Tilman Plehn

_...

SUS

Mono-X

HC

Some Questions about that Dawn

Tilman Plehn

Universität Heidelberg

Heidelberg, April 2018

Tilman Plehn

Status

Where we stand

What we know about dark matter

- it is particles [axions to black holes]
- it's global density is $\Omega_{Y} h^2 \approx 0.12$ [Planck]
- it is cold [structure formation]
- it interacts (at least) gravitationally [bullet cluster, structure formation, etc]
- neutrinos contribute, but explain nothing
- ⇒ more data the key, DM ready to be solved?

```
Questions
```

Tilman Plehn

Status

LHC

Where we stand

What we know about dark matter

- it is particles [axions to black holes]
- it's global density is $\Omega_{Y} h^2 \approx 0.12$ [Planck]
- it is cold [structure formation]
- it interacts (at least) gravitationally [bullet cluster, structure formation, etc]
- neutrinos contribute, but explain nothing
- ⇒ more data the key, DM ready to be solved?

How we search for dark matter

- direct detection: scattering in earth-based detectors
- indirect detection: annihilation products from high densities
- collider searches: 'invisible' particles
- cosmological experiments: thermal history
- astrophysics: micro-lensing

- ⇒ all-physics-and-astronomy effort!
- ⇒ are we missing something?

Questions
Tilman Plehn
Status
SUSY
EFT
Mono-X
LHC

Being an LHC dark matter person

Thermal production

Status

Mono-X

Our one measurement

annihilation rate from Boltzmann equation

$$\Omega_{\chi} h^2 \approx 0.12 \frac{x_{\text{dec}}}{28} \frac{\sqrt{g_{\text{eff}}}}{10} \frac{4 \cdot 10^{-9} \text{ GeV}^{-2}}{\langle \sigma_{\chi\chi} v \rangle}$$

literal WIMP

$$\langle \sigma_{\chi\chi} \; v \rangle = \frac{\pi \alpha^2 m_\chi^2}{s_w^4 m_W^4} \qquad \Rightarrow \qquad \Omega_\chi h^2 \approx 0.12 \; \left(\frac{50 \, {\rm GeV}}{m_\chi}\right)^2$$

- light mediator

$$\langle \sigma_{\chi\chi} \, v
angle pprox rac{g^4}{16\pi m_\chi^2} \qquad \Rightarrow \qquad rac{m_\chi}{g^2} pprox 2.2 \, {
m TeV}$$

- heavy mediator

$$\langle \sigma_{\chi\chi} \ v
angle pprox rac{g^4 m_\chi^2}{16 \pi \ m_{
m mod}^4} \qquad \Rightarrow \qquad rac{m_{
m med}^2}{g^2 m_\chi} \, pprox 2.2 \, {
m TeV}$$

Higgs portal

$$\sigma_{\chi\chi} \propto \begin{cases} \frac{\lambda_3^2 m_b^2}{m_H^4} & m_S \ll \frac{m_H}{2} & \lambda_3 \approx 0.2 \\ \\ \frac{\lambda_3^2 m_b^2}{m_H^2 \Gamma_H^2} & m_S = \frac{m_H}{2} & \lambda_3 \approx 10^{-5} \\ \\ \frac{\lambda_3^2}{m_S^2} & m_S > m_Z, m_H & \lambda_3 \approx 0.05 \end{cases}$$

⇒ universal framework including relic density?

Tilman Plehn

SUSY

Supersymmetry

Still the mother of models

- solving the hierarchy problem, if it's a problem [ask philosophers?]
- allowing for gauge coupling unification
- linking to string theory in the UV
- only BSM model still making sense after Run I

SUSY

LHC

Tilman Plehn

Still the mother of models

Supersymmetry

- solving the hierarchy problem, if it's a problem [ask philosophers?]
- allowing for gauge coupling unification
- linking to string theory in the UV
- only BSM model still making sense after Run I

