fermion operator for
$$N_{jets} = 2, 3$$

gluon operator for $N_{jets} \ge 5$ [Sherpa]

Higgs EFT

QCD EFT

D6 QCD operators

Ubiquitous QCD operator [TP, Krauss, Kuttimalai]

anomalous gluon coupling

$$c_G \mathcal{O}_G = \frac{g_s c_G}{\Lambda^2} f_{abc} G^{\rho}_{a\nu} G^{\nu}_{b\lambda} G^{\lambda}_{c\rho} \qquad \text{with} \quad G^{\rho\nu}_a = \partial^{\rho} G^{\nu}_a - \partial^{\nu} G^{\rho}_a - ig_s f_{abc} G^{b\rho} G^{c\nu}$$

$$S_T = \sum_{j=1}^{N_{\text{jets}}} E_{T,j} + (p_T > 50 \text{ GeV})$$

- 4-fermion operator for
$$N_{jets} = 2, 3$$

gluon operator for $N_{jets} \ge 5$ [Sherpa]

Higgs Cou Higgs EFT

Consisten

QCD EFT

Top EFT

DM EFT

D6 QCD operators

Ubiquitous QCD operator [TP, Krauss, Kuttimalai]

- anomalous gluon coupling

$$c_G \mathcal{O}_G = \frac{g_s c_G}{\Lambda^2} f_{abc} G^{\rho}_{a\nu} G^{\lambda}_{b\lambda} G^{\lambda}_{c\rho} \qquad \text{with} \quad G^{\rho\nu}_a = \partial^{\rho} G^{\nu}_a - \partial^{\nu} G^{\rho}_a - ig_s f_{abc} G^{b\rho} G^{c\nu}$$

$$S_T = \sum_{j=1}^{N_{\text{jets}}} E_{T,j} + (p_T > 50 \text{ GeV})$$

- 4-fermion operator for $N_{jets} = 2, 3$ gluon operator for $N_{jets} \ge 5$ [Sherpa]
- 4-fermion operators from ATLAS Λ/\sqrt{c} > 4.8 ... 6.8 TeV
- \Rightarrow gluon operator $\Lambda/\sqrt{c} > 5.2$ TeV $\sim S_{max}$

Higgs Coupl's

Higgs EFT

Consistency

QCD EFT

Top EFT

DM EFT

YEAH!

D6 top operators

Tilman Plehn

Higgs Coup Higgs EFT Consistency

Top EFT

DM EFT

Effective Lagrangian for tops@LHC [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

- single, pair-wise, and associated top production [plus decays]
- including anomalous A_{FB} from Tevatron
- 4-quark, Yang-Mills, electroweak operators

 $\mathcal{O}_{qq} = \bar{q} \gamma_{\mu} q \, \bar{t} \gamma^{\mu} t \qquad \mathcal{O}_{G} = f_{ABC} G^{A\nu}_{\mu} G^{B\lambda}_{\nu} G^{C\mu}_{\lambda}$

$$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} \cdots$$

- profile likelihoods and individual limits
- \Rightarrow generic D6 reach \sim 500 GeV [C = 1]

D6 top operators

Tilman Plehn

Higgs Coup Higgs EFT Consistency

OCD EET

Top EFT

Effective Lagrangian for tops@LHC [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

- single, pair-wise, and associated top production [plus decays]
- including anomalous A_{FB} from Tevatron
- 4-quark, Yang-Mills, electroweak operators

 $\mathcal{O}_{qq} = \bar{q} \gamma_{\mu} q \, \bar{t} \gamma^{\mu} t \qquad \mathcal{O}_{G} = f_{ABC} G^{A\nu}_{\mu} G^{B\lambda}_{\nu} G^{C\mu}_{\lambda}$

$$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} \cdots$$

- profile likelihoods and individual limits
- \Rightarrow generic D6 reach \sim 500 GeV [c = 1]

For theorists: in terms of models

- axigluon: $M_A > 1.4 \text{ TeV}$ [tresonance]
- SM-like W': M_{W'} > 1.2 TeV [t-channel,...]
- ⇒ models less sensitive to correlations