At least the leading thermal DM model

- electroweakinos with TeV-scale upper mass limit
- define DM through $SU(2)_L$ representation singlet, doublet, triplet
- allow for general mixing
- add co-annihilation partners, if needed
- add light NMSSM mediator, if needed
- ⇒ relic neutralino surface

Supersymmetry

At least the leading thermal DM model

singlet, doublet, triplet

allow for general mixing

⇒ relic neutralino surface

electroweakinos with TeV-scale upper mass limit

define DM through SU(2), representation

 add co-annihilation partners, if needed - add light NMSSM mediator, if needed

Majorana (or Dirac) neutralino, different mediators

tan β±10

No Sommerfeld = •

Tilman Plehn

SUSY

LHC

- − SM Z-boson $\chi \chi \rightarrow Z \rightarrow \text{jets}$
 - SM-like Higgs $\chi \chi \to h \to b\bar{b}$

 - heavy Higgs $H, A \rightarrow b\bar{b}, t\bar{t}$
 - *t*-channel chargino $\chi\chi\to WW\to \text{jets}$
 - chargino co-annihilation $\chi^0 \chi^{\pm} \to W$
 - stau co-annihilation $\tilde{\tau}\chi \to \tau + X$

 - light singlet-singlino channel $\chi\chi\to a\to SM$

 - ⇒ many simplified models, properly defined

Supersymmetry

At least the leading thermal DM model

 add co-annihilation partners, if needed - add light NMSSM mediator, if needed

- jets/leptons plus missing energy

photons from late decays

singlet, doublet, triplet

- allow for general mixing

⇒ relic neutralino surface

Inspiring signatures

charged tracks

- electroweakinos with TeV-scale upper mass limit define DM through SU(2), representation

SUSY

LHC

- ???? _ ????

⇒ QFT of simplified models?

tan β±10

Tilman Plehn

EFT

Decoupled mediator $m_{\text{med}} \gtrsim 2m_{\chi}$

- direct detection fine [non-relativistic]
- indirect detection, annihilation today fine [very non-relativistic]
- remember relic density $\frac{m_{\mathrm{med}}^2}{g^2 m_{\chi}} = \frac{m_{\mathrm{med}}}{g^2} \frac{m_{\mathrm{med}}}{m_{\chi}} \approx 2.2 \, \mathrm{TeV} \stackrel{m_{\mathrm{med}} > 2m_{\chi}}{\Longrightarrow}$
 - LHC constraints: $m_{\rm med} \gtrsim {
 m TeV}$
- ⇒ big problem, and it's not the LHC

Questions	
-----------	--

Tilman Plehn

EFT

Decoupled mediator $m_{\text{med}} \gtrsim 2m_{\chi}$

Effective theory

- direct detection fine [non-relativistic]
- indirect detection, annihilation today fine [very non-relativistic]
- remember relic density $\frac{m_{\rm med}^2}{g^2 m_\chi} = \frac{m_{\rm med}}{g^2} \; \frac{m_{\rm med}}{m_\chi} \approx 2.2 \, {\rm TeV} \quad \stackrel{m_{\rm med} > 2m_\chi}{\Longrightarrow} \quad \frac{m_{\rm med}}{g^2} < 1.1 \, {\rm TeV}$
- LHC constraints: m_{med} ≥ TeV
- ⇒ big problem, and it's not the LHC

Representing models? [lesson from EFT for Higgs@LHC]

- tree-level colored t-channel mediator [squark-neutralino in MSSM]
- tree-level vector s-channel mediator (Z' mediator)
- loop-mediated scalar s-channel mediator [heavy Higgs-neutralino in MSSM]
- loop-mediated scalar t-channel mediator [stop-neutralino in MSSM]
- ⇒ can we imagine sensible UV completions of DM-EFT?