Higgs Coup Higgs EFT Consistency

Top EFT

DM EFT

D6 dark matter operators

Combining direct, indirect, collider results for WIMPs [Tait etal]

- choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon]
- consider D6 scattering process $\chi\chi \to {\rm SM}~{\rm SM}$
- relic density from annihilation $[m_{\chi}/\tau \sim 30]$
- indirect detection even later
- direct detection non-relativistic $[E \sim 10 \text{ MeV}]$
- LHC tricky: single scale $m_{\chi} \ll m_{\text{mediator}}$?
- example: scalar dark matter

LabelCoefficient	Operator	σ_{SI}	$\langle \sigma_{ann} v \rangle$
	Real scalar		
R1 $\lambda_1 \sim 1/(2M^2)$	$m_q \chi^2 \bar{q} q$	\checkmark	s-wave
R2 $\lambda_2 \sim 1/(2M^2)$	$im_q \chi^2 \bar{q} \gamma^5 q$		s-wave
R3 $\lambda_3 \sim \alpha_S/(4M)$	$^{2})\chi^{2}G_{\mu\nu}G^{\mu\nu}$	\checkmark	s-wave
R4 $\lambda_4 \sim \alpha_s/(4M)$	$^{2})i\chi^{2}G_{\mu\nu}\tilde{G}^{\mu\nu}$		s-wave
(Complex scalar		
C1 $\lambda_1 \sim 1/(M^2)$	$m_q \chi^{\dagger} \chi \bar{q} q$	\checkmark	s-wave
C2 $\lambda_2 \sim 1/(M^2)$	$im_q \chi^{\dagger} \chi \bar{q} \gamma^5 q$		s-wave
C3 $\lambda_3 \sim 1/(M^2)$	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} q$	\checkmark	p-wave
C4 $\lambda_4 \sim 1/(M^2)$	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} \gamma^{5}$	q	p-wave
C5 $\lambda_5 \sim \alpha_S/(8M)$	$^{2})\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	\checkmark	s-wave
C6 $\lambda_{\rm 6} \sim \alpha_{\rm S}/(8M$	²)iχ [†] χG _{μν} Ğ ^{μν}		s-wave

D6 dark matter operators

Tilman Plehn

Higgs Coup Higgs EFT

Consistenc

- QCD EFT
- Top EFT

DM EFT

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density
- scalar dark matter

 $\label{Coefficient} \begin{array}{c} \hline \text{Operator} & \sigma_{\text{SI}}\left(\sigma_{\text{ann}}\nu\right) \\ \hline \\ \hline \\ \hline \\ \hline \\ R1 \ \lambda_1 \sim 1/(2M^2) \ m_q \chi^2 \tilde{q} q & \checkmark \text{ s-wave} \\ R2 \ \lambda_2 \sim 1/(2M^2) \ m_q \chi^2 \tilde{q} \gamma^5 q & \text{ s-wave} \\ R3 \ \lambda_3 \sim \alpha_S/(4M^2) \chi^2 G_{\mu\nu} \ G^{\mu\nu} & \checkmark \text{ s-wave} \\ \hline \\ R4 \ \lambda_4 \sim \alpha_S/(4M^2) i \chi^2 G_{\mu\nu} \ G^{\mu\nu} & \text{ s-wave} \\ \hline \end{array}$

- profile likelihood
- flat prior on log λ_i [prior $1/\lambda_i$]
- Dirichlet prior prefering similar-sized Wilson coefficients

D6 dark matter operators

Tilman Plehn

- Higgs Cou
- Consistent
- 00000000
- Top EFT
- DM EFT

Relic density plus Hooperon [Liem, Bertone, Ca

- default input: relic density
- scalar dark matter

- profile likelihood
- flat prior on log λ_i [prior 1/ λ_i]
- Dirichlet prior prefering similar-sized Wilson coefficients
- Fermi: GCE plus dwarf galaxies
- \Rightarrow working in practice...

Higgs Coup Higgs EFT

Top EFT

DM EFT

Towards a global analysis?

Combination of measurements [Bauer, Butter, Desai, Gonzalez-Fraile, TP]

- relic density, annihilation in early universe [non-relativistic]
- indirect detection, annihilation today [very non-relativistic]
- direct detection [non-relativistic]
- collider searches [away from poles]
- ⇒ effective Lagrangian not obvious

Higgs Coup Higgs EFT Consistenc

DM EFT

Towards a global analysis?

Combination of measurements [Bauer, Butter, Desai, Gonzalez-Fraile, TP]

- relic density, annihilation in early universe [non-relativistic]
- indirect detection, annihilation today [very non-relativistic]
- direct detection [non-relativistic]
- collider searches [away from poles]
- ⇒ effective Lagrangian not obvious

- relic density only actual measurement typical mass scales $m_{\rm med}^2/(g^2m_{\chi})\sim$ 8 TeV
- tree-level colored t-channel mediator [squark-neutralino in MSSM] relic density requiring light mediator, direct production at LHC

Higgs Coup Higgs EFT Consistenc

Top EFT

DM EFT

Towards a global analysis?

Combination of measurements [Bauer, Butter, Desai, Gonzalez-Fraile, TP]

- relic density, annihilation in early universe [non-relativistic]
- indirect detection, annihilation today [very non-relativistic]
- direct detection [non-relativistic]
- collider searches [away from poles]
- ⇒ effective Lagrangian not obvious

- relic density only actual measurement typical mass scales $m_{\rm med}^2/(g^2 m_{\chi}) \sim 8 \,{\rm TeV}$
- tree-level colored t-channel mediator [squark-neutralino in MSSM] relic density requiring light mediator, direct production at LHC
- tree-level vector s-channel mediator [Z' mediator] relic density pushing LHC into poles

Higgs Coup Higgs EFT Consistenc

Top EFT

DM EFT

Towards a global analysis?

Combination of measurements [Bauer, Butter, Desai, Gonzalez-Fraile, TP]

- relic density, annihilation in early universe [non-relativistic]
- indirect detection, annihilation today [very non-relativistic]
- direct detection [non-relativistic]
- collider searches [away from poles]
- ⇒ effective Lagrangian not obvious

- relic density only actual measurement typical mass scales $m_{\rm med}^2/(g^2m_{\chi})\sim$ 8 TeV
- tree-level colored t-channel mediator [squark-neutralino in MSSM] relic density requiring light mediator, direct production at LHC
- tree-level vector s-channel mediator [Z' mediator] relic density pushing LHC into poles
- loop-mediated scalar s-channel mediator $_{\rm [heavy Higgs-neutralino in MSSM]}$ issues with mass effects and $\chi\chi\to t\bar{t}$ annihilation

Higgs Coup Higgs EFT Consistency QCD EFT

Top EFT

DM EFT

Towards a global analysis?

Combination of measurements [Bauer, Butter, Desai, Gonzalez-Fraile, TP]

- relic density, annihilation in early universe [non-relativistic]
- indirect detection, annihilation today [very non-relativistic]
- direct detection [non-relativistic]
- collider searches [away from poles]
- ⇒ effective Lagrangian not obvious

- relic density only actual measurement typical mass scales $m_{\rm med}^2/(g^2m_\chi)\sim$ 8 TeV
- tree-level colored t-channel mediator [squark-neutralino in MSSM] relic density requiring light mediator, direct production at LHC
- tree-level vector s-channel mediator [z' mediator] relic density pushing LHC into poles
- loop-mediated scalar s-channel mediator $_{\rm [heavy Higgs-neutralino in MSSM]}$ issues with mass effects and $\chi\chi\to t\bar{t}$ annihilation
- loop-mediated scalar t-channel mediator [stop-neutralino in MSSM] mediator pairs at LHC
- \Rightarrow relic density and LHC combination the challenge

Higgs Coup Higgs EFT Consistency QCD EFT Top EFT

Tilman Plehn

DM EFT

Tree-level scalar in t-channel [squarks]

- relic density for $m_\chi < m_{\widetilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{ ext{eff}} \supset rac{\mathcal{C}_{u\chi}}{\Lambda^2} \, \left(ar{u}_R \chi
ight) \, \left(ar{\chi} u_R
ight) \qquad \mathcal{L}_{ ext{eff}} \supset rac{\mathcal{C}}{\Lambda^3} (ar{\chi} \chi) \, \mathcal{G}_{\mu
u} \mathcal{G}^{\mu
u}$$

- not valid for correct relic density...