Tilman Plehn

EFT

Mono-X

Effective theory vs models

Tree-level scalar in t-channel [squarks] - relic density for small $m_{\tilde{u}}$

Tilman Plehn

Effective theory vs models

EFT Mono-X Tree-level scalar in *t*-channel [squarks]

أفعلا

- relic density for small $m_{\tilde{l}l}$
- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{u\chi}}{\Lambda^2} \; (ar{u}_{\mathsf{R}}\chi) \; (ar{\chi}u_{\mathsf{R}}) \qquad \mathcal{L}_{\mathsf{eff}} \supset rac{c}{\Lambda^3} (ar{\chi}\chi) \, \mathsf{G}_{\mu\nu} \, \mathsf{G}^{\mu\nu}$$

10 m_{χ} =10 GeV m_{ν} =50 GeV 10^{-2} m,=100 GeV

- EFT not valid for correct relic density...

Tilman Plehn

EFT

Tree-level scalar in t-channel [squarks]

- relic density for small $m_{\tilde{i}i}$

Effective theory vs models

- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{u\chi}}{\Lambda^2} \; (ar{u}_{R}\chi) \; (ar{\chi}u_{R}) \qquad \mathcal{L}_{\mathsf{eff}} \supset rac{c}{\Lambda^3} (ar{\chi}\chi) \, G_{\mu\nu} \, G^{\mu
u}$$

- EFT not valid for correct relic density...

Tree-level vector in s-channel

- relic density for small m_V or on-shell mediator

Effective theory vs models

Tilman Plehn

EFT

Tree-level scalar in *t*-channel [squarks]

- relic density for small $m_{\tilde{i}i}$
- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{u\chi}}{\Lambda^2} \; (ar{u}_{R}\chi) \; (ar{\chi}u_{R}) \qquad \mathcal{L}_{\mathsf{eff}} \supset rac{c}{\Lambda^3} (ar{\chi}\chi) \, G_{\mu\nu} \, G^{\mu
u}$$

- EFT not valid for correct relic density...

Tree-level vector in s-channel

- relic density for small m_V or on-shell mediator
- only 4-fermion operator
- EFT not valid for correct relic density...

Tilman Plehn

EFT

LHC

Tree-level scalar in *t*-channel [squarks]

- relic density for small $m_{\tilde{i}i}$
- two effective Lagrangians

Effective theory vs models

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{U \chi}}{\Lambda^2} \; (ar{u}_R \chi) \; (ar{\chi} u_R) \;\;\;\; \mathcal{L}_{\mathsf{eff}} \supset rac{c}{\Lambda^3} (ar{\chi} \chi) \; G_{\mu
u} G^{\mu
u}$$

- EFT not valid for correct relic density...

Tree-level vector in s-channel

- relic density for small m_V or on-shell mediator
- only 4-fermion operator
- EFT not valid for correct relic density...

Loop-mediated scalar in s-channel

- relic density around pole

Tilman Plehn

Effective theory vs models

EFT

LHC

Tree-level scalar in t-channel [squarks]

- relic density for small $m_{\tilde{i}i}$
- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{u\chi}}{\mathsf{\Lambda}^2} \; (ar{u}_{\mathsf{R}}\chi) \; (ar{\chi}u_{\mathsf{R}}) \qquad \mathcal{L}_{\mathsf{eff}} \supset rac{c}{\mathsf{\Lambda}^3} (ar{\chi}\chi) \, G_{\mu\nu} G^{\mu
u}$$

- EFT not valid for correct relic density...

Tree-level vector in s-channel

- relic density for small m_V or on-shell mediator
- only 4-fermion operator
- EFT not valid for correct relic density...

Loop-mediated scalar in s-channel

- relic density around pole
- two good effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{\mathcal{S}}^t}{\Lambda^2}(\overline{t}t) \, (ar{\chi}\chi) \qquad \mathcal{L}_{\mathsf{eff},3} \supset rac{c_{\chi}^g}{\Lambda^3}(ar{\chi}\chi) \, \, G_{\mu
u}G^{\mu
u}$$

- EFT not valid for correct relic density...
- ⇒ does a global DM-EFT framework make any sense?