Tree-level vector in s-channel

- relic density for $m_{\chi} < m_V$

Higgs Coup Higgs EFT Consistency QCD EFT Top EFT

Tilman Plehn

DM EFT

Tree-level scalar in t-channel [squarks]

- relic density for $m_\chi < m_{\widetilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{ ext{eff}} \supset rac{\mathcal{C}_{u\chi}}{\Lambda^2} \, \left(ar{u}_R \chi
ight) \, \left(ar{\chi} u_R
ight) \qquad \mathcal{L}_{ ext{eff}} \supset rac{\mathcal{C}}{\Lambda^3} (ar{\chi} \chi) \, \mathcal{G}_{\mu
u} \mathcal{G}^{\mu
u}$$

- not valid for correct relic density...

Tree-level vector in s-channel

- relic density for $m_{\chi} < m_V$
- only 4-fermion operator
- not valid for correct relic density...

~4 10 ପ

Higgs Coupl Higgs EFT Consistency QCD EFT Top EFT

Tilman Plehn

DM EFT

Tree-level scalar in t-channel [squarks]

- relic density for $m_\chi < m_{\widetilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{ ext{eff}} \supset rac{\mathcal{C}_{u\chi}}{\Lambda^2} \, \left(ar{u}_R \chi
ight) \, \left(ar{\chi} u_R
ight) \qquad \mathcal{L}_{ ext{eff}} \supset rac{\mathcal{C}}{\Lambda^3} (ar{\chi} \chi) \, \mathcal{G}_{\mu
u} \, \mathcal{G}^{\mu
u}$$

- not valid for correct relic density...

Tree-level vector in s-channel

- relic density for $m_{\chi} < m_V$
- only 4-fermion operator
- not valid for correct relic density...

Loop-mediated scalar in s-channel

– relic density for $m_\chi < m_S$

Higgs Coupl' Higgs EFT Consistency QCD EFT Top EFT DM EFT

Tilman Plehn

Tree-level scalar in t-channel [squarks]

- relic density for $m_\chi < m_{\widetilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{ ext{eff}} \supset rac{c_{u\chi}}{\Lambda^2} \, \left(ar{u}_R \chi
ight) \, \left(ar{\chi} u_R
ight) \qquad \mathcal{L}_{ ext{eff}} \supset rac{c}{\Lambda^3} (ar{\chi} \chi) \, G_{\mu
u} G^{\mu
u}$$

- not valid for correct relic density...

Tree-level vector in s-channel

- relic density for $m_\chi < m_V$
- only 4-fermion operator
- not valid for correct relic density...

Loop-mediated scalar in s-channel

- relic density for $m_\chi < m_S$
- two good effective Lagrangians

$$\mathcal{L}_{ ext{eff}} \supset rac{c_{\mathcal{S}}^t}{\Lambda^2}(\bar{t}t) \ (\bar{\chi}\chi) \qquad \mathcal{L}_{ ext{eff},3} \supset rac{c_{\chi}^g}{\Lambda^3}(\bar{\chi}\chi) \ G_{\mu\nu}G^{\mu\nu}$$

- not valid for correct relic density...

Higgs Coupl's

Higgs EFT

Consistency

QCD EFT

Top EFT

DM EFT

SIGH...
Tilman Plehn

Higgs Coupl' Higgs EFT Consistency QCD EFT Top EFT

DM EFT

Bottom line

Describing LHC data using effective Lagrangians

dimension-6 Higgs-gauge Lagrangian working dimension-6 QCD Lagrangian excellent dimension-6 top Lagrangian like Higgs dark matter EFT not for global analyses validation through full models

uncertainties part of matching mostly tool for limit setting

⇒ Welcome to a data-driven era!

Lectures on LHC Physics and dark matter updated under www.thphys.uni-heidelberg.de/~plehn/

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