Signatures: mono-X-itis

Mono-X

DM signatures with measurable recoil

- mono-jet(s) signature from 80s
- ISR with Z' mediator

$$pp o Z'X o \chi\chi \ X \qquad {
m with} \quad X=j,\gamma,Z$$

- ratio of signal rates known, nothing to learn

$$\frac{\sigma_{\chi\chi\gamma}}{\sigma_{\chi\chi j}} \approx \frac{\alpha}{\alpha_{\rm s}} \frac{Q_{\rm q}^2}{C_{\rm F}} \approx \frac{1}{40} \qquad \qquad \frac{\sigma_{\chi\chi\ell\ell}}{\sigma_{\chi\chi j}} \approx \frac{\alpha}{\alpha_{\rm s}} \frac{Q_{\rm q}^2 s_{\rm w}^2}{C_{\rm F}} \; {\rm BR}(Z \to \ell^+\ell^-) \approx \frac{1}{2000}$$

Tilman Plehn

Mono-X

Signatures: mono-X-itis

DM signatures with measurable recoil

- mono-jet(s) signature from 80s
- ISR with Z' mediator

$$pp o Z'X o \chi\chi X \qquad \text{with} \quad X = j, \gamma, Z$$

- ratio of signal rates known, nothing to learn

$$\frac{\sigma_{\chi\chi\gamma}}{\sigma_{\chi\chi j}} pprox \frac{\alpha}{\alpha_s} \frac{Q_q^2}{C_F} pprox \frac{1}{40}$$

$$\frac{\sigma_{\chi\chi\gamma}}{\sigma_{\chi\chi j}} \approx \frac{\alpha}{\alpha_s} \frac{Q_q^2}{C_F} \approx \frac{1}{40} \qquad \frac{\sigma_{\chi\chi\ell\ell}}{\sigma_{\chi\chi j}} \approx \frac{\alpha}{\alpha_s} \frac{Q_q^2 s_w^2}{C_F} \ \text{BR}(Z \to \ell^+ \ell^-) \approx \frac{1}{2000}$$

Signal vs background

- background $Z \to \nu \nu$ [and a little $W \to \ell \nu$]
- statistical significance

$$n_{\sigma,\gamma}pprox rac{1}{6.3}\;\sqrt{rac{\epsilon_{\gamma}}{\epsilon_{j}}}\;n_{\sigma,j}$$

Tilman Plehn

Mono-X

DM signatures with measurable recoil

- mono-jet(s) signature from 80s
- ISR with Z' mediator

Signatures: mono-X-itis

$$pp o Z'X o \chi\chi X \qquad \text{with} \quad X = j, \gamma, Z$$

- ratio of signal rates known, nothing to learn

$$\frac{\sigma_{\chi\chi\gamma}}{\sigma_{\chi\chi j}} \approx \frac{\alpha}{\alpha_s} \frac{Q_q^2}{C_F} \approx \frac{1}{40} \qquad \frac{\sigma_{\chi\chi\ell\ell}}{\sigma_{\chi\chi j}} \approx \frac{\alpha}{\alpha_s} \frac{Q_q^2 \mathsf{s}_w^2}{C_F} \; \mathsf{BR}(Z \to \ell^+\ell^-) \approx \frac{1}{2000}$$

Signal vs background

- background $Z \to \nu \nu$ [and a little $W \to \ell \nu$]
- statistical significance

$$n_{\sigma,\gamma} pprox rac{1}{6.3} \, \sqrt{rac{\epsilon_{\gamma}}{\epsilon_{j}}} \, n_{\sigma,j}$$

- beyond ISR: final state decays [SUSY, 2HDM, Z'?]
- ⇒ does mono-X make sense beyond few models?

Power of the LHC

Tilman Plehn

LHC

Kinematics of missing transverse momentum

- transverse mass with observable edge $[t \rightarrow W_{\ell}b]$

$$m_T^2 = \left(E_{T, \text{miss}} + E_{T, \ell} \right)^2 - \left(\vec{p}_T + \vec{\rho}_{T, \ell} \right)^2 < m_W^2$$

- the glory of m_{T2}

$$m_{T2}(\hat{m}_{ ext{miss}}) = \min_{\substack{
p \\ T = q_1 + q_2}} \left[\max_j \ m_{T,j}(q_j; \hat{m}_{ ext{miss}}) \right] \qquad m_{T2}(m_{ ext{miss}}) \subset [m_{ ext{light}} + m_{ ext{miss}}, m_{ ext{heavy}}]$$

- many advanced mass constructions

LHC

Power of the LHC

Kinematics of missing transverse momentum

- transverse mass with observable edge $[t \rightarrow w_{\ell}b]$

$$m_T^2 = (E_{T, \text{miss}} + E_{T, \ell})^2 - (\vec{p}_T + \vec{p}_{T, \ell})^2 < m_W^2$$

– the glory of m_{T2}

$$m_{T2}(\hat{m}_{\mathsf{miss}}) = \min_{\substack{\emptyset_T = q_1 + q_2 \ j}} \left[\max_{j} \ m_{T,j}(q_j; \hat{m}_{\mathsf{miss}}) \right] \qquad m_{T2}(m_{\mathsf{miss}}) \subset [m_{\mathsf{light}} + m_{\mathsf{miss}}, m_{\mathsf{heavy}}]$$

- many advanced mass constructions

Magic of QCD

$$pp$$
 → Hjj vs pp → Zjj vs pp → Wjj

- number of (central) jets different for H, Z, W

Power of the LHC

Tilman Plehn

LHC

Kinematics of missing transverse momentum

- transverse mass with observable edge $[t \rightarrow w_{\ell}b]$

$$m_T^2 = \left(E_{T, \text{miss}} + E_{T, \ell} \right)^2 - \left(\vec{p}_T + \vec{p}_{T, \ell} \right)^2 < m_W^2$$

- the glory of m_{T2}

$$m_{\text{T2}}(\hat{m}_{\text{miss}}) = \min_{\not p_T = q_1 + q_2} \left[\max_j \ m_{T,j}(q_j; \hat{m}_{\text{miss}}) \right] \qquad m_{\text{T2}}(m_{\text{miss}}) \subset [m_{\text{light}} + m_{\text{miss}}, m_{\text{heavy}}]$$

- many advanced mass constructions

Magic of QCD

- pp → Hij vs pp → Zij vs pp → Wii
- number of (central) jets different for H, Z, W
- quark vs gluon tagging jets

Power of the LHC

Tilman Plehn

LHC

Kinematics of missing transverse momentum

- transverse mass with observable edge $[t \rightarrow w_{\ell}b]$

$$m_T^2 = \left(E_{T, \text{miss}} + E_{T, \ell} \right)^2 - \left(\vec{p}_T + \vec{p}_{T, \ell} \right)^2 < m_W^2$$

- the glory of m_{T2}

$$m_{T2}(\hat{m}_{\mathsf{miss}}) = \min_{\substack{eta_T = q_1 + q_2}} \left[\max_{j} \ m_{T,j}(q_j; \hat{m}_{\mathsf{miss}}) \right] \qquad m_{T2}(m_{\mathsf{miss}}) \subset [m_{\mathsf{light}} + m_{\mathsf{miss}}, m_{\mathsf{heavy}}]$$

- many advanced mass constructions

Magic of QCD

- $pp \rightarrow Hij \text{ vs } pp \rightarrow Zij \text{ vs } pp \rightarrow Wij$
- number of (central) jets different for H, Z, W
- quark vs gluon tagging jets
- trigger is the limit
- ⇒ how far can we push the LHC?

Tilman Plehn

Tilman Plehn

SUS

EFT

Mono-LHC

Questions

Aspects to discuss before Dawn

Is DM ready to be solved?

Are we missing something?

Is a universal (thermal) DM framework possible?

What are the QFTs of simplified models?

Can we imagine sensible UV completions of DM-EFT? Does a global DM-EFT framework make any sense?

Does mono-X make sense beyond few models?

How far can we push for example the LHC?